
Complementary Contextual Models with FM-index for DNA
Compression

Wenjing Fan∗, Wenrui Dai†, Yong Li∗, and Hongkai Xiong∗

∗Department of Electronic Engineering †Department of Biomedical Informatics
Shanghai Jiao Tong Univ. University of California, San Diego
Shanghai 200240, China CA 92093, USA

{fanwenjing,marsleely,xionghongkai}@sjtu.edu.cn wed004@ucsd.edu

Abstract

Demanding for efficient compression and storage of DNA sequences has been rising with the
rapid growth of DNA sequencing technologies. Existing reference-based algorithms map all
patterns to regions found in the reference sequence, which lead to redundancy of incom-
plete similarity. This paper proposes an efficient reference-based method for DNA sequence
compression that integrates FM-index and complementary context models to improve com-
pression performance. The proposed method introduces FM-index to represent the full-text
matching for exact repeats between the target and reference sequences. For unmatched
symbols, complementary context models are leveraged to make weighted estimation condi-
tioned on variable-order contexts. Reversed reference index is used to guarantee the longest
match of variable-length substrings. Experimental results show that the proposed method
can achieve a 213-fold compression ratio when tested on the first Korean personal genome
sequence data set.

1 Introduction

DNA sequences are large codified messages, from an alphabet of four symbols ’A’,
’C’, ’G’, ’T’. With the development of high-throughput sequencing technologies, DNA
sequences have been widely used in the fields of biology, medicine and diagnostics.
Rapid growth of massive genome databases has posed a challenge on the storage
of sequencing data. However, DNA sequences are highly redundant with the emer-
gence of approximate repeats, especially for those from the same species. Specifically,
there are large quantities of repeat patterns between DNA sequences because most
of the patterns imply biological significance with regular combinations by symbols
’A’,’C’,’G’,’T’. Therefore, the compression of similar sequences is of great impor-
tance for the storage and access of the segments, which leads to the development of
reference-based DNA sequence compression.

Reference-based algorithms have been developed to compress DNA sequences from
similar species. RLZ[1] used the reference sequence as an index to compress other
sequences via the relative Lempel-Ziv algorithm. The following RLZ-based methods
selected an appropriate reference for compressing. However, RLZ is restricted for
applications with arbitrary alphabets. Later, GRS[2] measured the differential rate

The work was supported in part by the NSFC under Grants 61425011, U1201255, 61271218, 61501294, 61501293,
in part by the China Postdoctoral Science Foundation under Grant 2015M581617, and in part by the NSFC under
Grant 61529101.

2017 Data Compression Conference

2375-0359/17 $31.00 © 2017 IEEE

DOI 10.1109/DCC.2017.50

82

2017 Data Compression Conference

2375-0359/17 $31.00 © 2017 IEEE

DOI 10.1109/DCC.2017.50

82

ACGT ATCG

target

reference

ACGT AACG�� �

�� �
Reverse the sequence
and build the index

Have been compressed �ACGT AACGM To be compressed

1 2 3 n n+1
target

reference index

sp1 ep1 ep2 ep3

epnspn

sp3sp2

A A C C G G G G� ⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ � �

reference

match range

location
ACGT AACG�� �

spn+1 > epn+1

longest match

Permutations-allocated
context models

Arithmetic encoder

�
�

Logistic
regression

The first pass

The second pass

Figure 1: The framework of the proposed method. In the first pass, the variable-length
substring is matched and located using the reference index. The remaining unencoded
symbols are compressed by the synthesis of complementary contextual models in the second
pass.

between target and reference sequences without requiring any additional informa-
tion. Huffman coding was adopted to encode their differences. GReEn[3] adapted
the probabilistic model for arithmetic coding based on the distribution of symbols.
In [4], a two-pass compression framework COMPACT was developed to compress
unmatched symbols based on the complementary contextual models. But it would
fail when the sequences were not well aligned. Ferragina and Manzini presented
the self-index algorithm[5] which leveraged the relationship between the Burrows-
Wheeler Transform[6] and the suffix array data structure[7] to achieve efficient sub-
string searching in the space of the stored text. Kuma et al. developed a BWT-based
compression algorithm[8] to support short read alignment. FM-index was utilized in
[9] for compression but it only worked for small matched patterns.

