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ABSTRACT

How to balance the tradeoff between the user experience and
bandwidth utilization emerges a critical challenge for multi-
user 360-degree video adaptive streaming. This paper stud-
ies the server-side rate adaptation strategy for multiple users
which are competing for the server bandwidth capacity. A tile
visibility probability model is established, by which the tiles
are classified into predicted, marginal and invisible types. A
fine-grained rate adaptation problem is formulated as a non-
linear integer programming (NIP) problem, which aims at
maximizing the video quality and navigation smoothness for
multiple users. Thereafter, a steepest ascent algorithm with
feasible starting point is developed to solve the proposed NIP
problem in polynomial time. Finally, simulation results verify
the performance of the proposed rate adaptation strategy.

Index Terms— 360-degree video, rate adaptation, server-
side, field of view prediction, steepest ascent algorithm

1. INTRODUCTION

360-degree videos, one major virtual reality application, pro-
vide immersive sensation within a scene by using an omnidi-
rectional camera to capture the scene from all directions. The
user wears a head-mounted display (HMD) to watch the video
and moves his head to change the viewing direction. As the
bandwidth required to deliver 360-degree video is 4-6 times
of traditional video with the same resolution [1], how to effi-
ciently transmit such huge video content emerges a challenge
for 360-degree video streaming.

Constrained by the field of view (FoV) (e.g., 90-degree
vertically and 110-degree horizontally ) of the HMD, the user
at any given time can view partial video content. It means that
the server can only stream the video portion corresponding to
the user’s current viewport (also called user FoV in this paper)
to reduce the bandwidth consumption. Moreover, considering
the user’s viewport switch arising from fast head movement,
the video portion outside the user FoV also requires to be de-
livered, but can be encoded at a very low rate. The user FoV
depends on the position of the user’s head, which needs to be
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predicted before transmission. If the FoV prediction can reach
100% accurate, a simple strategy, i.e., streaming the predicted
FoV with high quality and the outside area with low quality,
can well function. However, it is hardly conduct absolutely
accurate prediction, a margin area that compensates for the
difference between the predicted and the real user FoV al-
ways needs to be transmitted at a relatively high rate to guar-
antee the quality of experience (QoE). The larger margins,
the higher probability that the real FoV can be fully covered,
and the more bandwidth required. This paper focuses on the
adaptive streaming strategy for both the predicted FoV and
the margins to balance the tradeoff between the user experi-
ence and bandwidth utilization.

HTTP adaptive streaming, on the basis of dynamic adap-
tive streaming over HTTP (DASH) [2], has become a desir-
able solution for bandwidth-limited 360-degree video deliv-
ery. Unlike the traditional video, the adaptive 360-degree
video streaming not only provides representation selection for
each video chunk, but offers multiple resolutions for each tile
that is defined by spatial relationship description (SRD) [3], a
new extension of DASH. Toni et al. in [4] studied tile-based
adaptive streaming strategies and proposed a solution to de-
termine the rate at which each tile is downloaded for maxi-
mizing the quality experienced by the user. Given the FoV
and bandwidth estimation, Ghost et al. in [5] formulated dif-
ferent QoE metrics and designed a streaming algorithm for
360-degree video streaming. The authors in [6] proposed
a viewport-adaptive 360-degree video streaming system, in
which the front face is encoded in full quality while the other
faces are encoded in low quality.

All the existing studies considered user-side rate adaption,
where the user determines the best set of tile rates to download
from the server based on bandwidth estimation and buffer oc-
cupancy. Such approaches have shown sub-optimal QoE per-
formance when multiple users compete for the bandwidth [7]
[8]. In this paper, we consider the server-side rate adaption
for multiple users which are competing for the server band-
width capacity with personal viewport requirement and band-
width constraint. Moreover, a definition of the tile visibil-
ity probability is introduced, by which the tiles are classified
into predicted, marginal and invisible tiles, and then a more
fine-grained rate adaption strategy is proposed for maximiz-
ing the overall qualities of user experience. Our contributions
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are summarized as follows:
1) We design a tile visibility probability model to measure

the probability that the tile is visible to the user, in which the
FoV prediction accuracy, the head movement speed, and the
chunk duration time are considered.

