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A Tube-and-Droplet-based Approach for
Representing and Analyzing Motion Trajectories
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Abstract—Trajectory analysis is essential in many applications. In this
paper, we address the problem of representing motion trajectories in a
highly informative way, and consequently utilize it for analyzing trajecto-
ries. Our approach first leverages the complete information from given
trajectories to construct a thermal transfer field which provides a context-
rich way to describe the global motion pattern in a scene. Then, a 3D
tube is derived which depicts an input trajectory by integrating its sur-
rounding motion patterns contained in the thermal transfer field. The 3D
tube effectively: 1) maintains the movement information of a trajectory,
2) embeds the complete contextual motion pattern around a trajectory,
3) visualizes information about a trajectory in a clear and unified way.
We further introduce a droplet-based process. It derives a droplet vector
from a 3D tube, so as to characterize the high-dimensional 3D tube
information in a simple but effective way. Finally, we apply our tube-
and-droplet representation to trajectory analysis applications including
trajectory clustering, trajectory classification & abnormality detection,
and 3D action recognition. Experimental comparisons with state-of-the-
art algorithms demonstrate the effectiveness of our approach.

1 INTRODUCTION

MOTION information, which reflects the temporal vari-
ation of visual contents, is essential in depicting the

semantic contents in videos. As the motion information of
many semantic contents is described by motion trajectories,
trajectory analysis is of considerable importance to many
applications including video surveillance, object behavior
analysis, and video retrieval [1]–[5]. Formally, trajectory
analysis can be defined as the problem of deciding the class
of one or more input trajectories according to their shapes
and motion routes [4], [6]–[8].

A motion trajectory is in general obtained by tracking
an object over frames and linking object positions into a
position sequence [1], [2], [9]. Although trajectories contain
detailed information of object movements, reliable trajectory
analysis remains challenging due to the uncertain nature
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Figure 1. (a) An example of ambiguous trajectories: The orange, red,
and green curves labeled by CP1-CP3 indicate three trajectory classes.
The black curves labeled by Trajectory A andB are two trajectories from
CP1 and CP2, respectively. (b) Complete contextual motion patterns of
trajectories A and B in (a): Contextual motion patterns are described
by the motion flows of all trajectory points in the neighborhood of A
and B (Note: We use color to differentiate motion flows from different
trajectory classes only for a clearer illustration. In our approach, we do
not differentiate motion flows’ classes and directly use all motion flows
in the neighborhood of an input trajectory to model its contextual motion
pattern). (c) Use our 3D tube to model A and B’s complete contextual
motion patterns. (Best viewed in color)

of object motion and the ambiguity from similar motion
patterns.

One major challenge for trajectory analysis is to differ-
entiate trajectory classes with only subtle differences. For
example, Fig. 1a shows three trajectory classes CP1, CP2,
and CP3, where CP1 and CP2 include vehicle trajectories
following two adjacent leftward street lanes and CP3 in-
cludes vehicle trajectories following a left-turn street lane.
Since trajectories in CP1 and CP2 are similar in both motion
direction and location, the original position sequence repre-
sentation is insufficient to differentiate them. This necessi-
tates the development of more informative motion trajec-
tory representation. However, most existing trajectory rep-
resentation methods [3], [4], [10], [11] focus on performing
transformation or parameterization on the original position
sequence, while the problem of more informative repre-
sentation is not well addressed. Although some trajectory-
modeling or local-modeling methods [4], [6], [7], [12], [13]
increase the informativeness of trajectories by including the
contextual information among multiple trajectories, they
only model partial contextual information from trajectories
with similar patterns or trajectories in the same class. Thus,
they still have limitations when differentiating ambiguous
trajectories, such as trajectories near the boundary of similar
trajectory classes (e.g., trajectories A and B in Fig. 1a).

We argue that due to the stable constraint from a scene,
the complete contextual motion pattern around a trajectory
provides an important cue for trajectory depiction. By com-
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Figure 2. The framework of the proposed approach. It constructs a scene-specific thermal transfer field via trajectory training data; For a test
trajectory sample, it builds a 3D tube based on the constructed thermal transfer field, and generates a feature vector via a droplet process. The
obtained feature vector is applicable to various trajectory analysis applications. (Best viewed in color)

plete, we refer to the contextual motion information from all
given trajectories in the neighborhood of an input trajectory.
For example, Fig. 1b shows the complete contextual motion
patterns of two easily-confused trajectories A and B which
are extracted from two similar trajectory classes CP1 and
CP2. If we look at the contextual motion information in
the neighborhood of trajectory A, there is a strong left and
slightly upward motion pattern (in green color) towards the
end of A. In contrast, if we look at the contextual motion
information in the neighborhood of trajectory B, there is an
obvious upward motion pattern in the middle of B. Thus,
the ambiguity between trajectories is expected to be reduced
if the above-mentioned contextual motion information is
properly modeled (cf. Fig. 1c).

1.1 Our Work

Based on this intuition, we develop a novel framework
which utilizes the global motion trends in a scene to describe
a trajectory. Specifically, for each point in a trajectory, we
derive the dominant scene motion pattern around the point
and utilize it to depict the point’s complete contextual
motion pattern. By integrating the dominant scene motion
patterns for all points in a trajectory, we are able to describe
a trajectory in a highly informative way and make fine
distinctions among similar trajectories. The framework of
our approach is shown in Fig. 2.

Given a set of trajectories, thermal transfer fields are first
constructed to describe the global motion pattern in the
scene (cf. module ‘constructing thermal transfer fields’ in
Fig. 2). Then, for an input trajectory, we expand it over the
time domain to construct a 3D spatio-temporal curve, and
derive an equipotential line for each point in this curve (cf.
module ‘deriving equipotential lines’ in Fig. 2). The equipo-
tential lines are decided by the locations of spatio-temporal
curve points and their surrounding dominant scene motion
patterns defined in thermal transfer fields. In this way, the
complete contextual motion pattern can be captured.

After obtaining equipotential lines, a 3D tube is con-
structed which concatenates equipotential lines according
to the temporal order of spatio-temporal curve points (cf.
module ‘constructing 3D tubes’ in Fig. 2). This 3D tube is
able to depict an input trajectory in a highly informative
way, where the movement of a trajectory and the contextual
motion pattern around a trajectory are effectively captured
by the route and shape of the 3D tube.

Finally, a droplet-based process is applied which ‘injects’
water in one end of a 3D tube and achieves a water droplet
flowed out from the other end. This water droplet is further
sampled to achieve a low-dimensional droplet vector to
characterize the 3D tube shape (cf. module ‘droplet-based
process for feature extraction’ in Fig. 2). Since different
trajectories are depicted by 3D tubes with different shapes,
by suitably modeling the water flow process, the droplet
vector can precisely catch the unique characteristics of a 3D
tube. The droplet vector will serve as the final trajectory
representation format and is applied in trajectory analysis.

In summary, our contributions are three folds.
• We construct a thermal transfer field to describe the

global motion pattern in a scene, derive equipotential
lines to capture the contextual motion information of tra-
jectory points, and introduce a 3D tube by concatenating
equipotential lines to represent a motion trajectory. These
components establish a novel framework for addressing
the informative trajectory representation problem.
• Under this framework, we develop a droplet-based

process which derives a simple but effective low-
dimensional droplet vector to characterize the high-
dimensional information in a 3D tube. The derived
droplet vector can not only capture the characteristics
of a 3D tube, but also suitably reduce the disturbance
from trajectory noises.
• We investigate our tube-and-droplet representation to

various trajectory analysis applications including trajec-
tory clustering, trajectory classification & abnormality
detection, and 3D action recognition, and achieve the
state-of-the-art performance.

2 RELATED WORKS

2.1 Trajectory Representation and Modeling

Properly representing motion trajectories is crucial to tra-
jectory analysis. Many algorithms [1], [5], [6], [9], [14] have
been proposed for trajectory representation. Most of them
[3], [10], [11], [14] aim to find suitable parameter sets
to describe trajectories. Discrete Fourier transform (DFT)
coefficients [10] and polynomial curve fitting [3] are two
examples. Rao et al. [14] extracted dynamic instants and
used them as the key points to represent the spatio-temporal
curvature of trajectories. These methods focus more on the
effective representation of a trajectory’s position sequence,
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while the issue of more informative representation is not ad-
dressed. Although some works [1]–[3], [12], [14] increase the
informativeness of trajectory representation by introducing
additional information such as motion velocity, temporal
order, or object size, the added information is still restricted
within a single trajectory and cannot be used to discriminate
trajectories with similar patterns.

