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Abstract— This paper presents a transductive multicomponent
video segmentation algorithm, which is capable of segmenting
the predefined object of interest in the frames of a video
sequence. To ensure temporal consistency, a temporal coherent
parametric min-cut algorithm is developed to generate
segmentation hypotheses based on visual cues and motion
cues. Furthermore, each hypothesis is evaluated by an energy
function from foreground resemblance, foreground/background
divergence, boundary strength, and visual saliency. In particular,
the state-of-the-art R-convolutional neural network descriptor
is leveraged to encode the visual appearance of the foreground
object. Finally, the optimal segmentation of the frame can be
attained by assembling the segmentation hypotheses through the
Monte Carlo approximation. In particular, multiple foreground
components are built to capture the variances of the foreground
object in shapes and poses. To group the frames into different
components, a tree-structured graphical model named temporal
tree is designed, where visually similar and temporally coherent
frames are arranged in branches. The temporal tree can be
constructed by iteratively adding frames to the active nodes by
probabilistic clustering. In addition, each component, consisting
of frames in the same branch, is characterized by a support
vector machine classifier, which is learned in a transductive
fashion by jointly maximizing the margin over the labeled frames
and the unlabeled frames. As the frames from the same video
sequence follow the same distribution, the transductive classifiers
achieve stronger generalization capability than inductive ones.
Experimental results on the public benchmarks demonstrate the
effectiveness of the proposed method in comparison with other
state-of-the-art supervised and unsupervised video segmentation
methods.

Index Terms— Monte Carlo approximation, parametric min-
cut, temporal tree, transductive learning, video segmentation.

I. INTRODUCTION

V IDEO segmentation has many important applications
in computer vision, such as object detection, visual

tracking, and action recognition. Current video segmentation
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algorithms can be broadly divided into two approaches:
unsupervised and supervised.

Unsupervised video segmentation [1]–[6] has received more
attention in recent years than its supervised counterpart due to
its automatic capability in the era of big data. The goal of the
unsupervised video segmentation is to automatically pop up
the primary object in the video [1]–[4] or group the pixels into
spatiotemporal supervoxels based on the visual and motion
cues [5]. However, unsupervised methods always discover the
most motionally distinct and visually salient object in the
video, which may not be the object that people are actually
interested in. On the other hand, oversegmentation is also a
serious problem for motion segmentation techniques [5].

Supervised video segmentation [7]–[10], also known as
interactive video segmentation, also plays an important role
in many applications, which unsupervised approaches cannot
handle properly. The goal of the supervised video segmenta-
tion is to segment the object specified by the user, and the
problem is more well defined, i.e., to separate the foreground
object of interest from the background in the frames of
the video. Many graph-based supervised video segmentation
methods [8], [9], [11] use a single model to characterize
the foreground object in the video. However, their perfor-
mance is compromised if the object exhibits significant vari-
ations in visual appearance across frames. Tracking-based
methods [3], [12] associate the object proposals across frames
through visual tracking. However, tracking techniques are not
always reliable, especially for objects with a significant visual
variation in the video. Fortunately, provided with the labeled
key frames distributed across the frames, the proposed method
is capable of capturing different visual appearances of the
object more accurately.

The proposed algorithm belongs to the category of the
unsupervised video segmentation, and aims at segmenting
the predefined object in video so that it is more well suited
to high-level computer vision tasks, such as image retrieval,
object detection, and video summarization. In addition, the
proposed method is effective for static objects, provided with
some partially labeled frames. The proposed method constructs
multiple foreground models to represent the foreground object,
which is more robust against variations in poses, viewpoint,
and so on.

The task of segmenting common object in multiple images
gives rise to image cosegmentation, which was first introduced
in [13]. The main challenge of adopting image cosegmen-
tation for video segmentation is that the background of the
frames in the same video sequence is also highly correlated,
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so it is not possible to distinguish between the foreground
region and the background region from visual correlation.
A couple of methods [14]–[19] adopt image cosegmentation
techniques for video segmentation. However, those methods
segment common foreground object in multiple videos with
diverse background. In contrast, this paper is dedicated to
segmenting the foreground object in the frames of a single
video sequence, which distinguishes our work from other
related studies. To disambiguate the foreground and the back-
ground in a video sequence, certain prior knowledge will
be desired, which is provided by some prelabeled frames.
To obtain accurate segmentation in the unlabeled frames, the
proposed method jointly minimizes the prediction error in the
labeled frames and the unlabeled frames through transductive
learning, which achieves stronger generalization capability
than inductive methods.

This paper makes two major technical contributions. First, a
multicomponent temporal-coherent video segmentation algo-
rithm is proposed. Motivated by image cosegmentation, the
proposed algorithm segments the foreground object in multiple
frames of a video sequence simultaneously by maximizing the
inter-frame similarity of the foreground region and the intra-
frame foreground/background divergence. In particular, instead
of treating the frames in a video sequence as a collection of
independent images, the proposed algorithm pursues temporal
consistency in segmentation so that the segmentation results
can be both visually consistent and temporally coherent. To be
concrete, the temporal consistency is enforced by generating
segmentation hypotheses with not only the low-level visual
cues from the current frame but also the motion cues from
consecutive frames. In addition, an energy function is care-
fully designed to evaluate the segmentation hypotheses from
four aspects: the resemblance to the foreground model, the
foreground/background divergence, the boundary strength, and
the visual saliency. Finally, the optimal segmentations of the
frames can be obtained by assembling hypotheses weighted
by their energies through Monte Carlo approximation.