2) We formulate the server-side fine-grained rate adap-
tation problem as a non-linear integer programming (NIP)
problem, which aims at maximizing the satisfaction for the
received video and navigation smoothness of multiple users.

3) We develop a steepest ascent algorithm to solve the pro-
posed NIP problem in polynomial time, where the feasible
starting point is determined by the relaxed convex optimiza-
tion problem.

2. SERVER-SIDE RATE ADAPTATION

In this section, we first model the tile visibility probability,
and then formulate the server-side rate adaptation problem.

2.1. System Model

Consider a 360-degree spherical video that is projected into
a rectangular panoramic video by using a certain projec-
tion method, e.g. equirectangular projection (ERP) [9]. The
panoramic video sequence is segmented into a set T of
chunks of the same duration `. Each panoramic frame within
a chunk is divided into a set L of tiles. Each tile is encoded
into M representations, where R = {R1, R2, ..., RM} de-
notes the set of the coding rates satisfying R1 < R2 < ... <
RM . Assume that the server sends the video simultaneously
to a set K of users. The bandwidth capacity of the server and
each user k are Bs and Bk, respectively. For each chunk t,
let Vpk,t represent the set of predicted tiles that fully cover
user k’s predicted FoV, and Vmk,t be the corresponding set of
marginal tiles that cover the difference between the predicted
and real FoV. Further, let the combination Vk,t = Vpk,t

⋃
Vmk,t

represent the set of visible tiles that is visible for user k when
wearing the HMD, and Vk,t, i.e. the supplementary set of
Vk,t, be the set of invisible tiles, as shown in Fig. 1.

Fig. 1. Tile segmentation of a panoramic frame

2.2. Tile Visibility Probability

The tiles in a panaromic frame are classified into three types:
predicted, marginal and invisible tile. The predicted tiles are
streamed with high quality, while the marginal tiles are trans-
mitted with moderate video quality. As for the invisible tiles,
they are transmitted at the lowest rate R1 to save the band-
width. The set of predicted tiles can be easily determined by
performing user FoV prediction as in [10]. The critical is-
sue is how to find out an appropriate marginal tile set, as the
margin size impacts both the quality and efficiency.

Let Pi,k,t represent the probability that tile i of chunk t is
visible to user k. The value of Pi,k,t is the largest when the tile
is located in the predicted FoV, then it decreases with the in-
crease of the distance between the tile and the predicted FoV.
For any tile i, i /∈ Vpk,t, let di denote the distance between the
center point of tile i and that of the predicted FoV. Besides the
distance, Pi,k,t has also relationship with user motion speed
s, chunk length `, and FoV prediction accuracy p [11]. For a
long chunk or a fast user motion, the Pi,k,t of the tiles outside
the predicted FoV decreases very slowly because the user is
more likely to watch the tiles beyond the predicted FoV.

Assume that the distance di meets the normal distribution
with a zero mean, and a variance of s · `, i.e., di ∼ N (0, s.`),
Thus, we have

Pi,k,t =

{
p, i ∈ Vpk,t,

p ·
∫W/2
di

1√
2πs`

exp
(
− d2

2s`

)
, otherwise,

where W is the width of 360-degree video in ERP format.
Given a threshold α, for any tile i, i /∈ Vpk,t, if its visibility
probability satisfies Pi,k,t ≥ α, it is defined as a marginal
tile. Otherwise, it is an invisible tile.