Trajectory-modeling methods that include the contextual
information of multiple trajectories are also proposed [4],
[6], [7]. These methods construct probability models for
each trajectory class and utilize them to guide the trajec-
tory analysis process. Kim et al. [6] introduced Gaussian
process regression flows to model the location and velocity
probability for each trajectory class. Morris and Trivedi [7]
clustered trajectories into spatial routes and encoded the
spatio-temporal dynamics of each cluster by hidden Markov
models (HMM). Hu et al. [4] built a time-sensitive Dirichlet
process mixture model (tDPMM) to represent the spatio-
temporal characteristics of each trajectory class. These meth-
ods only focus on modeling the contextual information in-
side each individual class, while ignoring information from
external trajectory classes. Therefore, they still have limita-
tions when differentiating ambiguous trajectories, such as
trajectories near the boundary of similar trajectory classes.

Another line to integrate contextual information is the
local-modeling methods [13], [15]. These methods aim to
utilize dynamic models or topic models to describe trajec-
tories’ local motion patterns. Nascimento et al. [15] intro-
duced low-level dynamic models to decompose trajectories
into basic displacement patterns, and recognized trajectories
based on the switch among these low-level models. Wang
et al. [13] proposed a non-parametric topic model called
Dual Hierarchical Dirichlet Processes (Dual-HDP), which
constructs local semantic regions including similar trajec-
tory segments and performs trajectory analysis accordingly.
Although these models share the contextual information
from multiple trajectory classes, only the contextual in-
formation from similar trajectory segments is considered.
Therefore, they are less effective when trajectories have large
variations or reliable local models cannot be constructed due
to insufficient similar trajectory segments.

The proposed 3D tube representation differs with exist-
ing approaches in the following aspects:

• We model the complete contextual information around
a trajectory, not only the contextual information from
partial trajectories. This enables us to precisely catch the
subtle changes among different trajectory classes.
• Most existing works handle trajectory analysis with

complex probability models, which require sufficient
trajectory data to construct reliable models. We establish
a novel framework to model trajectories in a simple
but effective way, which can work robustly under rela-
tively small data size. Experimental evaluation shows we
can achieve state-of-the-art performance on benchmark
datasets with this simple procedure.
• Existing methods focus on the abstract modeling of

trajectory information where the modeled trajectory in-
formation cannot be easily visualized. Our 3D tube rep-
resentation is able to visualize a variety of trajectory in-
formation, including spatial-temporal movements, con-

textual motion patterns, and possible motion directions,
in a clear and unified way.

2.2 Handling High-Dimensional Representations

Since highly informative trajectory representation often
leads to a complex and high-dimensional representation
format, it is non-trivial to find suitable ways to handle this
high-dimensional representation for trajectory analysis.

In [16], Euclidean distance and dynamic time wrapping
(DTW) distance were utilized to measure the distance of two
time-series trajectory sequences. Vlachos et al. [17] further
introduced the longest common subsequence (LCSS) dis-
tance. While these methods can handle the original position
sequence format of a trajectory, they are not suitable to
process higher dimensional representations.

In order to handle higher-dimensional data represen-
tations, some dimension reduction approaches were de-
veloped [18], [19]. However, due to the large variation
and ambiguity among trajectories, trajectory representations
often have complex distributions. Thus, simply applying
dimension reduction cannot achieve satisfactory results.
Moreover, some advanced manifold approaches were also
introduced [20]–[22]. In [20], Lui modeled high-dimensional
inputs as high-order tensors. The similarity between inputs
were measured by the intrinsic distance between tensors,
which is estimated through manifold charting. Although
these methods can achieve better results when process-
ing high-dimensional trajectory representations, they have
considerably high computation complexity. Thus they are
difficult to be applied on large scale trajectory analysis.

Besides dimension reduction, other works [12], [23], [24]
aim to develop proper distance metrics to measure the
similarity between high-dimensional inputs. Lin et al. [12]
introduced a surface matching distance to measure the sim-
ilarity between high-dimensional surface shapes. Sangineto
[23] and Gao et al. [24] developed advanced Hausdorff
distance which treats each high-dimensional input as a set of
points and estimates the similarity between inputs from the
distance between point sets. These methods are dependent
on the quality of high-dimensional inputs, and noisy inputs
will adversely affect the performance of these methods.

Different from the previous methods, we develop a novel
droplet-based process which simulates the physical water
flow process and derives a low-dimensional droplet vector
to characterize the high-dimensional 3D tube shape. This
process has low complexity and can suitably reduce the
disturbance from trajectory noises.

3 3D TUBE REPRESENTATION

In order to include the complete contextual motion informa-
tion in trajectory representation, it is important to properly
model and embed the global motion pattern information in
a scene. More specifically, assuming that there are M tra-
jectories available from a scene, denoted as {Γm}Mm=1. Each
trajectory is represented as Γm = {pmn }L

m

n=1, where pmn ∈ R2

is the position of the nth point of the trajectory and Lm is the
length of trajectory Γm. Accordingly, the speed of the point in
the position is calculated as umn =

pm
n+1−p

m
n

∆t ∈ R2, where ∆t
is the sampling interval between adjacent points. We aim to
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find the scene’s global motion pattern which best describes
the motion trends provided by M given trajectories1, and
use this global motion pattern to derive the complete con-
textual motion patterns for positions along the route of an
input trajectory. In this way, we are able to construct a 3D
tube from these contextual motion patterns and obtain an
informative representation for the input trajectory.

In this paper, we borrow the idea from thermal propaga-
tion [25]–[27] and introduce a trajectory model, which finds
global motion pattern, derives contextual motion patterns,
and constructs 3D tube representations with thermal propa-
gation processes.

3.1 Constructing Thermal Transfer Fields
First, we model the global motion pattern in a scene based
on the works in fluid thermal propagation [25]–[27]. Specif-
ically, the aggregation of M given trajectories is modeled
as a ‘fluid’ in the scene, where each pmn is a sample of the
fluid and the corresponding umn refers to the movement of
the fluid which results in the transfer of thermal energies in
position pmn .

According to thermal transmission theories [25], [26],
the thermal diffusion result of the entire fluid is affected
by a scene-related thermal transfer field which decides the
thermal propagation strengths at different positions and in
different directions. Therefore, by constructing an optimal
thermal transfer field that best suits the thermal dynamics
of the fluid defined by given trajectories, the fluid’s thermal
dynamics, which characterize the motion pattern from M
given trajectories, can be effectively embedded in the ther-
mal transfer field.

In this work, we construct a scene’s thermal transfer
field based on the strategy of finite-element analysis [27].
Formally, we first segment the scene into grids of positions
G = [1, ...,W ] × [1, ...,H], where W and H are the width
and height of the scene. Then, the thermal transfer field of
the scene can be represented as:

K = [k(p,a)]W×H×|A| (1)

where k(p,a) (p ∈ G, a ∈ A) is the thermal transfer co-
efficient indicating the thermal propagation strength along
direction a at position p. Here a is a normalized vector
(‖a‖2 = 1) indicating thermal propagation directions, which
is selected from a pre-defined direction setA. |A| counts the
number of directions in the set. In this paper,A contains four
directions, which depicts a scene’s global motion pattern in
upward (y−), downward (y+), leftward (x−), and rightward
(x+) directions, respectively (cf. module ‘constructing ther-
mal transfer fields’ in Fig. 2).

Assuming that the given trajectories correspond to a
stable fluid, we can construct an optimal thermal transfer
field K by minimizing the total amount of thermal energies
being transferred during the fluid flow process, as:

min
K

∑
a∈A

∑
p∈G

∆E(k(p,a)) (2)

s.t. k(p,a) ≥ 0,
∑
p∈G

k(p,a) = κ, for a ∈ A.