The second contribution of this paper is to present a
transductive learning algorithm to estimate the hyperparame-
ters of the multicomponent foreground model. Rather than
using only one model to encode the foreground object, we
construct a multicomponent model to characterize the vari-
ation of the object across frames. Each component captures
a unique appearance of the object so that the proposed
model is more robust for videos in which the objects exhibit
significant changes in visual appearance. In particular, a
temporal tree is constructed to group the frames into dif-
ferent components by probabilistic clustering. Consequently,
each branch in the temporal tree is composed of visually
and temporally consistent frames, which corresponds to a
component. The visual appearance of each component is
characterized by an support vector machine (SVM) classifier,
which is trained in a transductive manner by maximizing the
margin of the labeled frames and the unlabeled frames. As
the labeled frames and the unlabeled frames in the same
video sequence are generated from the same distribution,
the transductive learning algorithm provides stronger gener-
alization capability than inductive approaches because of the

cluster assumption. The experimental results demonstrate that
the proposed method outperforms many state-of-the-art video
segmentation algorithms in public benchmarks.

The rest of this paper is organized as follows: Section II
reviews some related work. Section III briefly introduces the
overview of the proposed algorithm. Section IV describes
the proposed temporal coherent video segmentation algorithm.
Section V presents the transductive learning algorithm to attain
the hyperparameters of the multicomponent model. Section VI
gives the experimental results. Finally, the conclusion is drawn
in Section VII.

II. RELATED WORK

A. Unsupervised Video Segmentation

The unsupervised video segmentation [1]–[6] is targeted
at grouping the pixels in the video into supervoxels,
which are both photometrically and temporally consistent.
Ma and Latecki [2] formulated the problem of video object
segmentation as finding the maximum clique in a weighted
region graph. To ensure the reliability of the potentials,
two types of mutex constraints are designed, which can be
expressed in a single quadratic form. Zhang et al. [1] built a
layered directed acyclic graph over the object proposals and
formulated the problem of primary object extraction as finding
the longest path in the graph. Likewise, Cao et al. [4] and
Zhang et al. [6] also developed a graphical model over the
segmentation candidates and selected the most corresponding
object region in each frame by finding the shortest path in the
graph. Inspired by video retargeting, Ramakanth and Babu [3]
used seams to propagate temporal labels across the frames
to segment object in videos. Wang et al. [20] introduced an
unsupervised, geodesic distance based, salient video object
segmentation method, which extracts objects from the saliency
of the geodesic distance to the spatial edges [21] and motion
boundaries. Luo et al. [22] divided a long video sequence into
consistent shot cuts and segmented objects in relative video
shots. Focused on a graph construction for video segmentation,
Khoreva et al. [23] used the calibrated classifier outputs
as edge weights and defined the graph topology by edge
selection.

Tracking-based approaches segment videos by tracking
interest points [5] or regions [12], [24] followed by merging
or clustering. Ochs et al. [5] established long-term motion
cues that span the whole video shot, so that static objects
and occlusions can be well handled. Li et al. [24] per-
formed video segmentation by simultaneously tracking multi-
ple holistic figure-ground segments (FGSs), and incrementally
training online nonlocal appearance models for each track
using a multi-output regularized least squares formulation.
Varas and Marques [12] extended particle filtering for video
object segmentation and segmented the current frame by
coclustering with the object partition of the previous frame.
In general, interest points are more distinctive and robust for
tracking, whereas regions are the characteristic of the spatial
coverage of objects. As unsupervised video segmentation
techniques are generally bottom-up, they often produce over-
fragmented results and lack semantic interpretation of the
segments.
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B. Supervised Video Segmentation

On the contrary, the supervised video segmenta-
tion [7]–[11] discloses the objects of interest that the
users identify, and thus the segments are more semantically
meaningful. Boykov and Funka-Lea [11] made use of graph
cuts whose boundary regularization and color model are
based on the user’s strokes, to segment video sequence as a
spatiotemporal volume. Price et al. [8] also adopted graph cut
optimization to combine various features weighted by their
estimated accuracy based on the user guidance. Bai et al. [7]
leveraged multiple overlapping localized classifiers, each
of which segments a piece of the foreground boundary to
extract foreground objects in videos. Grundmann et al. [9]
designed a hierarchical region graph to represent the
segmentation hierarchy of the oversegmented space-time
regions, and leveraged dense optical flow to enforce temporal
consistency to the segmentation. Huang et al. [10] presented
a hypergraph to represent the complex spatiotemporal
neighborhood relationship of the oversegmented image
patches, and solved video segmentation with a hypergraph
cut algorithm. Chien et al. [25] proposed a robust threshold
decision algorithm for video object segmentation with a
multibackground model. However, we do not explicitly model
the background but design a multicomponent foreground
model, which is more consistent across the frames.