2.3. Problem Formulation

For each chunk t, the server seeks transmission rates for the
predicted and marginal tiles to maximize the overall user sat-
isfactions, subjected to both the server and users bandwidth
capacity. Mathematically, the server-side rate adaptation
problem can be formulated as the following P-1 problem:

max
R

∑
k∈K

(
∑

i∈Vk,t

U(Ri,k,t)Pi,k,t + wU( min
i∈Vm

k,t

Ri,k,t)Pi,k,t)

s.t.
∑
k∈K

∑
i∈L

Ri,k,t ≤ Bs, ∀t ∈ T (1)

∑
i∈K

Ri,k,t ≤ Bk, ∀k ∈ K,∀t ∈ T (2)

Ri,k,t ∈ {R1, R2, ..., Rm} , ∀i ∈ Vk,t,∀k ∈ K,∀t ∈ T (3)

Ri,k,t = R1, ∀i ∈ Vk,t,∀k ∈ K,∀t ∈ T (4)

Ri,k,t = Rj,k,t, ∀i, j ∈ Vpk,t,∀k ∈ K,∀t ∈ T (5)
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Ri,k,t ≤ Rj,k,t, ∀i ∈ Vmk,t, j ∈ V
p
k,t,∀k ∈ K,∀t ∈ T (6)

The user satisfaction function U(·) describes the satisfac-
tion of the user for receiving a video, which is increasing and
strict concave with respect to the video rate. The second term
in the objective function is introduced to avoid uncomfortable
degradation in QoE when the user switches the viewing di-
rection from the predicted FoV to the margin area, where w
is a weight. Constraints (3) define the optional quality levels
for each visible tile. Constraints (4) set the quality level of
all the invisible ties to R1. Constraints (5) specify that all the
tiles in the predicted FoV should have the same quality level.
Constraints (6) ensure that the quality level in the margin area
would not be higher than that in the predicted FoV.

Problem P-1 is a non-linear integer programming problem
which is in general NP-hard. In the following, a steepest as-
cent algorithm [12] with the feasible starting point achieved
from the relaxed convex problem is applied to find the solu-
tion in polynomial time.

3. STEEPEST ASCENT SOLUTION WITH CONVEX
RELAXATION STARTINT POINT

Let Q(R) represent the objective function of problem P-1,
B(R) =

∑
k∈K

∑
i∈Vk,t

Ri,k,t represent the total streaming
rates of visible tiles for chunk t, and
R = (R1,1,t, · · · , RL,1,t, · · · , R1,K,t, · · · , RL,K,t) be the
possible rate combinations of all the visible tiles for all the
users. Also, let R+

j denote the rate Ri fixed to Ri+1 on
the j-th element of R and others remain unchanged, where
i ∈ {1, · · · ,M − 1}. The slope in the j-th direction at R

could be defined as sj(R) =
Q(R+

j )−Q(R)

B(R+
j )−B(R)

.

The steepest ascent algorithm iteratively finds the direc-
tion j in which the maximum slope of all the directions and
the new R+

j are achieved when the operation satisfies all the
constraints of P-1. Finally, the algorithm converges after nu-
merous iterations.To ensure the optimality of the achieved so-
lution, we first describe three optimality conditions for the
steepest ascent algorithm [13]:

1) Cross-over: For each j and v > u, the upper convex
hull Qvj (R) of achievable solutions with the j-th direction of
R fixed to Rv is greater than Quj (R) for sufficiently large
B(R).

2) Cross-over ordered: Suppose the cross-over rate
Bc(u, v, j) between two curves Qvj (R) and Quj (R) is de-
fined as the smallest rate such that Quj (R) ≥ Qvj (R) if
u > v. Then Bc(ω, v, j) is greater than the rate of the first
achievable solution on Qvj (R) with rate greater than or equal
to Bc(v, u, j) for each j and ω > v > u.

3) Reachability: For all j and u, the vectors correspond-
ing to two adjacent achievable solutions on Quj (R) differ
in exactly one index. Also, given a vector q corresponding
to the highest rate achievable solution less than or equal to
Bc(u, u − 1, j) on Quj (R), the vector q+

j gives the lowest

achievable rate solution on Qu−1j (R) with rate greater than
or equal to Bc(u, u− 1, j).