1. Note that we do not differentiate given trajectories’ class labels,
and directly use all given trajectories to find global motion patterns.

where ∆E(k(p,a)) is the amount of thermal energy trans-
ported by the fluid from position p along direction a within
a unit time interval. κ (κ > 0) is a constant. The first con-
straint in (2) guarantees to achieve physically-meaningful
thermal transfer fields (i.e., avoid negative transfer fields),
and the second constraint guarantees to obtain proper dis-
tributions of k(p,a) (i.e., avoid transfer fields becoming all
infinite values). ∆E(k(p,a)) can be calculated from thermal
transmission theories [25], [26]:

∆E(k(p,a)) = η
ρ(p)u(p,a)

k(p,a)
(3)

Here η is a parameter related to the temperature difference
between a position p and its neighbors [25], [26]. In our pa-
per, since we want to focus on the relationship between ∆E
and k(p,a), we simply assume the temperature difference
condition to be the same when calculating ∆E at different
positions, and set η as a constant. ρ(p) is the density of fluid
at position p, u(p,a) is the moving velocity along direction a
at position p. Physically, ρ(p)u(p,a) measures the number
of fluid particles passing through position p along direction
a within a unit time interval. k(p,a) indicates the efficiency
of thermal energy transfer along direction a at p. As a result,
k(p,a)∆E refers to the amount of thermal energies actually
received by p’s neighboring position when an amount of
energy ∆E is transferred out from p [25], [26].

According to (2) and (3), we let a fluid flow along the
aggregated routes of M given trajectories, and measure the
total amount of thermal energy transfers over all positions.
The thermal transfer field that leads to the smallest total
transferred energy will be the optimal field that best suits
the scene.

More specifically, from (3), the amount of energy transfer
∆E is jointly decided by k(p,a) (thermal transfer coeffi-
cient), ρ(p) (fluid’s density), and u(p,a) (fluid’s velocity).
When ρ(p)u(p,a) increases, the amount of fluid flowing
along direction a at p becomes stronger, which leads to
larger chances of energy transfer. Thus, by minimizing∑

a,p ∆E in (2), k(p,a) is proportionally adjusted with
ρ(p)u(p,a) such that k(p,a) with higher energy transfer ef-
ficiencies are assigned to positions/directions with stronger
fluid flows. In this way, the resulting thermal transfer field
can properly suit the thermal dynamics of the fluid.

ρ(p) in (3) is calculated based on the nonparametric
estimation of sample points pmn in given trajectories:

ρ(p) =
M∑
m=1

Lm∑
n=1

exp

(
−‖p− pmn ‖

2σ2

)
. (4)

Similarly, u(p,a) in (3) is the nonparametric estimation of
sample points and their corresponding projected speeds:

u(p,a) =
M∑
m=1

Lm∑
n=1

max(a>umn , 0) exp

(
−‖p− pmn ‖

2σ2

)
(5)

where a>umn is the projection of speed umn in a-th direction.
max(a>umn , 0) ensures that only the directions with positive
velocity are considered.

(4) and (5) ensure that ρ(p)u(p,a) can correctly reflect
the global motion pattern contained in given trajectories. For
example, when a large number of trajectories pass through
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(a) (b)

Figure 3. (a) Input trajectories (black solid curves) and given trajectories
(blue dashed curves). (b) Thermal transfer fields constructed from the
blue dashed curves in (a). Figures from left to right correspond to ther-
mal transfer fields in directions upward (y−), downward (y+), leftward
(x−), rightward (x+), respectively. (Best viewed in color)

a position p with relatively high speed, ρ(p)u(p,a) will
become a large number. On the contrary, for positions where
trajectories rarely pass, ρ(p)u(p,a) will be small. Moreover,
note that ρ(p)u(p,a) in (4) and (5) is estimated by integrat-
ing the information of all trajectories without differentiating
their classes. Therefore, the resulting thermal transfer fields
in fact include the complete contextual motion information
among given trajectories. This enables the embedding of
the complete contextual motion pattern in later 3D tube
construction and trajectory representation steps.

Based on (3)-(5), (2) can be solved by the Cauchy–Schwarz
inequality and the optimal solutions turns out to be:

k(p,a) ∝
√
ρ(p)u(p,a) (6)

Figs 2 and 3b show some examples of the constructed
thermal transfer fields from given trajectories. We can see
that the thermal transfer fields constructed by our approach
can effectively capture the four-direction global motion pat-
terns contained in given trajectories. For example, in Fig. 3,
both the upward and rightward motion patterns of the blue
trajectories in (a) are effectively embedded in the upward and
rightward thermal transfer fields in (b).

3.2 Deriving Equipotential Lines
Based on the constructed thermal transfer field K, we can
perform thermal propagation for each point in an input
trajectory, so as to embed the input trajectory’s contextual
motion information. More specifically, we first obtain a
thermal diffusion map for an input trajectory point pmn , which
depicts the dominant scene motion pattern around pmn by
propagating thermal energies from pmn to the entire scene
through K. Then we derive a constant-energy line called
equipotential line from this map, and use it to capture the
contextual motion information for the trajectory point.

Formally, for each trajectory point pmn , we denote
its corresponding thermal diffusion map as E(pmn ) =
[E(pmn ,p)]W×H , p ∈ G, where E(pmn ,p) is the thermal
energy at position p in pmn ’s map. Taking E(pmn ) as a
function of time t and direction a ∈ A, we calculate E(pmn )
via an iterative method. Specifically, the initial map E0(pmn )
is defined as follows:

E0(pmn ,p) =

{
Eε, if p = pmn
0, otherwise

, (7)

where E0(pmn ,p) is the initialized thermal energy at posi-
tion p. Eε = 100 is a constant. According to (7), the thermal
diffusion map of trajectory point pmn is initialized by assign-
ing a large thermal energy to pmn ’s position and assigning

(a) (b) (c) (d)

Figure 4. Examples of equipotential lines. (a) The process of iterative
thermal diffusion. (b)-(d) Lower figures: The thermal diffusion maps and
the equipotential lines for trajectory points pa, pb, and pc in Fig. 3a;
Upper figures: The thermal diffusion maps and the equipotential lines
displayed in 3D. (Best viewed in color)

zero energies to other positions. Then, a thermal diffusion
process is applied which transfers thermal energies from pmn
to other positions through the constructed thermal transfer
field, and creates an energy-propagated thermal diffusion
map. The thermal diffusion process is defined by [25]:

∂E(pmn ,p)

∂t
=
∑
a∈A

k(p,a)
∂2E(pmn ,p)

∂a2
. (8)

Here ∂2E(pm
n ,p)

∂a2 means the 2nd order partial derivative of
E(pmn ,p) along direction a. k(p,a) is a thermal transfer
coefficient in the constructed thermal transfer field K (cf.
(1)-(2)). From (8), the thermal diffusion process is mainly
controlled by the thermal energy difference among neigh-
boring positions and the thermal transfer coefficients from
thermal transfer field. Thus, by properly setting the initial
energy difference (cf. (7)), the resulting thermal diffusion
map can effectively capture the desired contextual motion
pattern contained in the thermal transfer field.

(8) is difficult to solve because: 1) The thermal diffusion
process is performed by integrating the information from
multiple directions a; 2) The thermal transfer fields are non-
homogeneous whose thermal transfer coefficients k(p,a)
vary over different locations. We propose an approximation
solution which obtains thermal diffusion map in an iterative
way, as illustrated in Fig. 4a.

From Fig. 4a, after initializing a thermal diffusion map by
(7), the thermal energy at pmn is diffused iteratively outward
to other positions. During each iteration τ , positions which
were diffused in the previous iteration τ − 1 will diffuse
energies to their outside neighboring positions (as indicated
by arrows in Fig. 4a). According to the thermal diffusion
process in (8), thermal diffusion between neighboring posi-
tions in one iteration can be approximated by:

Eτ (pmn ,p) ≈

∑
p′∈B(p)Eτ−1(pmn ,p

′) exp

(
− ‖p−p′‖
k(p, p−p′

‖p−p′‖ )

)
|B(p)|

(9)
where B(p) is the neighborhood of p and |B(p)| is the size
of the neighborhood. For p and its neighbors p′ ∈ B(p),
‖p − p′‖ is their distance and k(p, p−p′

‖p−p′‖ ) is the thermal

transfer coefficient along direction p−p′
‖p−p′‖ at position p.