C. Video Cosegmentation

Inspired by image cosegmentation [13], video cosegmen-
tation algorithms [14]–[16] have been advocated to extract
common object from videos. Lou and Gevers [16] established
a probabilistic graphical model across a set of videos to learn
the primary object, considering the appearance, spatial, and
temporal consistency. Zhang et al. [15] cosegmented objects
in arbitrary videos by sampling, tracking, and matching object
proposals through a regulated maximum weight clique (MWC)
extraction scheme, which is capable of handling multiple
objects, temporary occlusions, and objects going in and out
of view. Wang et al. [17] performed subspace clustering on
the temporal superpixels to segment the videos into con-
sistent spatiotemporal regions and then used the quadratic
pseudoboolean optimization to minimize the MRF energy
of video cosegmentation. Fu et al. [18], [19] proposed
a multistate selection graph model to segment multiple
common foreground objects in the videos based on the
category-independent object proposals. Wang et al. [14]
incorporated intra-frame saliency, inter-frame consistency, and
across-video similarity into an energy optimization framework
for video object cosegmentation, and introduced a spatiotem-
poral SIFT descriptor to integrate across-video correspondence
into inter-frame motion flow.

III. SYSTEM OVERVIEW

The task of the proposed algorithm is to separate the
foreground object, which is specified in several key frames,
from the background in the frames of a video sequence.
To begin with, some notations will be introduced. The frames
of the video sequence are denoted by {It }N

t=1, where N is the
number of frames and It is the tth frame. The height and

width of the frames are denoted by H and W , respectively.
Thus, the foreground mask of a frame is represented by a
binary matrix x ∈ X , where X = {0, 1}H×W is the space
of all possible binary segmentations. As the proposed method
is supervised, the foreground masks of some key frames will
be provided. Let the frame indices of the labeled frames be
denoted by πL , and the ones of the unlabeled frames πU .
Therefore, the foreground masks of the labeled frames are
denoted by X L = {xi |i ∈ πL}, and the goal of the proposed
method is to compute the masks of the unlabeled frames,
i.e., XU = {xi |i ∈ πU }.

The general framework of the proposed algorithm is demon-
strated in Fig. 1. It contains two subroutines, namely, temporal-
coherent video segmentation and transductive learning of
model parameters. First, the initial foreground model is learned
from the labeled frames in an inductive manner by training a
traditional SVM classifier. With the foreground model being
fixed, the first step computes the optimal foreground masks
of the unlabeled frames. For each unlabeled frame, a set

of segmentation hypotheses H = {hi }|H|
i=1 are generated by

temporal coherent parametric min-cut, combining both visual
cues and motion cues, where hi ∈ X is the i th hypothesis.
An energy function is designed to evaluate each hypothesis
from two aspects: the foreground fidelity and the segmen-
tation quality. The foreground fidelity is measured by the
similarity of the foreground region in the hypothesis with
the foreground model, while the segmentation quality offers a
low-level evaluation of the segmentation hypothesis based on
the foreground/background divergence, the boundary strength,
and the visual saliency. Finally, the optimal segmentation of
the frame is approximated by Monte Carlo sampling of the
segmentation hypotheses weighted by their energies. The sec-
ond step, i.e., the transductive learning of model parameters,
groups the frames into multiple components and computes the
optimal parameters with the masks of the unlabeled frames
being fixed. Specifically, frames are organized into a tree-
structured graphical model named temporal tree via temporal
coherent probabilistic clustering, where visually and tempo-
rally consistent frames are organized together as branches.
To obtain a robust representation of the image, the state-
of-the-art convolutional neural network (CNN) is utilized to
extract features from the foreground region. In each branch of
the temporal tree, a foreground component can be trained by
fitting a transductive SVM classifier over the CNN descriptors
by jointly maximizing the margin of the labeled frames and
the unlabeled ones. Eventually, these two steps iterate until
convergence. In practice, the algorithm terminates if the update
of the foreground masks of the unlabeled frames is ∼2%.
The procedure of the proposed algorithm is summarized
in Algorithm 1. The details about the temporal-coherent video
segmentation and transductive learning of model parameters
will be elaborated in Sections IV and V, respectively.

IV. TEMPORAL COHERENT VIDEO SEGMENTATION

Given the foreground model, the proposed temporal
coherent video segmentation algorithm computes the opti-
mal segmentations of the frames by assembling segmenta-
tion hypotheses generated by a temporal coherent parametric



WANG et al.: TRANSDUCTIVE VIDEO SEGMENTATION ON TREE-STRUCTURED MODEL 995

Fig. 1. Framework of the proposed multicomponent video segmentation algorithm. It consists of two steps: temporal-coherent video segmentation and
transductive learning of model parameters. The first step forms the optimal foreground masks of the unlabeled frames, given the foreground model. The second
step groups the frames into multiple components, and estimates the hyperparameter of each component by fitting a transductive SVM classifier over the
temporal tree.

min-cut algorithm. In addition, the segmentation hypotheses
are weighted by an energy function, which measures fidelity of
the hypotheses with respect to the foreground model and the
segmentation quality based on the low-level image features.
We first introduce the generation of the segmentation hypothe-
ses in Section IV-A and then present the energy function
in Section IV-B.

A. Temporal Coherent Parametric Min-Cut

A parametric min-cut algorithm [26] has been used for
video segmentation by many approaches [6], [24]. However,
to generate more effective segments for the frames in a video
sequence, a temporal coherent parametric min-cut algorithm
is devised, which preserves the motion consistency in the
segmentation.

