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APPENDIX

This appendix illustrates the derivation of velocity differ-
ence vc,n − vb,n calculation in (11) in the paper.

Assuming that a small water droplet can be decom-
posed into Nω + 1 rigid infinitesimal sections, where ξc and
ξb (b = 1, . . . , Nω) are the infinitesimal sections including
center point wc and boundary point wb respectively (cf.
Fig. A-1a). Then, the velocities of center or boundary points
wc, wb can be represented by the velocities of infinitesimal
sections ξc, ξb including them.

Let the center infinitesimal section ξc pass through a
3D tube with a constant time-axis velocity vC (i.e., vc,n =
vC ,∀n), we need to calculate the time-axis velocity vb,n of
boundary infinitesimal sections ξb.

For simplicity, we neglect the gravity forces on ξb and
the interacting forces among ξb. The time-axis velocity of
ξb is then jointly decided by the viscosity force from the
center infinitesimal section ξc and the friction force from
a 3D tube’s boundary, as in Fig. A-1b. Thus, according
to Newtons second law of motion, the force-and-motion
correlation for ξb can be constructed by:

mb · ab,n−1 = Fob,n−1 −F
f
b,n−1 (A-1)

where ab,n−1 is the acceleration of boundary infinitesimal
section ξb when it passes through boundary position Pb,n−1.
mb is the mass of ξb which is assumed to be the same for all
boundary infinitesimal sections (i.e., mb = mB,∀b). Fob,n−1

and Ffb,n−1 are the time-axis viscosity and friction forces
applied on ξb at position Pb,n−1, respectively.

The acceleration ab,n−1 in (A-1) can be calculated by:

ab,n−1 =
vb,n − vb,n−1

∆t
(A-2)

where vb,n is the time-axis velocity of ξb when passing
through position Pb,n (Pb,n is the next position of Pb,n−1

on ξb’s route). ∆t is the time used to change from vb,n−1 to
vb,n, and it is set as a constant for different vb,n−1 .

Furthermore, according to fluid viscosity theories [1], [2],
the viscosity force Fob,n−1 in (A-1) can be approximated by:

Fob,n−1 ≈ µ1S
vC − vb,n−1

rsb,n−1

(A-3)

where vC is the constant velocity of the center infinitesimal
section ξc. µ1 is the viscosity coefficient. S is the contact
area between infinitesimal sections ξc and ξb, and it is set
as a constant for all ξb (cf. Fig. A-1b). rsb,n−1 is the distance
between center and boundary positions Pc,n−1 and Pb,n−1

(cf. (11) in the paper). rsb,n−1 is utilized to approximate the
average distance between points in infinitesimal sections ξb
and ξc (cf. Fig. A-1b). According to (A-3), the viscosity force
is controlled by the thickness of a 3D tube. When a water
droplet passes through a thick tube, rsb,n−1 becomes large
and the viscosity force from ξc to ξb becomes small.

Similarly, the time-axis friction force Ffb,n−1 can be ap-
proximated by:

Ffb,n−1 ≈ µ2(1 + cos θb,n−1) (A-4)

where µ2 is the constant friction coefficient [3]. θb,n−1 evalu-
ates the relative location of a boundary position Pb,n−1 with
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Figure A-1. (a) Illustration of infinitesimal sections ξc and ξb; (b) Il-
lustration of viscosity and friction forces Fo

b,n−1 and Ff
b,n−1, contact

area S between infinitesimal sections, distance rsb,n between center and
boundary positions, and relative angle θb,n−1 of a boundary position to
a droplet’s motion route.

respect to the motion route of a water droplet (cf. (11) in the
paper). 1+cos θb,n−1 is utilized to model the effect of a water
droplet’s normal force on tube boundaries. For example,
in Fig. A-1b, when a water droplet is moving leftward in
horizontal direction, it is modeled to provide larger normal
forces on tube boundary points P1,n−1 on the left. This leads
to a larger friction force applied on infinitesimal section ξ1.
In this way, the velocities of boundary infinitesimal sections
can be controlled by the route of a 3D tube. Consequently,
the route information of a 3D tube can be effectively embed-
ded in the output droplet shape (cf. Fig. 6 in the paper).

Based on (A-2) to (A-4), (A-1) can be rewritten by:

mB
vb,n − vb,n−1

∆t
= µ1S

vC − vb,n−1

rsb,n−1

− µ2 − µ2 cos θb,n−1

(A-5)
After omitting the constant term µ2 in (A-5)1, we can

easily derive the time-axis velocity vb,n of ξb when passing
through position Pc,n by:

vb,n ≈
(

1− λ1

rsb,n−1

)
vb,n−1 +

λ1

rsb,n−1

vC − λ2 cos θb,n−1

where λ1 = µ1S∆t
mB

and λ2 = µ2∆t
mB

are constant coefficients.
Finally, the velocity difference vc,n − vb,n in (11) in the

paper can be calculated as:

vc,n − vb,n ≈
(

1− λ1

rsb,n−1

)
(vC − vb,n−1) + λ2 cos θb,n−1

(A-6)

REFERENCES

[1] R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational fluid
mechanics and heat transfer. CRC Press, 2012.

[2] S. Patankar, Numerical Heat Transfer and Fluid Flow. CRC Press,
1980.

[3] B. Armstrong-Helouvry, Control of machines with friction. Springer
Science & Business Media, 2012.

1. Note that when plotting droplet figures in Figs 5, 10 in the paper,
the constant term is not omitted in order to display dtb in positive
values.