(9) reveals that: 1) The diffused thermal energy in a
position p′ is summed over all energies propagated from
its neighboring positions in both vertical and horizontal
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directions. In this way, the complete contextual information
can be included. 2) The thermal transfer coefficients k(p,a)
control the thermal diffusion results. In this way, the motion
pattern information from the thermal transfer field can be
properly reflected in the resulting thermal diffusion map. 3)
The thermal diffusion map E(pmn ) for position pmn is fully
decided by the thermal transfer field K (cf. (7) and (9)). This
implies that the contextual motion information E(pmn ) for
each position in a scene is fixed after a scene’s global motion
pattern K is determined. Therefore, if two input trajectories
pass through position pmn with different routes, they will
have the same thermal diffusion map at pmn .

Fig. 4 shows some examples of thermal diffusion map
results derived from the thermal transfer fields in Fig. 3b.
In Fig. 4, (b)-(d) show the thermal diffusion maps of three
points pa, pb, pc on the black trajectory A in Fig. 3a.

According to Fig. 3a, since moving rightward from
pa appears frequently in the scene (as there are lots of
dashed blue trajectories moving rightward around pa), large
rightward-direction thermal transfer coefficients are obtained
around pa. This allows more thermal energies being prop-
agated to pa’s right side, thus leading to a long rightward
tail in the thermal diffusion map of pa (cf. Fig. 4b). Sim-
ilarly, since pb is located in a region including frequent
movements in both rightward and upright-ward directions,
pb’s thermal diffusion map includes big tails in both di-
rections and displays a V -like shape (cf. the lower figure in
Fig. 4c). Comparatively, since pc is located in a region where
seldom trajectories pass, the constructed thermal transfer
coefficients are small in all directions around pc. This makes
pc’s thermal diffusion map decay quickly around pc, as
in Fig. 4d. From the example of Figs 4b-4d, our thermal
diffusion map indeed provides a reliable way to capture the
complete and unique contextual motion patterns for input
trajectory points.

In order to represent thermal diffusion maps in a more
effective way, we further derive equipotential lines to
capture the fundamental information of thermal diffusion
maps. An equipotential line can be easily achieved by find-
ing a constant-energy line on a thermal diffusion map. In
this paper, we acquire constant-energy line whose energy
decreases to half of the initial energy Eε, as indicated by the
red circles in Figs 4b-4d.

3.3 Constructing 3D Tubes

After deriving equipotential lines for all points in a trajec-
tory, a 3D tube can be constructed to represent this trajectory
by concatenating these equipotential lines according to their
temporal order in the trajectory.

Fig. 5 shows some 3D tube examples for the black input
trajectories A-D in Fig. 3a. The first row in Fig. 5 shows
the results by expanding trajectories in 3a into 3D spatio-
temporal curves. The second row of Fig. 5 illustrates the 3D
tube representations for trajectories A-D in 3a. Furthermore,
the equipotential lines for three points on one input trajec-
tory (i.e., trajectory A in Fig. 3a) are also displayed by red
slices in Fig. 5a. These red slices clearly show that a 3D tube
is constructed by sequentially concatenating a trajectory’s
equipotential lines in a 3D spatio-temporal space.

From Fig. 5, we can observe that:

(a) (b) (c) (d)

Figure 5. Examples of 3D tubes and water droplet results. First row: re-
sults by expanding trajectories in Fig. 3a into 3D spatio-temporal curves;
Second row: 3D tube representations for the black input trajectories A-
D in Fig. 3a; Third row: water droplet results derived from 3D tubes.
(Note: In the middle row of (a)-(d), the thickness of a tube is represented
by different colors where yellow indicates thick and red indicates narrow.
Best viewed in color)

• The constructed 3D tube contains rich information about
a trajectory, where both the movement and the contex-
tual motion pattern are effectively embedded. For ex-
ample, the route of a 3D tube represents the movement.
The thickness variation of a 3D tube indicates whether
there are frequent motion patterns in the context around
a trajectory (e.g., a 3D tube will become narrow if a
trajectory goes through a region where trajectories rarely
pass, such as trajectory A in Fig. 5a). Moreover, the
shapes of equipotential lines in a 3D tube also indi-
cate possible motion trends provided by the contextual
motion patterns. For example, the convex part circled
by the green dashed line in the second row of Fig. 5c
indicates that moving upleft-ward around pb (i.e., turn
left in the original 2D scene) is another possible motion
trend which also appears frequently in the scene. More
discussions about the informativeness of 3D tube repre-
sentation will be provided in the experimental results.
• Different from the previous trajectory modeling methods

[4], [7] whose modeled trajectory information cannot be
easily visualized, our 3D tube representation is able to vi-
sualize information of a trajectory in a clear and unified
way. For example, one can easily observe a trajectory’s
movement and contextual motion pattern from the route
and shape variation of its 3D tube representation. This
in fact provides a useful tool for people to intuitively
observe and analyze trajectory information.

4 THE WATER-DROPLET PROCESS

After constructing 3D tubes for input trajectories, we
need to find suitable ways to effectively handle the high-
dimensional information included in 3D tubes. In this
paper, we introduce a droplet-based process which sim-
ulates the physical water flow process [26] and derives
a low-dimensional droplet vector to characterize a high-
dimensional 3D tube shape.

The process of the droplet-based process is displayed in
Fig. 6. We inject a drop of water with fixed shape in one end
of a 3D tube (cf. Fig. 6a) and achieve a water droplet flowed
out from the other end (cf. Fig. 6b, note that the water is
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(a)

(b)
Figure 6. The water droplet process. (a) Illustrations of the input water
droplet, Pb,n, Pc,n, θb,n, and routes of water droplet points wc, wb

when passing through a 3D tube. (b) The resulting 3D water droplet
(left) and the simplified 2D droplet by only considering dtb (right).

flowed along the time-axis in a 3D spatial-temporal space).
According to fluid mechanic theories [26], when a water
droplet passes through a 3D tube, its shape will be affected
by the friction and extrusion forces from the boundary of the
tube. 3D tubes with different shapes will provide different
impacts to water passing through them, and create different
droplet outputs. Therefore, by properly designing the water
flow process, the derived droplet can effectively capture the
characteristics of a high-dimensional 3D tube shape.

A water droplet is described by a center point wc and
a set of boundary points {wb}b=1,...,Nw

where Nw = 36
is the total number of boundary points being considered.
Moreover, two distances are defined to represent the relative
location between a boundary point wb and wc: 1) dtb is
the distance between wb and wc in the time axis; 2) dsb is
the distance between wb and wc in the spatial plane, as in
Fig. 6b. In order to simplify calculation, we only calculate
dtb at the output of a 3D tube, such that a 3D droplet can
be simply described by dtb in a 2D plane, as in Fig. 6b.
Therefore, in the following, we focus on discussing dtb.

Before water starts to flow in a 3D tube, dtb are initialized
as 0 to make all boundary points located on the same spatial
plane as the center point wc, as in the upper figure in Fig. 6a.
Then, during the water flow process, we let the center point
wc follow the route of a 3D tube’s input trajectory (i.e., the
input trajectory that creates the 3D tube), as indicated by
{Pc,n}Ln=1 , where L is the length of the input trajectory
and Pc,n is the location of the nth input-trajectory point
in the spatial-temporal space (cf. the black line in Fig. 6a).
Similarly, a boundary point wb (b ∈ {1, . . . , Nw}) will
follow the route constructed by the bth boundary points on
a 3D tube: {Pb,n}Ln=1, where Pb,n is the position located on
bth direction of Pc,n on Pc,n’s equipotential line (cf. the blue
line in Fig. 6a).

When the center point wc of a water droplet passes
through a 3D tube with a constant velocity in the time-
axis, the velocity of the droplet’s boundary points wb (b =
1, . . . , Nw) will be jointly affected by two forces: the viscos-
ity force from wc which pulls wb close to wc, and the friction
force from a 3D tube’s boundary which resists wb from

approaching wc [26]. Since both forces are controlled by the
shape of a 3D tube, by calculating the relative distances dtb
between wc and wb at a tube’s output, the characteristics of
a 3D tube can be properly captured.

The time-axis distance dtb between points wc and wb at
the output of a tube (cf. Fig. 6b) can be approximated by:

dtb ∝
1

L

L∑
n=1

(vc,n − vb,n) (10)

where L is the length of a 3D tube. vc,n and vb,n are the
time-axis velocities when points wc and wb pass through
positions Pc,n and Pb,n, respectively. vc,n = vC meaning
that wc passes through different Pc,n with a constant time-
axis velocity vC . 1

L is included to normalize dtb.
From (10), the time-axis distance dtb is measured by accu-

mulating the velocity difference vc,n − vb,n between points
wc and wb when passing through a 3D tube. By performing
velocity accumulation, we are able to characterize high-
dimensional tube information in a relative simple way while
reducing the disturbance from trajectory noises.

