APPENDIX

This appendix illustrates the derivation of velocity difference $v_{c,n} - v_{b,n}$ calculation in (11) in the paper.

Assuming that a small water droplet can be decomposed into $N_{\omega} + 1$ rigid infinitesimal sections, where ξ_c and ξ_b ($b = 1, \ldots, N_{\omega}$) are the infinitesimal sections including center point \mathbf{w}_c and boundary point \mathbf{w}_b respectively (cf. Fig. A-1a). Then, the velocities of center or boundary points \mathbf{w}_{c} , \mathbf{w}_{b} can be represented by the velocities of infinitesimal sections ξ_c , ξ_b including them.

Let the center infinitesimal section ξ_c pass through a 3D tube with a constant time-axis velocity $v_{\mathcal{C}}$ (i.e., $v_{c,n} =$ $v_{\mathcal{C}}, \forall n$), we need to calculate the time-axis velocity $v_{b,n}$ of boundary infinitesimal sections ξ_b .

For simplicity, we neglect the gravity forces on ξ_b and the interacting forces among ξ_b . The time-axis velocity of ξ_b is then jointly decided by the viscosity force from the center infinitesimal section ξ_c and the friction force from a 3D tube's boundary, as in Fig. A-1b. Thus, according to Newtons second law of motion, the force-and-motion correlation for ξ_b can be constructed by:

$$m_b \cdot a_{b,n-1} = \mathcal{F}^o_{b,n-1} - \mathcal{F}^f_{b,n-1}$$
 (A-1)

where $a_{b,n-1}$ is the acceleration of boundary infinitesimal section ξ_b when it passes through boundary position $\mathbf{P}_{b,n-1}$. m_b is the mass of ξ_b which is assumed to be the same for all boundary infinitesimal sections (i.e., $m_b = m_{\mathcal{B}}, \forall b$). $\mathcal{F}_{b,n-1}^o$ and $\mathcal{F}^{f}_{b,n-1}$ are the time-axis viscosity and friction forces applied on ξ_b at position $\mathbf{P}_{b,n-1}$, respectively.

The acceleration $a_{b,n-1}$ in (A-1) can be calculated by:

$$a_{b,n-1} = \frac{v_{b,n} - v_{b,n-1}}{\Delta t}$$
 (A-2)

where $v_{b,n}$ is the time-axis velocity of ξ_b when passing through position $\mathbf{P}_{b,n}$ ($\mathbf{P}_{b,n}$ is the next position of $\mathbf{P}_{b,n-1}$ on ξ_b 's route). Δt is the time used to change from $v_{b,n-1}$ to $v_{b,n}$, and it is set as a constant for different $v_{b,n-1}$.

Furthermore, according to fluid viscosity theories [1], [2], the viscosity force $\mathcal{F}_{b,n-1}^{o}$ in (A-1) can be approximated by:

$$\mathcal{F}_{b,n-1}^{o} \approx \mu_1 \mathcal{S} \frac{v_{\mathcal{C}} - v_{b,n-1}}{r_{b,n-1}^s} \tag{A-3}$$

where $v_{\mathcal{C}}$ is the constant velocity of the center infinitesimal section ξ_c . μ_1 is the viscosity coefficient. S is the contact area between infinitesimal sections ξ_c and ξ_b , and it is set as a constant for all ξ_b (cf. Fig. A-1b). $r_{b,n-1}^s$ is the distance between center and boundary positions $\mathbf{P}_{c,n-1}$ and $\mathbf{P}_{b,n-1}$ (cf. (11) in the paper). $r_{b,n-1}^{s}$ is utilized to approximate the average distance between points in infinitesimal sections ξ_b and ξ_c (cf. Fig. A-1b). According to (A-3), the viscosity force is controlled by the thickness of a 3D tube. When a water droplet passes through a thick tube, $r_{b,n-1}^s$ becomes large and the viscosity force from ξ_c to ξ_b becomes small.

Similarly, the time-axis friction force $\mathcal{F}_{b,n-1}^{f}$ can be approximated by:

$$\mathcal{F}_{b,n-1}^f \approx \mu_2 (1 + \cos \theta_{b,n-1}) \tag{A-4}$$

where μ_2 is the constant friction coefficient [3]. $\theta_{b,n-1}$ evaluates the relative location of a boundary position $\mathbf{P}_{b,n-1}$ with

Figure A-1. (a) Illustration of infinitesimal sections ξ_c and ξ_b ; (b) Illustration of viscosity and friction forces $\mathcal{F}^o_{b,n-1}$ and $\mathcal{F}^f_{b,n-1}$, contact area S between infinitesimal sections, distance $r^s_{b,n}$ between center and boundary positions, and relative angle $\theta_{b,n-1}$ of a boundary position to a droplet's motion route.

respect to the motion route of a water droplet (cf. (11) in the paper). $1 + \cos \theta_{b,n-1}$ is utilized to model the effect of a water droplet's normal force on tube boundaries. For example, in Fig. A-1b, when a water droplet is moving leftward in horizontal direction, it is modeled to provide larger normal forces on tube boundary points $\mathbf{P}_{1,n-1}$ on the left. This leads to a larger friction force applied on infinitesimal section ξ_1 . In this way, the velocities of boundary infinitesimal sections can be controlled by the route of a 3D tube. Consequently, the route information of a 3D tube can be effectively embedded in the output droplet shape (cf. Fig. 6 in the paper).

Based on (A-2) to (A-4), (A-1) can be rewritten by:

$$m_{\mathcal{B}} \frac{v_{b,n} - v_{b,n-1}}{\Delta t} = \mu_1 \mathcal{S} \frac{v_{\mathcal{C}} - v_{b,n-1}}{r_{b,n-1}^s} - \mu_2 - \mu_2 \cos \theta_{b,n-1}$$
(A-5)

After omitting the constant term μ_2 in (A-5)¹, we can easily derive the time-axis velocity $v_{b,n}$ of ξ_b when passing through position $\mathbf{P}_{c,n}$ by:

$$v_{b,n} \approx \left(1 - \frac{\lambda_1}{r_{b,n-1}^s}\right) v_{b,n-1} + \frac{\lambda_1}{r_{b,n-1}^s} v_{\mathcal{C}} - \lambda_2 \cos \theta_{b,n-1}$$

where $\lambda_1 = \frac{\mu_1 S \Delta t}{m_B}$ and $\lambda_2 = \frac{\mu_2 \Delta t}{m_B}$ are constant coefficients. Finally, the velocity difference $v_{c,n} - v_{b,n}$ in (11) in the

paper can be calculated as:

$$v_{c,n} - v_{b,n} \approx \left(1 - \frac{\lambda_1}{r_{b,n-1}^s}\right) \left(v_{\mathcal{C}} - v_{b,n-1}\right) + \lambda_2 \cos \theta_{b,n-1}$$
(A-6)

REFERENCES

- [1] R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational fluid mechanics and heat transfer. CRC Press, 2012.
- S. Patankar, Numerical Heat Transfer and Fluid Flow. CRC Press, [2] 1980
- [3] B. Armstrong-Helouvry, Control of machines with friction. Springer Science & Business Media, 2012.

1. Note that when plotting droplet figures in Figs 5, 10 in the paper, the constant term is not omitted in order to display d_h^t in positive values.