Theorem 1 [13] The steepest descent algorithm will find all
achievable (Q,B) values on the upper convex hull withB(R)
satisfied all constraints if the cross-over, cross-over ordering
and reachability conditions hold.

Fig. 2 shows three optimal Q-B curves which represent
the Quj (R), Qu−1j (R) and Qu−2j (R), respectively. It is seen
thatQuj (R) > Qu−1j (R) > Qu−2j (R) for largeB(R), which
means that the cross-over property is satisfied in this prob-
lem. Also, the cross-over ordered property is satisfied since
Bc(u, u− 1, j) > Bc(u− 1, u− 2, j). However, the reacha-
bility cannot be guaranteed as there are too much directions in
which q+

j gives the lowest achievable solution. To meet the
reachability property, a feasible starting point is required for
this problem.

Fig. 2. Switching between optimal Q-B curves

Algorithm 1 Steepest Ascent Algorithm
Input: Feasible start point Rinteger
Output: Optimal solution R?

Initialisation : R = Rinteger
1: Let the active set A include the indices that the corre-

sponded streaming rate of vector R can be added.
LOOP Process

2: while A is no-empty do
3: Calculate the sj(R) for all j ∈ A
4: Get the index m that has the largest value of sj(R)
5: If the tile of which coding rate corresponding to index

m is in Vpk,t, let R′ = R+
i for all i ∈ Vpk,t; Otherwise,

let R′ = R+
m.

6: If R′ satisfy all the constrains of problem (1), R = R′,
else, remove m from the active set.

7: end while
8: return R

Let Rrelax denote the solution of the relaxed convex prob-
lem of P-1, in which the discrete Ri,k,t is relaxed to: R1 ≤
Ri,k,t ≤ RM . Further, let Rinteger = bRrelaxc be the inte-
gers no larger than Rrelax, which is neighboring to the global
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Fig. 3. Video frames achieved by different algorithms: (a) Proposed algorithm (b) Greedy algorithm (c) Baseline algorithm.
(The red line area covers the predicted tiles and the blue one covers the visible tiles. )

optimal solution R? of P-1. Since Rinteger is always near the
global optimal point R? and the errors resulting from the con-
fliction with the reachability property is very likely to be re-
covered. Taking the Rinteger as the starting point for the steep-
est ascent algorithm will achieve the global optimal solution
with a very high probability. The whole searching process is
summarized in Algorithm 1.

4. SIMULATION RESULTS

We use the standard 360-degree test sequence, Driving in
Country [14], with a resolution of 3840 × 1920 and a frame
rate of 25 fps. The video in ERP format is divided into 8× 8
tiles. We use High Efficiency Video Coding (HEVC) and pro-
vide six representations for each tile, with the QP of each rep-
resentation being 17, 22, 27, 32, 37, 42. The parameter α
is set to 0.1. 10 users are assumed to watch the videos with
different predicted FoV.
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Fig. 4. Average PSNR of all the users

Fig. 3 shows the video frames achieved at the same user,
where the baseline algorithm assumes that all the tiles have
the same quality, while the greedy algorithm provides high
quality levels only for the predicted tiles. In this case, the
server bandwidth capacity is set to 32.5 Mbps, which is insuf-
ficient for delivering all the tiles with high quality. Therefore,
all the tiles has to be streamed at a low rate by the baseline al-
gorithm. For the greedy algorithm, only the predicted tiles has
a high quality, resulting in a sharp quality degradation when
the viewing direction switches to the margin area. In contrast,

with the proposed algorithm, not only the predicted FoV but
the margin area are assigned high transmission rates.