According to fluid viscosity theories [28], vc,n − vb,n in
(10) can be approximated by (see Appendix in the supple-
mentary material for details):

vc,n − vb,n ≈
(

1− λ1

rsb,n−1

)
(vC − vb,n−1) + λ2 cos θb,n−1

(11)
where λ1 and λ2 are constant coefficients. vb,n is the time-
axis velocity of wb when passing through position Pb,n.
wb’s velocity is initialized as 0 before the water flow process
(i.e., vb,0 = 0). rsb,n−1 is the distance from (n− 1)−th trajec-
tory position Pc,n−1 to its bth direction boundary position
Pb,n−1 on the equipotential line (cf. Fig. 6a). θb,n−1 is the
angle between lines

−−−−−−−−−→
Pc,n−1Pb,n−1 and

−−−−−−−→
Pc,n−1P

′
c,n, where

P′c,n is the projected position of Pc,n on Pc,n−1’s spatial
plane, as in Fig. 6a.

Basically, rsb,n−1 in (11) reflects the size variation of a
water droplet, while θb,n−1 evaluates the relative location
of a boundary position Pb,n−1 with respect to the motion
direction

−−−−−−−→
Pc,n−1P

′
c,n of a water droplet. Since the size

and motion direction of a water droplet is controlled by
the shape and route of the 3D tube it passes through, by
introducing rsb,n−1 and θb,n−1, a 3D tube’s shape and route
information can be effectively embedded.

Moreover, the terms λ1

rsb,n−1
and cos θb,n−1 in (11) reflect

the impact of a 3D tube’s shape to the viscosity and friction
forces applied on a water droplet point wb. When wb passes
through a boundary position Pb,n−1 located in front of the
motion route of wb’s water droplet (i.e., small θb,n−1), the
friction force on wb becomes large due to the increased nor-
mal force that wb’s water droplet applies on tube boundary
Pb,n−1. This will reduce the velocity of wb and lead to larger
dtb. Similarly, when a 3D tube becomes slim on bth direction
(i.e., small rsb,n−1), the viscosity force on wb will be enlarged
which pulls wb closer to wc and creates smaller dtb. This
point will be further discussed in the experimental results.

The third row of Fig. 5 shows the droplet results derived
from the 3D tubes in the second row of Fig. 5 by using (10)
and (11). From Fig. 5, we can observe the effectiveness of
our water-droplet process:
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• The major motion directions of 3D tubes are properly
captured by the large sectors in droplet results. For
example, the water droplet of trajectory C has a large
sector in the upward direction since trajectory C moves
forward only. Comparatively, the water droplet of trajec-
tory B has large sectors in both top and left directions.
This indicates the ‘forward+left turn’ movement of B.
• Droplets derived from thick 3D tubes have larger sizes

than those derived from slim tubes. For example, the
droplet for trajectory C has large size since C follows
a frequent motion pattern in the scene and has a thick
3D tube. Comparatively, since trajectory A turns to an
irregular region in the middle, its 3D tube becomes
narrow in the later part. This leads to a small size in
its corresponding droplet. Fig. 5 implies that the size of a
droplet can effectively differentiate regular and irregular
motion patterns. Therefore, in this paper, droplet size
is utilized as a major feature to detect abnormalities in
trajectory analysis (cf. (13)).
Finally, the obtained water droplet is sampled to achieve

a low-dimensional droplet vector. In this paper, we simply
concatenate time-axis distances dtb in a water droplet as the
low-dimensional droplet vector:

Vm = [dt,m1 , dt,m2 , . . . , dt,mNw
] (12)

where Vm is the droplet vector for trajectory Γm. dt,mb is the
time-axis distance in bth direction of Γm’s water droplet.Nw
is the length of the vector and is set as 36 in our experiments.

5 IMPLEMENTATION IN TRAJECTORY ANALYSIS

With the tube-and-droplet representation, trajectories can
be depicted by droplet vectors and analyzed accordingly.
In this section, we discuss the implementations of our
tube-and-droplet representation in three trajectory analysis
applications: trajectory clustering, trajectory classification &
abnormality detection, and 3D action recognition.

5.1 Trajectory Clustering

When performing trajectory clustering, we first utilize all
trajectories being clustered as the given trajectories to con-
struct thermal transfer fields (cf. Section 3.1). Then, a 3D
tube and a droplet vector are derived based on the con-
structed thermal transfer fields to represent each trajectory
(cf. Sections 3.3 and 4). Finally, we measure the distance
between trajectories by calculating the distance between
their corresponding droplet vectors, and perform trajectory
clustering according to these droplet-vector distances. In
this paper, we utilize Euclidean distance to measure the dis-
tance between droplet vectors, and utilize spectral clustering
[29] to cluster trajectories.

5.2 Trajectory Classification & Abnormality Detection

In trajectory classification and abnormality detection, a set of
normal training trajectories are provided whose class labels
are given. We aim to recognize the classes of input test
trajectories with the guidance of training trajectories, and
identify abnormal test trajectories which do not follow the
regular motion patterns provided by training trajectories.

Figure 7. An example of 3D skeleton sequence from MSR-Action3D
dataset. Left: The 3D trajectory of ‘horizontal wave’ action of a ‘left hand’
body point. Right: The skeleton sequence for ‘horizontal wave’ action.

Similar to trajectory clustering, we utilize all normal
trajectories in the training set to construct thermal trans-
fer fields, and derive a droplet vector for each individual
training trajectory. Note that since our approach utilizes
the complete contextual information, we do not differentiate
trajectory classes, that is, normal training trajectories from
different trajectory classes are utilized indiscriminatively
when constructing thermal transfer fields.

During testing, we first obtain a droplet vector for an
input test trajectory. Then, the abnormality of a test trajec-
tory is evaluated by its corresponding droplet vector. Since
the size of a droplet can effectively differentiate regular and
irregular motion patterns, we detect a test trajectory Γm to
be abnormal if:

max
b
{dt,mb }+

1

Nw

∑
b

dt,mb < TH (13)

where dt,mb is the bth element in Γm’s droplet vector. Nw is
the length of the droplet vector (cf. (12)). TH is a threshold
decided by specific scenario. In the experiments of this
paper, we simply calculate maxb {dt,mb }+ 1

Nw

∑
b d

t,m
b value

for all normal trajectories in the training set, select the
smallest value T from them, and set 0.9T as the threshold. In
(13), the term 1

Nw

∑
b d

t,m
b is calculated to measure the size

of a droplet while the term maxb {dt,mb } is used to evaluate
the normality in a trajectory’s major motion direction.

Finally, if a test trajectory Γm is evaluated as normal
by (13), a one-against-all linear SVM classifier [30] trained
directly from the droplet vectors of training trajectories is
applied to classify Γm into one of the trajectory classes.

5.3 3D Action Recognition

We also extend our tube-and-droplet approach into the ap-
plication of 3D action recognition. In 3D action recognition,
3D skeleton sequences are provided which depict human
actions in a 3D x-y-depth space [31]–[35]. An example
skeleton sequence is shown in Fig. 7.

Since skeleton sequences are described by the trajectories
of multiple body points (e.g., the red curve in Fig. 7),
they are able to be represented and analyzed by the pro-
posed tube-and-droplet approach. However, a 3D skeleton
sequence differs from a regular motion trajectory in: 1) A 3D
skeleton sequence includes multiple trajectories for different
body points of a human; 2) The trajectory of a body point
is located in 3D space (x-y-depth) instead of a 2D plane.
Therefore, we extend our tube-and-droplet representation
into higher dimension to depict 3D trajectories. Besides,
in order to handle multiple trajectories in a 3D skeleton
sequence, we represent each trajectory independently and



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2608884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 8. An example of thermal transfer fields for 3D trajectories. (a)
Given 3D trajectories. (c)-(h) Constructed thermal transfer fields for the
given 3D trajectories in (a). Note that (c)-(h) correspond to the thermal
transfer fields in directions y−, x−, z−, y+, x+, z+, respectively. (b) An
illustration of details inside a 3D thermal transfer field when cutting a
high-value volume in a transfer field.

then combine them together to achieve a unified depiction
of the entire skeleton sequence.