Specifically, an image I is represented by a graph
G = (V, E), where V is the set of pixels and E is the
set of edges that link neighboring pixels. Upon this graph,
a set of foreground seeds V f ∈ V and background seeds
Vb ∈ V are sampled from the foreground and background
regions, respectively. Finally, a segmentation hypothesis can
be computed by optimizing the following function through
constrained parametric min-cut (CPMC):

min
h

∑

u∈V
Dφ(h(u)) +

∑

(u,v)∈E
V (h(u), h(v)) (1)

where Dφ is the unary term parameterized by φ, and V is the
pairwise term that penalizes the assignment of different labels
to neighboring pixels.

The unary term in (1) is defined as

Dφ(h(u)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞, if h(u) = 1, u ∈ Vb

∞, if h(u) = 0, u ∈ V f

0, if h(u) = 1, u /∈ Vb

f (h(u)) + φ, if h(u) = 0, u /∈ V f .

(2)

The first two cases in (2) ensure that the labels of the seed
nodes are fixed. The last case in (2) is a foreground bias,
which consists of a pixel-dependent function f (h(u)) and a
uniform offset φ that controls the scale of the foreground
region. The larger the φ is, the smaller the foreground region
will be. Specifically, f (h(u)) is the similarity of the current
pixel with the foreground seeds, which is more effective if
the foreground object has distinctive color with respect to the
background. The technical details about the CPMC algorithm
can be found in [26].

The binary term encourages the labeling of the neighboring
pixels to be spatially and temporally homogeneous, which is
defined as

V (h(u), h(v)) =
{

0, if h(u) = h(v)

g(u, v), if h(u) �= h(v)
(3)
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Algorithm 1 Multicomponent Transductive Video Segmentation Algorithm

Input: Frames {It }N
t=1, masks of the labeled frames X L = {xi |i ∈ πL}

Output: Masks of the unlabeled frames XU = {xi |i ∈ πU }

# Initialization;
Train an inductive SVM classifier (w, b) using X L ;
while unconverged do

# Temporal coherent video segmentation;
for each unlabeled frame t in XU do

Generate segmentation hypotheses Ht = {ht
i }|Ht |

i=1 via parametric min-cut;
for each hypothesis i do

Compute the discriminant term R(ht
i |It , w, b) based on the foreground model;

Compute the prior term P(ht
i |It ) based on the low-level image features;

Compute the weight of the hypothesis β t
i ;

end
Compute soft segmentation x ′

t = ∑|Ht |
i=1 β t

i ht
i via Monte Carlo approximation;

Threshold x ′
t to generate the optimal segmentation x ′

t ;
end

# Transductive learning of model parameters;
for labeled frames followed by unlabeled frames do

Randomly pick a frame;
Compute the assignment probability p of the chosen frame with the active nodes;
Add the chosen frame as the child of an active node by drawing p;
Train transductive SVM classifiers;

end
Collect branches from the temporal tree and re-estimate the parameters;

end

Fig. 2. (a) Input frame. (b) Optical flow field. (c) Spatial boundary. (d) Spatiotemporal boundary. (e) Segmentation hypothesis computed from spatial
boundary. (f) Segmentation hypothesis computed from spatiotemporal boundary.

where

g(u, v) = exp

{
−max(r(u), r(v))

σ 2

}
. (4)

In (4), r(u) is the boundary strength of pixel u, and σ is the
boundary sharpness parameter controlling the smoothness of
the pairwise term. The boundary strength is computed by the
generalized boundary detection [27] over the original frame
and the optical flow field, because pixels with strong texture
boundary or motion boundary are likely to be in the same
object. As shown in Fig. 2, the moving object can be well
captured, when the motion cues are considered.

In practice, we randomly sample φ and σ from [0, 1]
to produce segmentation hypotheses of various scales,

and 200 segmentation hypotheses are generated for each
frame, which generally cover the foreground object.

B. Energy Function of Segmentation Hypotheses

An energy function is devised to evaluate the segmentation
hypothesis h, which is defined as

E(h|I,w, b) = R(h|I,w, b) + P(h|I ) (5)

where w and b are the parameters of the foreground model.
The energy function is comprised of two terms: the dis-
criminant term R(h|I,w, b) and the prior term P(h|I ). The
discriminant term measures the resemblance of the foreground
region in h with the foreground model, while the prior
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Fig. 3. CNN is composed of the five convolutional layers and two fully connected layers.

term evaluates the quality of the segmentation based on the
low-level image features.

To be specific, the discriminant term is defined as

R(h|I,w, b) = w�c + b (6)

where c ∈ R
d is the d-dimensional vector encoding the

visual feature of the foreground region in h. Here, the
foreground model is represented by a linear discriminative
function, which is parameterized by w ∈ R

d and b ∈ R.
To obtain a robust representation of image features, R-CNN
descriptor [28] is adopted to encode the visual appearance of
the foreground region in the segmentation hypothesis. To be
concrete, the topology of the CNN structure is shown in Fig. 3,
which consists of five convolutional layers and two fully
connected layers. The first convolutional layer convolutes the
227 × 227 × 3 rescaled image patch with 96 kernels of
size 11 × 11 × 3 at a stride of 4 pixels. Then, the second
convolutional layer filters the output of the first layer with
256 kernels of size 5 × 5 × 96. In the same way, the third and
the fourth convolutional layers both have 384 kernels of size
3 × 3 × 256 and 3 × 3 × 384, respectively. Finally, the fifth
convolutional layer has 256 kernels of size 3 × 3 × 384, and
each of the two fully connected layers has 4096 units, which
is the dimension of the final R-CNN descriptor.