Fig. 4 compares the average PSNR achieved at all the
users. It is seen that with a very small server capacity, the
greedy algorithm reaches the peak performance. The qual-
ity of the baseline algorithm increases slowly with the server
capacity. compared with these two algorithms, the proposed
algorithm has a significant improvement in video quality.
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Fig. 5. Average instability index of all the users

Fig. 5 compares the average instability index of all the
users where w in the proposed algorithm is set to 0, 0.5 and
1, respectively. The instability index of each user is defined
as the standard deviation of the rates for all the visible tiles.
It is observed that the smoothness of the baseline algorithm
always remains stable as all the tiles have the same quality.
For the proposed algorithm, the instability can be reduced by
increasing the value of w.

5. CONCLUSION

In this paper, we have proposed a server-side rate adapta-
tion algorithm for 360-degree video streaming where multiple
uses compete for the server bandwidth. The server chooses
the optimal set of transmission rates for the tiles of each user.
We divided the tiles into predicted, marginal and invisible
types for a smooth video play when the user head moves
from the FoV to other area. Simulation results show that the
proposed algorithm outperforms the widely used baseline and
greedy algorithm in average video quality and smoothness.

3267



6. REFERENCES

[1] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu,
“Shooting a moving target: motion-prediction-based
transmission for 360-degree videos,” in IEEE Interna-
tional Conference on Big Data, 2016, pp. 1161-1170.

[2] I. Sodagar, “The MPEG-DASH standard for multimedia
streaming over the internet,” IEEE MultiMedia, vol. 18,
no. 4, pp. 62-67, 2011.

[3] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato,
F. Denoual, and S. Y. Lim, “MPEG DASH SRD: spatial
relationship description,” in Proceedings of ACM Inter-
national Conference on Multimedia Systems, 2016.

[4] S. Rossi and L. Toni, “Navigation-aware adaptive
streaming strategies for omnidirectional video,” in tex-
titProceedings of IEEE International Workshop on Mul-
timedia Signal Processing, 2017.

[5] A. ghosh, V. Aggarwal, and F. Qian, “A rate adaptation
algorithm for tile-based 360-degree video streaming,”
arXiv preprint arXiv: 1704.08215, 2017.

[6] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski,
“Viewport-adaptive navigable 360-degree video deliv-
ery, in Proceedings of IEEE International Conference
on Communications, 2017.

[7] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen,
and D. Oran, “Probe and adapt: rate adaptation for http
video streaming at scale,” IEEE Journal on Selected Ar-
eas in Communications, vol. 32, no. 4, pp. 719-733, Apr.
2014.

[8] S.Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.
Begen, “Server-based traffic shaping for stabilizing os-
cillating adaptive streaming players,” in Proceedings of
ACM NOSSDAV, 2013.

[9] K. K.-Sreedhar, Al Aminlou, M. M. Hannuksela, and M.
Gabbouj, “Viewport-adaptive encoding and streaming
of 360-degree video for virtual reality applications,” in
Proceedings of IEEE International Symposium on Mul-
timedia, 2016, pp. 583-586.

[10] Y. Bao, T. Zhang, A. Pande, H. Wu, and X.
Liu, “Motion-prediction-based multicast for 360-degree
video transmissions, in Proceedings of IEEE Interna-
tional Conference on Sensing, Communication, and Net-
working, 2017.

[11] P. R. Alface, J. F. Macq, and N. Verzijp, “Interactive
omnidirectional video delivery: a bandwidth-effective
approach, Bell Labs Technical Journal, vol. 16, no. 4,
pp. 135-147, 2012.

[12] G. P. Akilov and L. V. Kantorovich, Functional Analy-
sis, 2nd edition. Pergamon Press, 1982.

[13] Y. Sermadevi and S. S. Hemami, “Efficient bit alloca-
tion for dependent video coding, in Proceedings of IEEE
Data Compression Conference, 2004.

[14] W. Sun and R. Guo, “Test sequences for virtual re-
ality video coding from letinvr, in Joint Video Ex-
ploration Team of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JVET-D0179, 2016.

3268


		2018-08-29T05:12:16-0400
	Certified PDF 2 Signature




