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In this paper, we propose a Dynamic Network Quantization (DNQ) framework.
Unlike most existing quantization methods that use a universal quantization bit-width
for the whole network, we utilize policy gradient [1] to train an agent to learn the
bit-width of each layer by the bit-width controller.

Our bit-width controller in this work is based on reinforcement learning for training
an agent to maximize the cumulative reward. This problem is solved by training
a policy network Mθ, the input sequence is the embedding of the network and the
output sequence BL = (b1, . . . , bl, . . . , bL) is the bit-widths of the network, where bl
is the bit-width of the lth layer. In time step l, the state s is the current produced
bit-width sequence (b1, . . . , bl−1, ). The action al we choose in time step l indicates
the bit-width used to quantize the layer, where al ∈ (2, 3, . . . , 8). Thus, the reward R
is defined as Acc+ λr, where Acc is the accuracy of the quantized network without
fine-tuning and r is the compression ratio. We should not only consider the fitness
of previous layers’ bit-widths but also the future outcome. Therefore, to evaluate
the action at in time step t, we apply Monte Carlo search to sample the next L− t
bit-widths. We average the N times sampling results to reduce the variance:

RMθ(st = Bt−1, at = bt) =
1

N

N∑

n=1

Rn(BL), BL = MC(Bt;N), (1)

where MC(:) is the Monte Carlo sampling function.We train our policy networks by
policy gradient [1].
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