The prior term P(h|I ) measures the quality of the segmen-
tation hypothesis h based on the low-level image features,
including the color distribution, the boundary strength, and
the visual saliency, which is defined as

P(h|I ) = α1‖hist(h|I ) − hist(1 − h|I )‖1

+ α2 B(h|I ) + α3S(h|I ). (7)

The first term in Eq. (7) measures the divergence of the
foreground region and the background region of h in color
distribution, where hist(h|I ) is the color histogram of the fore-
ground pixels and hist(1 − h|I ) is the one of the background
pixels in h. The second term B(h|I ) measures the mean
boundary strength of the foreground region, which can be
computed by averaging the pixelwise boundary strength r(u)
in (4) along the boundary of h. The basic intuition is
that, for a good segmentation hypothesis, the foreground
and the background should be separated by strong object
boundaries, which have large boundary strength. Finally, the

third term S(h|I ) measures the visual saliency [29] of
the foreground region in h, because the foreground object
is supposed to be salient compared with the background
region. In addition, (α1, α2, and α3) are the weights of the
foreground/background divergence, the boundary strength, and
the visual saliency, respectively.

Up to now, we have a collection of segmentation hypotheses
H = {hi }|H|

i=1 sampled from the segmentation space X based on
the visual and temporal constraints, and an energy function to
measure the confidence of each hypothesis. With this sample-
based representation, we leverage the sequential Monte Carlo
approximation to estimate the optimal segmentation of the
frame. Naturally, the segmentation hypotheses act as particles
in the Monte Carlo framework, and the normalized weight of
the i th sample is

βi = exp(E(hi |I,w, b))
∑|H|

i=1 exp(E(hi |I,w, b))
. (8)

Therefore, the maximum-a-posteriori estimation of the seg-
mentation is approximated by the weighted combination of
the hypotheses

x ′ =
|H|∑

i=1

βi hi . (9)

As x ′ is real-valued, the binary segmentation of the frame x
can be obtained by thresholding x ′

x(u) =
{

1, if x ′(u) ≥ T

0, if x ′(u) < T
(10)

where T is the threshold, which can be determined by min-
imizing the prediction error over the labeled frames. It is
worth mentioning that to ensure the accuracy of the proposed
algorithm, the segmentation hypotheses will be regenerated by
resampling the foreground seeds in the predicted foreground
region during the update of the model parameters.

V. TRANSDUCTIVE LEARNING ON THE TEMPORAL TREES

Given the video sequence with some labeled frames, the
initial foreground model is learned from the labeled frames by
training an inductive SVM classifier. To be concrete, positive
features are extracted from the foreground region in the labeled
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Fig. 4. Illustration of the construction of the temporal tree (D = 3). Red frames: inactive nodes. Green frames: active nodes. The rest of the frames are
added to the temporal tree by sampling (11). Each branch in the tree corresponds to a foreground component, whose parameters can be determined by training
a transductive SVM classifier.

frames, and negative features are computed from patches that
are randomly sampled from the background region of the
labeled frames. Consequently, a one-component foreground
model can be obtained by training a traditional linear SVM
classifier over the labeled features.

On the other hand, provided that the foreground masks
of the unlabeled frames are available, the parameters of the
multicomponent foreground model can be learned by the
proposed transductive learning algorithm, using the labeled
frames and the unlabeled frames to acquire stronger gen-
eralization capability. In general, the algorithm consists of
two steps: 1) temporal coherent probabilistic clustering and
2) transductive learning of SVM classifiers.

A. Probabilistic Clustering on the Temporal Tree

Given the estimated foreground masks of the unlabeled
frames, as illustrated in Fig. 4, a temporal tree is established
by organizing the frames into a graphical structure based on
their visual similarity and temporal coherence. Each node
in the temporal tree is a frame with a specific foreground
mask, and each branch, consisting of visually similar and
temporally coherent frames, defines a foreground component
in the model. To constrain the complexity of the tree, we
define the maximum number of children for a node to be D.
Consequently, a node is active if the number of its children is
smaller than D; otherwise, it is inactive.