The detailed implementation of our approach on 3D
action recognition is described in the following.

First, thermal transfer fields are constructed for each
body point based on the trajectories from training skele-
ton sequences. Since trajectories are located in 3D space,
thermal transfer fields need to be modeled by 3D volumes.
Therefore, we introduce two additional directions (i.e., z−

and z+ representing forward and backward directions in
depth axis) and extend the process of constructing thermal
transfer fields (cf. (1)) into 3D space. Furthermore, in order
to make thermal transfer fields more powerful for different
3D actions, we construct a set of 3D thermal transfer fields
for each individual action class under each body point.
Therefore, if there are NA action classes being recognized
and NB body points in a skeleton, a total of NA × NB sets
of thermal transfer fields are constructed.

Fig. 8 shows an example set of thermal transfer fields
which represents the motion pattern of ‘horizontal wave’
action for a ‘left hand’ body point (cf. Fig. 7). According to
Fig. 8, six thermal transfer fields are constructed to describe
global motion patterns in six directions inside a 3D space (cf.
Figs. 8c-8h). Besides, each thermal transfer field is modeled
as a 3D volume indicating the thermal propagation strength
at different positions.

After thermal transfer fields are constructed, a tube and a
droplet vector is constructed to depict the information of an
input trajectory. Due to the 3D feature of input trajectories,
the constructed tube is extended to a combination of 3D
equipotential surfaces instead of 2D equipotential lines, as in
the left figure of Fig. 9. Similarly, the obtained droplet is also
extended from a surface to a sphere which is represented by
a center point and a set of boundary points located on a
closed surface surrounding it (cf. right figure in Fig. 9).

Finally, a skeleton sequence can be described by concate-
nating droplet vectors from different body points and for
different action classes, as:

Um = [ω1V
m
1,1, . . . , ωNBV

m
NB,1;ω1V

m
1,2, . . . , ωNBV

m
NB,2; . . .

ω1V
m
1,NA , . . . , ωNBV

m
NB,NA ] (14)

where Um is the droplet-based feature vector for the mth
skeleton sequence. Vm

β,α is the droplet vector derived for

Figure 9. An example of equipotential surfaces (left) and the resulting
water droplet sphere (right) for 3D trajectories.

βth body point and αth action class. ωβ is the weighting
factor balancing the relative importance of βth body point
and it can be decided by cross-validation [36]. NB and NA
are the total number of body points and action classes.

During 3D action recognition, we first derive a droplet
feature vector Um for an input skeleton sequence, and then
utilize a classifier to recognize the action class of this skele-
ton sequence. In this paper, we use two different classifiers :
1) KNN, and 2) one-against-all linear SVM classifier [30].

6 EXPERIMENTAL RESULTS

We evaluate the performance of our trajectory represen-
tation approach on three trajectory analysis applications:
trajectory clustering, trajectory classification & abnormality
detection, and 3D action recognition. The experiments are
performed on multiple benchmark trajectory datasets in-
cluding Vehicle Motion Trajectory dataset (VMT) [4], Sim-
ulated Traffic Intersection dataset (CROSS) [7], our own
constructed crossroad traffic dataset (TRAFFIC)2, and MSR-
Action3D Dataset (MSR) [8]. λ1 and λ2 in (11) are set as 2
and 0.1, which are decided from experimental statistics.

6.1 Trajectory Clustering
We perform trajectory clustering experiments on a bench-
mark Vehicle Motion Trajectory dataset (VMT) [4]. The VMT
dataset includes 1500 real-scene vehicle trajectories labeled
in 15 clusters. Some example trajectories in VMT dataset is
shown in Fig. 10. In this experiment, we cluster trajectories
into the same number of clusters as the ground truth (i.e.,
15 clusters), and evaluate the consistency between trajectory
labels in the clustering results and those in the ground truth.

We compare our approach with seven methods: 1) Us-
ing Euclidean distance to measure the distance between
trajectories plus using K-means clustering to cluster tra-
jectories (ED+Kmeans); 2) Using Euclidean distance plus
spectral clustering [29] (ED+SC); 3) Using dynamic time
warping to measure trajectory distances plus K-means [37]
(DTW+Kmeans); 4) Using DTW plus spectral clustering
[38] (DTW+SC); 5) Using a time-sensitive Dirichlet pro-
cess mixture model [4] to represent and cluster trajectories
(tDPMM); 6) Using a 3-stage hierarchical learning model
[7] to represent and cluster trajectories (3SHL); 7) Using a
heat-map model [12] to represent and cluster (HM).

Note that the ‘tDPMM’ and ‘3SHL’ methods are state-
of-the-art trajectory-modeling methods which increase the
informativeness of trajectories by constructing probability
models for each trajectory class. Besides, the ‘HM’ method
encodes the temporal variation of a trajectory.

2. www.dropbox.com/s/ahyxw6vqypgb0uf/TRAFFIC.zip?dl=0
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Table 1
Cluster Learning Accuracy for different methods on VMT Dataset (%)

Method Cluster Accuracy
ED+Kmeans 82.6
ED+SC [29] 85.0
DTW+Kmeans [37] 83.2
DTW+SC [38] 85.3
tDPMM [4] 86.7
3SHL [7] 84.4
HM [12] 82.0
3D Tube+Hausdorff 91.5
Thermal Map+Manifold 92.2
3D Tube+Manifold 93.6
Ours 93.8

Moreover, in order to evaluate the effectiveness of our
water droplet process, we further include the results of
three additional methods: 1) Using our approach to con-
struct 3D tubes for trajectory representation, plus using
Hausdorff distance [24] to capture the high-dimensional
information in these 3D tubes for trajectory clustering
(3D Tube+Hausdorff); 2) Using 3D tubes plus using
a state-of-the-art Grassmann manifold method [20] (3D
Tube+Manifold); 3) Using our approach to achieve thermal
diffusion maps for each trajectory point (cf. Fig. 3), and
directly concatenating these thermal diffusion maps as the
representation of a trajectory, finally using the Grassmann
manifold method [20] to capture the high-dimensional in-
formation (Thermal map+Manifold).

Note that the major difference between the ‘Thermal
map+Manifold’ method and ‘3D Tube+Manifold’ method
is that ‘Thermal map+Manifold’ skips the step of equipo-
tential line extraction (cf. Section 3.2), and directly utilizes a
thermal diffusion map to represent a trajectory point.

6.1.1 Comparison of clustering results

Table 1 compares the cluster learning accuracy [4] for dif-
ferent methods on VMT dataset, where the cluster learn-
ing accuracy measures the total percentage of trajectories
being correctly clustered. From Table 1, approaches us-
ing our 3D tube representation (3D Tube+Hausdorff, 3D
Tube+Manifold, Thermal map+Manifold, Ours) achieve ob-
viously better clustering results than the compared meth-
ods. This demonstrates the usefulness of our 3D tube rep-
resentation. Moreover, we can also observe from Table 1
that: 1) Our approach, which integrates both 3D tube rep-
resentation and water droplet process, achieves the best
clustering results. This demonstrates the effectiveness of
our tube+droplet framework. 2) The ‘3D Tube+Manifold’
method has slightly better results than the ‘Thermal
map+Manifold’ method. This implies that equipotential
lines (cf. Section 3.2) can not only capture the useful infor-
mation in thermal diffusion maps, but also suitably avoid
the disturbance from noise in thermal diffusion maps.

6.1.2 Robustness to noises and trajectory breaks

We further demonstrate the effectiveness of our approach in
dealing with noisy or broken trajectories. Following [4], we
add Gaussian noise to all points in a trajectory to simulate a
noisy trajectory. Three noise levels are used to derive three
trajectory datasets with different noise strengths (i.e., Noise

Level 1, 2, and 3 in Table 2). Similarly, we omit the initial
or last G points in two of 10 trajectories in each cluster to
simulate datasets with broken trajectories (i.e., omit G =
10%, G = 20%, G = 30%, and G = 40% in Table 2) [4].

