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Figure 11. (a) Example trajectories of the TRAFFIC dataset (yellow
curves: normal trajectories, red curves: abnormal trajectories). (b) Major
motion routes of different trajectory classes. The yellow and red curves
indicate routes for normal and abnormal trajectory classes (‘U’,‘D’,‘L’,‘R’
refers to ‘upward’,‘downward’,‘leftward’,‘rightward’ respectively. For ex-
ample, ‘LU’ means moving leftward and then upward). (c) ROC curves
of different methods when discriminating normal/abnormal trajectories
under different abnormality detection thresholds. (Best viewed in color)

6.2 Trajectory Classification & Abnormality Detection

6.2.1 Results on TRAFFIC dataset

We perform experiments of trajectory classification & abnor-
mality detection on our own constructed TRAFFIC dataset.
This dataset includes 300 real-scene trajectories where 200
trajectories are for normal activities and the other 100 trajec-
tories are abnormal ones. The normal trajectories includes
seven classes, with about 30 trajectories for each class.
The major motion routes of different trajectory classes are
indicated in Fig. 11b. Some example normal and abnormal
trajectories are shown in Fig. 11a.

Note that this is a challenging dataset in that: 1) The total
number of trajectories in the dataset is small, making it dif-
ficult to construct reliable models; 2) The motion trajectories
within the same class have large variations due to the large
width of roads; 3) Due to the visual angle of the surveillance
camera, trajectories from different class are easily confused
and are difficult to differentiate.

We compare our approach (cf. Sections 5.2) with two
methods: 1) The GPRF method [6] which introduces Gaus-
sian process regression flows to model the location and ve-
locity probability for each trajectory class, and utilizes them
to classify trajectories (GPRF); 2) The DTW method [37]
which classifies a test trajectory by measuring its dynamic-
time-warping distance with the center of different trajectory
classes (DTW).

We split the dataset into 50% training-50% testing parts.
Note that in our experiments, only normal trajectories are
used for training. Four independent runs are performed
where the training and testing sets are randomly selected in
each run, and the final results are averaged. Fig. 12 compares
the confusion matrices of different methods for classifying
normal trajectories and detecting abnormal ones. Fig. 11c
further compares the ROC curves of different methods
when discriminating normal/abnormal trajectories under
different abnormality detection thresholds.

From Figs 12 and 11c, we can observe that:
� Our approach can achieve obviously better results than

the compared methods. More specifically, the compared
methods have low effectiveness in discriminating trajec-
tory classes such as RD, L, and LU. This is because tra-
jectories in these classes are easily confused with similar
trajectories from other classes such as R and AB (e.g., L,
LU are similar to patterns UL and U in the abnormal class

(a) (b) (c)

Figure 12. Confusion matrices of different methods when classifying
normal trajectories and detecting abnormal ones (denoted as ‘AB’). (a)
GPRF [6]. (b) DTW [37]. (c) Ours.

Table 4
Trajectory classification & abnormality detection results on CROSS (%)

Method Classification Abnormality Detection
(CA) (DR/FPR)

DTW [37] 95.6 71.3/55.5
GPRF [6] 98.0 80.5/23.5
tDPMM [4] 98.0 91.0/23.3
3SHL [7] 96.8 85.5/23.5
Ours 98.6 91.3/23.5

AB, cf. Fig. 11b). Comparatively, since our approach in-
troduces informative tube-and-droplet representation to
capture the subtle difference between trajectory groups,
more satisfactory results can be achieved.

� Although the GPRF method constructs probability mod-
els to encode the spatial-temporal variation of trajectory
classes, it still creates less satisfactory results. This is
because: (a) The GPRF method only focuses on modeling
the contextual information inside each trajectory class,
which has limitations in differentiating trajectories from
similar classes; (b) The number of training trajectories
is small, which makes it difficult for the GPRF method
to construct reliable probability models. Comparatively,
our approach is able to work reliably under relatively
small trajectories. Besides, by leveraging the complete
contextual motion information, the subtle difference be-
tween different classes are also properly discriminated
by our approach, thus obtaining more improved results.

6.2.2 Results on CROSS dataset

We also perform experiments of trajectory classification and
abnormality detection on CROSS dataset [7]. It includes
11400 normal trajectories labeled in 19 clusters and 200
abnormal trajectories (one example in Fig. 2).