The labeled frames will be added to the temporal tree before
the unlabeled frames in order to provide a good initialization.
Let K be the number of active nodes in the current tree,
and Fk be the frame index of the kth active node. We uniformly
sample one frame from the rest of the frames, and append it
to one of the active nodes by drawing

pk ∝ 1

1 + exp
( |F−Fk |−Q

τ

) exp(w�
k c + bk), 1 ≤ k ≤ K

(11)

where F is the frame index of the chosen frame, (wk, bk) are
the parameters of the kth component, Q is the maximum frame
interval, and τ is the scaling factor. Here, pk is the probability
that the chosen frame is added as the child of the kth active
node. The first part in (11), that is

1

1 + exp
( |F−Fk |−Q

τ

) (12)

measures the temporal coherence of two frames. A symmetric
logistic function is utilized to penalize the interval of two
frames, which is shown in Fig. 5. Equation (12) rapidly
increases to 1 when the frame interval is smaller than the
threshold Q, and decreases to 0 otherwise. The transition width
is determined by the scaling parameter τ , which is set to 0.5
in experiments. Therefore, a pair of parent–child nodes in the
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Fig. 5. Demonstration of the symmetric logistic function, where Q = 10,
Fk = 25, and τ = 0.5. It rapidly increases 1 when the frame interval is
smaller than the threshold, and decreases to 0 otherwise.

tree are required to be temporal neighbors to preserve temporal
consistency of the components. The second part in (11),
i.e., exp(w�

k c + bk), is the exponent of the discriminant score
by the kth foreground component. The larger the discriminant
score is, the more likely that the frame is assigned to that
component.

In this way, all the frames can be added to the temporal tree
one by one, and the final components can be determined by
repeatedly collecting the longest branches from the temporal
tree. Finally, the component parameters will be retrained with
the frames in each component.

B. Transductive SVM Classifier

The frames in a branch that contain both labeled and
unlabeled ones compose a foreground component, and an
SVM classifier is then trained to characterize the visual
appearance of the component. Inductive approaches use only
the labeled samples to train the classifier, which may result in
overfitting because the labeled samples are scarce. However,
as the labeled frames and the unlabeled frames in the same
video sequence are highly correlated, maximizing the margin
in the presence of the unlabeled frames can improve the
generalization capability of the classifier based on the cluster
assumption [30], which is shown in Fig. 6. Therefore, we take
advantage of both labeled and unlabeled frames to train the
classifier in a transductive manner.

The proposed algorithm of learning transductive SVM clas-
sifiers is shown in Fig. 7. Positive and negative features are
both generated from the labeled frames, whereas features
are generated from the unlabeled samples. To be concrete,
the positive features are computed from the (ground truth)
foreground regions in the labeled frames. The negative features
are randomly sampled by a pool of rectangular patches from
the labeled frames whose intersection-over-union (IoU) ratio
with the foreground must be smaller than 0.5. In experiments,
ten negative patches are sampled from each labeled frame.
On the other hand, the unlabeled features are computed from

Fig. 6. Inductive learning versus transductive learning. The green crosses,
red bars, and blue triangles represent the positive, negative, and unlabeled
samples, respectively. Solid line: inductive separating hyperplane computed
from the labeled samples. Dashed line: transductive separating hyperplane,
which has a stronger generalization capability by incorporating the unlabeled
samples.

Fig. 7. Learning of transductive SVM classifier. The positive features are
extracted from the foreground region of the labeled frames. The negative
features are extracted from the background region of the labeled frames. The
unlabeled features are extracted from the foreground region of the unlabeled
frames.

the estimated foreground regions in the unlabeled frames,
so they can potentially be both positive and negative.

Let {ci }M
i=1 be the features extracted from the frames, where

M is the number of features. Without loss of generality, we
assume that the first L features are labeled, whose labels are
denoted by {yi }L

i=1, where yi ∈ {−1,+1} for i = 1, . . . , L.
Consequently, the parameters of the transductive SVM classi-
fier can be computed by

min
w,b,{yi }M

i=L+1

1

2
‖w‖2 + C

M∑

i=1

εi

s.t.

{
yi (w

�ci + b) ≥ 1 − εi , i = 1, . . . , M

εi ≥ 0, i = 1, . . . , M.
(13)

Obviously, (13) is not convex, and many approximation
solutions [31] have been proposed to solve this combinatorial
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optimization problem. However, these methods generally suf-
fer from high computational complexity and are susceptible
to local optima. To obtain an efficient solution, we adopt the
convex relaxation formulation [32] by approximating the non-
convex optimization problem by its dual problem. Compared
with semidefinite relaxation, this formulation provides a tighter
convex relaxation and also has fewer free parameters. The
solution is briefly described as follows, and more details can
be found in [32].

Equation (13) can be transformed into the following form
according to the Lagrange Theorem:

min
η,{yi }M

i=L+1,δ,λ
C

M∑

i=1

δ2
i

+ 1

2
(1 + η − δ + λy)�DK −1D(1 + η − δ + λy)

s.t. ηi ≥ 0, δi ≥ 0, for i = 1, . . . , M (14)

where η ∈ R
M , δ ∈ R

M , and λ are dual variables. K is
the kernel matrix, where Ki j = 〈ci , c j 〉 in our case. D is
a diagonal matrix whose diagonal entries are {yi}M

i=1. The
solution of (14) can be acquired by solving

max
γ ,t,α,β

−1

4
t +

M∑

i=1

γi − ε(α + β)

s.t.

[
A − D(γ ◦ b) γ ◦ a − (α − β)c

(γ ◦ a − (α − β)c)� t

]
≥ 0

0 ≤ γi ≤ C, i = 1, . . . , M

α ≥ 0, β ≥ 0 (15)

where

a = (y1, . . . , yL , 0M−L+1) ∈ R
M+1 (16)

b = (0L, 1M−L , 0) ∈ R
M+1 (17)

c =
(

1

L
1L,− 1

M − L
1M−L, 0

)
∈ R

M+1 (18)

A = (IM , 1M )�K−1(IM , 1M )� (19)

ε ≥ 0 is a constant, and ◦ represents the elementwise product.
Finally, (15) is a semidefinite programming problem, which
can be solved effectively, e.g., by the interior-point method.