Table 2 compares the clustering results of different meth-
ods on noisy or broken trajectories derived from VMT
dataset. Table 2 shows that our approach achieves the
best clustering results under different noise or trajectory
break levels. Moreover, when noise or trajectory break level
increases, the clustering performance decrease by our ap-
proach is relatively small among the compared methods,
this further demonstrates the robustness of our tube-and-
droplet approach when handling noises or trajectory breaks.

6.1.3 Effectiveness of 3D tube representation

Figs 10 illustrates a more detailed example about the ef-
fectiveness of our 3D tube representation. In Fig. 10a, the
colored curves are trajectories to be clustered and the black
trajectories labeled in A, B, and C are three trajectories
from them. In order to ease the discussion, trajectories from
different groundtruth clusters are displayed by different
colors. Since trajectories A, B, and C come from three
trajectory clusters which are located close to each other
and have similar motion patterns (cf. the clusters in yellow,
orange, and red in Fig. 10a), existing methods have limita-
tions in differentiating them which only consider the pair-
wise correlation between trajectories (ED+Kmeans, ED+SC,
DTW+Kmeans, DTW+SC, HM) or intra-cluster correlation
among trajectories (tDPMM, 3SHL).

With our 3D tube representation, the differences among
A, B, and C can be properly highlighted by embedding
the complete motion information from all trajectories, as
the upper figures in Fig. 10b. For example, the 3D tube of
trajectory A shows an obvious leftward convex part since
there is a large left-turn pattern provided by the purple
cluster along A’s route. Trajectory B’s tube is thicker since
it is located in the middle of a large upleft-ward motion
pattern jointly provided by the yellow, orange, and red
clusters. Besides, trajectory C’s tube includes an obvious
rightward convex part due to the rightward contextual
patterns provided by the blue and green clusters next to C.
Therefore, by suitably capturing the high-dimensional infor-
mation in these 3D tubes, the difference among trajectories
can be effectively reflected in the resulting droplet vectors
(cf. the lower figures in Fig. 10b).

6.1.4 Effectiveness of water droplet process

In order to evaluate our water droplet process, we
compare our approach with ‘3D Tube+Hausdorff’, ‘3D
Tube+Manifold’, and ‘Thermal Map+Manifold’. These
methods use the same 3D tube representation to depict a
trajectory, but use different schemes to capture the high-
dimensional information in a 3D tube. The clustering results
of these methods under different noise or trajectory break
levels are shown in Table 2. Furthermore, Table 3 compares
the running time of the 3D tube information handling &
clustering steps in these methods. We observe that:
• From Table 2, the clustering-accuracy difference between

our approach and ‘3D Tube+Hausdorff’ becomes larger
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Table 2
Cluster Learning Accuracy with different noise or trajectory break levels on VMT Dataset (%)

Datasets ED+Kmeans ED+SC
[29]

DTW+Kmeans
[37]

DTW+SC
[38]

tDPMM
[4]

3SHL
[7]

HM
[12]

3D Tube+
Hausdorff

3D Tube+
Manifold Ours

Noise Level 1 80.6 83.3 81.2 83.5 84.3 83.2 80.3 88.7 91.3 91.7
Noise Level 2 78.8 81.2 80.0 81.9 83.3 80.1 78.9 85.3 89.1 90.7
Noise Level 3 77.0 81.2 78.8 74.6 81.5 79.2 71.8 79.5 86.4 88.1
Omit G=10% 80.8 84.4 81.1 85.1 86.1 84.0 82.0 90.6 92.9 93.1
Omit G=20% 78.9 82.7 76.5 83.5 85.7 80.4 81.8 89.7 91.3 92.1
Omit G=30% 76.5 79.3 74.4 81.1 81.8 76.7 80.3 87.2 88.7 89.5
Omit G=40% 72.3 76.1 71.8 77.5 78.1 74.1 78.1 84.3 83.2 87.2

(a) (b)

(c) (d)

Figure 10. (a) Trajectories from different groundtruth clusters in VMT
dataset (color curves) and five input trajectories (black curves labeled
by A-E). (b) Upper: 3D tubes for trajectories A, B, and C in (a); Lower:
Water droplets for A, B, and C. (c) Comparison of water droplet results
between clean trajectories (B, C) and noisy trajectories (D, E) in (a)
(note that B, D are from one cluster and C, E are from another cluster).
(d) Upper: Droplets for trajectory A’s 3D tube in Fig. 10b under different
λ1 where λ2 = 0.1; Lower: Droplets for trajectoryA’s 3D tube in Fig. 10b
under different λ2 where λ1 = 2. (Best viewed in color)

for higher noise levels. This implies that satisfactory re-
sults cannot be easily achieved without suitably captur-
ing the high-dimensional information in 3D tubes. More
specifically, since Hausdorff distance is easily affected by
noise, its results decrease more rapidly for large noises.
In contrast, since our water droplet process characterizes
a 3D tube by accumulating information at different parts
in a tube (cf. (10)), the disturbance from noise can be
effectively reduced.
• Although ‘3D Tube+Manifold’ and ‘Thermal Map+ Man-

ifold’ can achieve relatively better results than ‘3D
Tube+Hausdorff’, their computation complexities are
considerably high (cf. Table 3). Comparatively, our water
droplet process handles information of a 3D tube in a
simple but effective way, which is able to perform clus-
tering in less than 1 minute while achieving better results
than ‘3D Tube+Manifold’ and ‘Thermal Map+Manifold’.
Moreover, Fig. 10c shows the droplet results for four

trajectories where trajectories B and D belong to the orange
cluster and trajectories C andE belong to the yellow cluster.
Since trajectories D and E are interfered by noise, the

Table 3
Running time of different steps for Table 2

(Note: ‘Transfer field+3D tube’ refers to the steps of constructing
thermal transfer fields and 3D tubes. ‘Handling 3D tube+clustering’

refers to the steps of handling the high-dimensional information in 3D
tubes and performing clustering. Implemented by Matlab and evaluated

on a PC with 4 core CPU and 8G RAM.)

Method Transfer field Handling 3D tube
+3D tube +clustering

3D Tube+Hausdorff

11.2 min

38.4 min
3D Tube+Manifold 12.0 hr

Thermal Map+Manifold 12.0 hr
Ours 47.5 sec

ambiguity among trajectories increases. However, with our
water droplet process, these noisy effects can be properly
reduced and the major characteristics of a 3D tube can be
properly obtained. For example, in Fig. 10c, the common
characteristics of trajectories B and D are captured in their
droplets which include larger sectors on both sides of the
trajectories’ major motion direction.

6.1.5 Effect of different parameter values

Fig. 10d shows the droplet results for trajectory A’s 3D tube
in Fig. 10b under different λ1 and λ2 values (cf. (11)).

From Fig. 10d, we can see that λ1 mainly controls the
effect from a 3D tube’s shape. More specifically, when λ1

increases, a droplet becomes more concentrated on a tube’s
true motion directions and convex parts, while sectors not
along a tube’s direction or convex part will shrink. At the
same time, with the increase of λ1, the thickness of a tube
is also reflected more obviously in a droplet. For example,
since trajectory A’s 3D tube in Fig. 10b is relatively narrow,
increasing λ1 will decrease the size of its droplet and make
the droplet more coherent with the tube’s thickness.

Besides, Fig. 10d reveals that λ2 controls the impact of
a 3D tube’s route. When λ2 is extremely small, the route
information of a 3D tube cannot be fully included in a
droplet (i.e., a droplet cannot tell whether a trajectory is
moving upward or downward along a 3D tube, cf. Fig. 10b).
This will create obvious sectors in the opposite direction to a
trajectory’s motion route (cf. the leftmost figure in Fig. 10d).
When λ2 increases, the route information is more clearly
included in its corresponding droplet, and sectors opposite
to a trajectory’s route will shrink. We set λ1 and λ2 as 2
and 0.1. Experiments show that these values can properly
embed both the shape and route information of a 3D tube
and create satisfactory results.
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(a) (b) (c)

Figure 11. (a) Example trajectories of the TRAFFIC dataset (yellow
curves: normal trajectories, red curves: abnormal trajectories). (b) Major
motion routes of different trajectory classes. The yellow and red curves
indicate routes for normal and abnormal trajectory classes (‘U’,‘D’,‘L’,‘R’
refers to ‘upward’,‘downward’,‘leftward’,‘rightward’ respectively. For ex-
ample, ‘LU’ means moving leftward and then upward). (c) ROC curves
of different methods when discriminating normal/abnormal trajectories
under different abnormality detection thresholds. (Best viewed in color)

6.2 Trajectory Classification & Abnormality Detection

6.2.1 Results on TRAFFIC dataset

We perform experiments of trajectory classification & abnor-
mality detection on our own constructed TRAFFIC dataset.
This dataset includes 300 real-scene trajectories where 200
trajectories are for normal activities and the other 100 trajec-
tories are abnormal ones. The normal trajectories includes
seven classes, with about 30 trajectories for each class.
The major motion routes of different trajectory classes are
indicated in Fig. 11b. Some example normal and abnormal
trajectories are shown in Fig. 11a.