Following [7], we utilize 1900 normal trajectories in
training. The constructed thermal transfer fields or trajec-
tory class models are then utilized to classify the rest 9500
normal and 200 abnormal trajectories. We use (13) to de-
tect abnormal trajectories and a simple K-nearest neighbor
(KNN) [39] strategy to classify normal trajectories.

Table 4 compares the trajectory classification & abnor-
mality detection results. Classification results are evaluated
by classification accuracy (CA) which is the ratio between
total number of correctly classified normal trajectories and
total number of normal trajectories. Abnormality detection
results are evaluated by abnormality detection rate (DR) and
abnormality false positive rate (FPR) [7]. Note that besides
the DTW and GPRF methods, we also include the results of
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two state-of-the-art methods on CROSS dataset in Table 4
(i.e., 3SHL [7] and tDPMM [4]).

Our approach achieves the best performance in classifi-
cation. When detecting abnormal trajectories, our approach
can also achieve obviously improved results than the com-
pared methods (DTW [37], 3SHL [7], and GPRF [6]) and
similar results to a state-of-the-art tDPMM method [4].

6.3 3D Action Recognition

Finally, we evaluate the performance of our approach in 3D
action recognition. We perform experiments on a benchmark
MSR-Action3D Dataset [8] which includes 557 3D skeleton
sequences for 20 human actions performed by 10 different
subjects. One example skeleton sequence is shown in Fig. 7.

Following the previous works on MSR-Action3D dataset
[8], [40], we evaluate the recognition accuracy over all 20
actions where actions of half of the subjects are used for
training and the rest actions are used for testing. Besides, a
trajectory alignment process similar to [31] is applied as a
pre-processing step to reduce 3D trajectory variations.

We utilize the process in Section 5.3 to implement our
approach for 3D action recognition, where ‘Droplet+KNN’
and ‘Droplet+SVM’ in Table 5 refer to using KNN and
SVM classifiers to recognize our droplet feature vectors (cf.
(14)), respectively. Moreover, we also include the results by
combining our droplet feature vector with a state-of-the-art
‘Moving Poselets’ method [41] which introduces sophisti-
cated mid-level classifiers to improve recognition accuracy
(cf. ‘Droplet+Moving Poselets’ in Table 5). Specifically, we
concatenate our droplet feature vectors with the body point
velocity & acceleration features used in [41], and follow the
‘Moving Poselets’ classification process [41] to recognize the
action class of the concatenated feature vectors.

We compare our approach with the state-of-the-art 3D
action recognition methods using skeleton sequences [32]–
[35], [40]–[43]. Table 5 shows the recognition accuracy. Ac-
cording to Table 5, our ‘Droplet+SVM’ approach outper-
forms all the existing techniques except [41]. This demon-
strates that our tube-and-droplet framework can be reliably
applied to handle sequence analysis with multiple trajec-
tories. Besides, our ‘Droplet+KNN’ approach also achieves
satisfactory results. It implies that our droplet features
can effectively capture the discriminative characteristics of
trajectories, such that good results can be achieved with
simple recognition strategies such as KNN. Moreover, the
‘Droplet+Moving Poselets’ approach achieves the best per-
formance. It further indicates that our droplet features can
be effectively combined with more sophisticated recognition
strategies to achieve further improved performances.

7 CONCLUSION

In this paper, we study the problem of informative trajec-
tory representation and introduce a novel tube-and-droplet
framework. The framework consists of three key ingredi-
ents: 1) introducing the idea of constructing thermal transfer
fields to embed the global motion patterns in a scene; 2)
deriving equipotential lines and concatenating them into a
3D tube to establish a highly informative representation,
which properly embeds both the motion route and the

Table 5
Recognition accuracy comparison on MSR-Action3D dataset (%)

Method Recognition Accuracy
Eigen joints [42] 82.3
HON4D+Ddisc [40] 88.9
Actionlet Ensemble [32] 88.2
Skeleton Quads [34] 89.9
Pose Set [43] 90.2
Manifold Learning [35] 91.2
Moving Pose [33] 91.7
Moving Poselets [41] 93.6
Droplet+KNN 91.2
Droplet+SVM 92.1
Droplet+Moving Poselets 93.9

contextual motion pattern for a trajectory; 3) introducing
a simple but effective droplet-based process to effectively
capture the rich information in 3D tube representation. We
apply our tube-and-droplet approach to various trajectory
analysis applications including clustering, abnormality de-
tection, and 3D action recognition. Extensive experiments on
benchmark demonstrate the effectiveness of our approach.
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