C. Model Validation and Convergence

The proposed multicomponent transductive learning algo-
rithm prevents the solution to be stuck in local extrema via
Bayesian sampling in the construction of the temporal tree.
However, this scheme brings a side effect that the temporal tree
may be falsely structured by grouping the visually dissimilar
frames into the same branch. To handle this situation, model
validation will be performed after a new model is learned, and
the new model will be accepted only if it passes the model
validation; otherwise, the temporal tree is rebuilt.

To be concrete, the model validation is conducted with the
labeled frames. Let the segmentation result of the labeled
frames by the new model be denoted by {xt }L

t=1, and the

ground truth foreground masks be denoted by {xGT
t }L

t=1.

The segmentation accuracy is measured by the IoU ratio,
which is defined as

IoU = 1

L

L∑

t=1

‖xt ∩ x GT
t ‖0

‖xt ∪ x GT
t ‖0

(20)

where ‖x‖0 is the l0 norm of matrix x , i.e., the number
of nonzero elements in x . Naturally, the new model can be
considered as effective only if it is capable of segmenting
the labeled frames correctly. In practice, the criterion of
model validation is that the IoU of the labeled frames is
smaller than 0.3.

On the other hand, the criteria of convergence of the
proposed algorithm are based on the increment of the average
IoU of the labeled frames. In practice, the algorithm is
considered to be converged if the increment is ∼0.01.

VI. EXPERIMENTS

The experiments are conducted on the SegTrack data
set [33], which contains video sequences of large (cheetah and
monkeydog), medium (girl and parachute), and small (penguin
and birdfall) variations in visual appearance.

A. Comparison With State-of-the-Art Methods

As far as we know, there are few studies on video seg-
mentation that exactly share the same setting as the proposed
method in which a key frame with the ground truth foreground
mask is available every few frames. Therefore, we compare
the performance of the proposed method with conventional
video segmentation methods, including the following methods.
Unsupervised Methods:

1) hierarchical graph-based segmentation [9];
2) key segments for video segmentation (KeySeg) [34];
3) fast object segmentation (FOS) [35];
4) primary object regions [1];
5) saliency-aware geodesic segmentation [20];
6) tracking FGSs [24];
7) MWCs [2];
8) salient segment chain composition [36];
9) SeamSeg [3];

10) shortest path algorithm [4];
11) region-based particle filter [12].

Supervised Methods:
1) adaptive fragments-based tracking [37];
2) motion coherent tracking [33];
3) tree-structured graphical models [38];
4) video SnapCut (SnapCut) [7].

The unsupervised methods do not require the ground truth
foreground masks, whereas the supervised methods require
the ground truth foreground mask of the first frame for each
video sequence for initialization. In particular, SnapCut is
implemented in Adobe After Effects as “Roto Brush Tool,”
and requires manual reinitialization 2∼3 times after losing the
target for each video.

The parameters of the proposed method are configured as
follows. A key frame with the ground truth foreground mask
will be available in every ten frames, and the accuracy is mea-
sured only on the unlabeled frames. The weights (α1, α2, α2)
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Fig. 8. Segmentation result of birdfall and girl sequences in the SegTrack data set.

TABLE I

MPE ON THE SEGTRACK DATA SET

of the prior term in (7) are determined empirically. Specifi-
cally, since we consider the distinctiveness of the foreground
region and the boundary strength more important in defining
an object, we set α1 = 0.4, α2 = 0.4, and α3 = 0.2. Since
most of the test sequences are short, we set D = 3 to prevent
the branches not having enough frames to train a valid model.

Since most of the approaches listed above report their results
by the mean pixel error (MPE), i.e., the average number of
wrongly labeled pixels in each frame, we also use this metric
to evaluate the proposed method. The result is shown in Table I
with some examples shown in Figs. 8 and 9. In addition, the
MPE of the segmentation hypotheses generated by CPMC is
also listed, which is denoted by hypo.

Compared with the segmentation hypotheses, the proposed
method effectively assembles coarse hypotheses into accurate

TABLE II

MPE RANKINGS ON THE SEGTRACK DATA SET

segmentations based on the multicomponent foreground model
and the temporal coherent video segmentation algorithm.
However, it is hard to compare the overall performance of
the proposed method with other methods based on Table I,
because simply averaging the MPE over all sequence is
meaningless since MPE is dependent on the size of the
videos and the size of the foreground objects. Therefore,
we compute the MPE rankings of these methods for the
first five sequences, which is shown in Table II, since many
methods do not report their performance of the penguin
sequence.

It is clearly shown in Table II that the proposed method
obtains the highest average rank among all the methods,
which validates the effectiveness of the proposed method.
The proposed method achieves top five in all test sequences,
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Fig. 9. Segmentation result of parachute and monkeydog sequences in the SegTrack data set.

demonstrating that it is consistent and robust for different types
of videos.