Note that this is a challenging dataset in that: 1) The total
number of trajectories in the dataset is small, making it dif-
ficult to construct reliable models; 2) The motion trajectories
within the same class have large variations due to the large
width of roads; 3) Due to the visual angle of the surveillance
camera, trajectories from different class are easily confused
and are difficult to differentiate.

We compare our approach (cf. Sections 5.2) with two
methods: 1) The GPRF method [6] which introduces Gaus-
sian process regression flows to model the location and ve-
locity probability for each trajectory class, and utilizes them
to classify trajectories (GPRF); 2) The DTW method [37]
which classifies a test trajectory by measuring its dynamic-
time-warping distance with the center of different trajectory
classes (DTW).

We split the dataset into 50% training-50% testing parts.
Note that in our experiments, only normal trajectories are
used for training. Four independent runs are performed
where the training and testing sets are randomly selected in
each run, and the final results are averaged. Fig. 12 compares
the confusion matrices of different methods for classifying
normal trajectories and detecting abnormal ones. Fig. 11c
further compares the ROC curves of different methods
when discriminating normal/abnormal trajectories under
different abnormality detection thresholds.

From Figs 12 and 11c, we can observe that:
• Our approach can achieve obviously better results than

the compared methods. More specifically, the compared
methods have low effectiveness in discriminating trajec-
tory classes such as RD, L, and LU. This is because tra-
jectories in these classes are easily confused with similar
trajectories from other classes such as R and AB (e.g., L,
LU are similar to patterns UL and U in the abnormal class

(a) (b) (c)

Figure 12. Confusion matrices of different methods when classifying
normal trajectories and detecting abnormal ones (denoted as ‘AB’). (a)
GPRF [6]. (b) DTW [37]. (c) Ours.

Table 4
Trajectory classification & abnormality detection results on CROSS (%)

Method Classification Abnormality Detection
(CA) (DR/FPR)

DTW [37] 95.6 71.3/55.5
GPRF [6] 98.0 80.5/23.5
tDPMM [4] 98.0 91.0/23.3
3SHL [7] 96.8 85.5/23.5
Ours 98.6 91.3/23.5

AB, cf. Fig. 11b). Comparatively, since our approach in-
troduces informative tube-and-droplet representation to
capture the subtle difference between trajectory groups,
more satisfactory results can be achieved.
• Although the GPRF method constructs probability mod-

els to encode the spatial-temporal variation of trajectory
classes, it still creates less satisfactory results. This is
because: (a) The GPRF method only focuses on modeling
the contextual information inside each trajectory class,
which has limitations in differentiating trajectories from
similar classes; (b) The number of training trajectories
is small, which makes it difficult for the GPRF method
to construct reliable probability models. Comparatively,
our approach is able to work reliably under relatively
small trajectories. Besides, by leveraging the complete
contextual motion information, the subtle difference be-
tween different classes are also properly discriminated
by our approach, thus obtaining more improved results.

6.2.2 Results on CROSS dataset

We also perform experiments of trajectory classification and
abnormality detection on CROSS dataset [7]. It includes
11400 normal trajectories labeled in 19 clusters and 200
abnormal trajectories (one example in Fig. 2).

Following [7], we utilize 1900 normal trajectories in
training. The constructed thermal transfer fields or trajec-
tory class models are then utilized to classify the rest 9500
normal and 200 abnormal trajectories. We use (13) to de-
tect abnormal trajectories and a simple K-nearest neighbor
(KNN) [39] strategy to classify normal trajectories.

Table 4 compares the trajectory classification & abnor-
mality detection results. Classification results are evaluated
by classification accuracy (CA) which is the ratio between
total number of correctly classified normal trajectories and
total number of normal trajectories. Abnormality detection
results are evaluated by abnormality detection rate (DR) and
abnormality false positive rate (FPR) [7]. Note that besides
the DTW and GPRF methods, we also include the results of
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two state-of-the-art methods on CROSS dataset in Table 4
(i.e., 3SHL [7] and tDPMM [4]).

Our approach achieves the best performance in classifi-
cation. When detecting abnormal trajectories, our approach
can also achieve obviously improved results than the com-
pared methods (DTW [37], 3SHL [7], and GPRF [6]) and
similar results to a state-of-the-art tDPMM method [4].

6.3 3D Action Recognition

Finally, we evaluate the performance of our approach in 3D
action recognition. We perform experiments on a benchmark
MSR-Action3D Dataset [8] which includes 557 3D skeleton
sequences for 20 human actions performed by 10 different
subjects. One example skeleton sequence is shown in Fig. 7.

Following the previous works on MSR-Action3D dataset
[8], [40], we evaluate the recognition accuracy over all 20
actions where actions of half of the subjects are used for
training and the rest actions are used for testing. Besides, a
trajectory alignment process similar to [31] is applied as a
pre-processing step to reduce 3D trajectory variations.

We utilize the process in Section 5.3 to implement our
approach for 3D action recognition, where ‘Droplet+KNN’
and ‘Droplet+SVM’ in Table 5 refer to using KNN and
SVM classifiers to recognize our droplet feature vectors (cf.
(14)), respectively. Moreover, we also include the results by
combining our droplet feature vector with a state-of-the-art
‘Moving Poselets’ method [41] which introduces sophisti-
cated mid-level classifiers to improve recognition accuracy
(cf. ‘Droplet+Moving Poselets’ in Table 5). Specifically, we
concatenate our droplet feature vectors with the body point
velocity & acceleration features used in [41], and follow the
‘Moving Poselets’ classification process [41] to recognize the
action class of the concatenated feature vectors.

We compare our approach with the state-of-the-art 3D
action recognition methods using skeleton sequences [32]–
[35], [40]–[43]. Table 5 shows the recognition accuracy. Ac-
cording to Table 5, our ‘Droplet+SVM’ approach outper-
forms all the existing techniques except [41]. This demon-
strates that our tube-and-droplet framework can be reliably
applied to handle sequence analysis with multiple trajec-
tories. Besides, our ‘Droplet+KNN’ approach also achieves
satisfactory results. It implies that our droplet features
can effectively capture the discriminative characteristics of
trajectories, such that good results can be achieved with
simple recognition strategies such as KNN. Moreover, the
‘Droplet+Moving Poselets’ approach achieves the best per-
formance. It further indicates that our droplet features can
be effectively combined with more sophisticated recognition
strategies to achieve further improved performances.

7 CONCLUSION

In this paper, we study the problem of informative trajec-
tory representation and introduce a novel tube-and-droplet
framework. The framework consists of three key ingredi-
ents: 1) introducing the idea of constructing thermal transfer
fields to embed the global motion patterns in a scene; 2)
deriving equipotential lines and concatenating them into a
3D tube to establish a highly informative representation,
which properly embeds both the motion route and the

Table 5
Recognition accuracy comparison on MSR-Action3D dataset (%)

Method Recognition Accuracy
Eigen joints [42] 82.3
HON4D+Ddisc [40] 88.9
Actionlet Ensemble [32] 88.2
Skeleton Quads [34] 89.9
Pose Set [43] 90.2
Manifold Learning [35] 91.2
Moving Pose [33] 91.7
Moving Poselets [41] 93.6
Droplet+KNN 91.2
Droplet+SVM 92.1
Droplet+Moving Poselets 93.9

contextual motion pattern for a trajectory; 3) introducing
a simple but effective droplet-based process to effectively
capture the rich information in 3D tube representation. We
apply our tube-and-droplet approach to various trajectory
analysis applications including clustering, abnormality de-
tection, and 3D action recognition. Extensive experiments on
benchmark demonstrate the effectiveness of our approach.
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