Moreover, we elaborately evaluate the impact of several
aspects to the performance of the proposed method, including
the features, the clustering schemes, the key frame interval,
and the convergence rate. Since the drawback of the MPE
metric has been mentioned above, we use the IoU ratio,
which is defined in (20), to measure of the performance of
segmentation in the following evaluation.

B. Impact of Image Feature

Although the R-CNN descriptor is used as the feature
of the foreground region in the experiments, we also test
the performance of the proposed method, which incorporates
other features, including red-green-blue (RGB) histogram and
histogram of oriented gradients (HOG). For the RGB his-
togram, a codebook of 256 codewords is learned over the
3D RGB vectors of the pixels in a video sequence, and
the foreground region is represented by the 256D codeword
histogram accordingly. For the HOG, the foreground region
is resized to the average size of the object in the labeled
frames and then an HOG descriptor can be computed. The
segmentation accuracy of the RGB histogram, HOG, and R-
CNN is shown in Fig. 10(a).

In general, two conclusions can be drawn from Fig. 10(a).
First, the proposed method is quite robust with different
features, because the IoU does not change significantly for
different features. Second, among the three features, R-CNN
is the most discriminant one due to the strong representation
capability of deep neural networks, and the RGB histogram has
the worse performance because it does not depict the shape
and texture of the object, which are important cues for video
segmentation.

C. Temporal Tree Versus k-Means

To validate the effectiveness of the proposed tempo-
ral tree algorithm, we compare it with the widely used

Fig. 10. (a) Video segmentation performance of different features. (b) Video
segmentation performance of temporal tree and k-means.

k-means algorithm. Specifically, for the k-means, all the
frames are clustered into three groups, each of which cor-
responds to a foreground component. The result is shown in
Fig. 10(b), where temporal tree achieves better performance
than k-means, because it regularizes the relation of parent–
child pairs with temporal constraint to avoid outliers.
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TABLE III

MPE ON THE ADDITIONAL SEQUENCES IN THE SEGTRACK-V2 DATA SET

TABLE IV

MPE ON THE SFO DATA SET

D. Impact of Key Frame Interval

Since the number of labeled frames is also important to the
performance of the proposed method, we further evaluate the
impact of the key frame interval to the segmentation accuracy.
Specifically, we evaluate the proposed method with a key
frame provided in every 5, 10, and 15 frames, and the result
is shown in Fig. 11(a). As expected, the performance of the
proposed method improves with the number of labeled frames,
and the gain is trivial when the key frame interval is smaller
than 10, which we use for the experiment.

E. Convergence Rate

Furthermore, we also demonstrate the evolution of the
proposed model in each iteration, which is shown in Fig. 11(b).
Basically, the algorithm converges after five iterations for
the test sequences. The initial model after the first iteration
is based on inductive SVM, which is described in Section
V. As a result, the proposed transductive learning model is
advantageous over the inductive one, which can be concluded
by comparing the accuracy of the first iteration and the fifth
iteration.

F. Evaluation on Additional Data Sets

In addition to the original SegTrack data set, we also
evaluate the proposed method on the SegTrack-v2 data set [24]
and the segmented foreground objects (SFOs) data set [39].
Specifically, the SegTrack-v2 data set enhances the original
SegTrack data set with eight additional sequences, and the
SFO data set consists of five video sequences. The proposed
method is compared with FOS, KeySeg, and SnapCut, whose
source codes are publicly available. The MPEs are shown
in Tables III and IV.

The experimental result shows that the proposed method
outperforms FOS, KeySeg, and SnapCut in all additional
sequences in the SegTrack-v2 data set, and achieves the lowest
MPE in three out of five sequences in the SFO data set.

G. Computational Complexity

Finally, the computational complexity of the proposed
method will be discussed. The experiments are conducted on

Fig. 11. (a) Impact of the key frame interval to the accuracy. (b) Segmentation
accuracy after each iteration.

a computer with Intel Xeon E5520 CPU, 4 GB RAM, and
Ubuntu 14.04 LTS operating system, and the algorithm is
implemented with MATLAB. In general, the execution time
of the proposed algorithm varies with the size of the video
and the size of the foreground object. On average, for the
SegTrack data set, it takes about 4 min to process each frame.
In particular, 40% of the runtime is spent on computing
the segmentation hypotheses, 30% of the runtime is spent
on training the transductive SVM classifiers, and the other
operations occupy the rest of the 30% runtime altogether.

VII. CONCLUSION

In this paper, a transductive multicomponent video
segmentation algorithm is proposed, which is capable of
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segmenting the object of interest in the frames of the video
clip while preserving the temporal consistency. In particular,
the proposed method uses the multiple foreground model to
capture the variances in visual appearance of the objects.
Moreover, an energy function is introduced to evaluate the
quality of segmentation based on the foreground prior, the low-
level features, and the temporal consistency. To estimate the
parameters of the foreground models, a transductive learning
algorithm is proposed to jointly minimize the prediction error
of the labeled frames and the unlabeled frames. Specifically,
frames are organized into a tree-structured graphical model
named temporal tree, where visually similar and temporally
coherent frames are grouped together as branches. Experi-
mental results show that the proposed method outperforms
many state-of-the-art video segmentation methods in the public
benchmark.
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