In this paper, we propose an efficient reference-based compression method that
incorporates FM-index into complementary contextual models for improved perfor-
mance. In the first pass, the proposed method can locate the longest match using
the inverse of reference index in an efficient manner. We adopt self-index to compress
and store the reverse index of reference as a reference sequence for compression and
decompression. For unmatched symbol, the complementary contextual models inte-
grate variable length pattern search to further improve the compression performance
in the second pass. Experiments show that the proposed method outperforms the
state-of-the-art in the compression ratio.

The rest of the paper is organized as follows. Section 2 overviews the Burrows-
Wheeler transform (BWT) and suffix array. In Section 3, we propose a reference-based
compression method based on FM-index and complementary contextual models. Sec-
tion 4 provides the experimental results in terms of compression ratio and time cost.
Finally, Section 5 concludes this paper.

8383

2 Background

Given a text T[1...n], which is defined as a string of length n over the alphabet Σ
= {A,C,G,T}, T[i,n] denotes the i-th suffix and T[i,j] denotes the substring of T
determined by i and j. The suffix array, denoted SA[1...n], is defined as the index
number that gives the starting positions of all suffixes of T in lexicographical order.
In other words, SA[i] = j if the suffix T[j,n] is lexicographically the i-th smallest suffix
among all suffixes of T. T# represents a joint string which appends a character #,
lexicographically smaller than any others, at the end of T. The suffix array of a text
with n characters requires nlogn bits of memory in addition to the text, which is not
suitable for large-scale sequences.

The Burrows-Wheeler transform implements a reversible transform, which is called
”block-sorting transform”. Firstly, a string, which has n symbols, is permutated by
shifting n cycles of T#. Then the resulting rotations sort in lexicographic order and
construct a n×n matrix MT . Taking the last column of MT , the resulting string
T bwt(also marked as L) can ”group together” several occurrences of the same charac-
ters, although it has no compression compared with the original. DNA sequences has
a small alphabet of symbols so that it can get a low entropy string T bwt and turn out
to be highly compressible.

Remarkably, the original T can be recovered from T bwt using reverse transform
in linear time. The first column of MT in lexicographic order, written as F, is cor-
responding to L. To find the mapping relationship of the first and the last column
of MT , we transform the expression L[i] = F[j] to j = LF(i). The LF mapping is
computed as follows:

LF (i) = C[s] +Occ(s, i) (1)

Here the symbol s = T bwt[i], C[s] represents the total number of characters which
are alphabetically smaller than s, Occ(s,i) denotes the number of occurrences of char-
acter s in the prefix T bwt[1, i]. Figure 2 shows an example of Burrows-Wheeler trans-
form for the string T = cattacaggac and LF mapping results. We can get LF(8) =
C[#] + Occ(#,8) = 1, thus T[n] = #. T[n − 1] = T bwt[LF (8)] = c. Consequently
T[1, n] can be recovered by backward recovery.

3 Complementary contextual models with FM-index

Compressing the similar sequences with reference sequence efficiently reduces the stor-
age space. The compression process of FM-context needs two steps. First, the reverse
of the reference index should be constructed based on Burrows-Wheeler transform.
The index is the only auxiliary structure used in the compression and decompression.
By using the index for variable-length search, the longest matching substring can
be found and located. The algorithm is independent on the alignments between se-
quences. If the matched length satisfies the minimum benchmark, it is encoded with
a triploid. Later, the remaining uncoded symbols are compressed by the synthesis
of complementary contextual models, which can encode symbols not in the reference
alphabet.

8484

c a t t a c a g g a c #
a t t a c a g g a c # c
t t a c a g g a c # c a
t a c a g g a c # c a t
a c a g g a c # c a t t
c a g g a c # c a t t a
a g g a c # c a t t a c
g g a c # c a t t a c a
g a c # c a t t a c a g
a c # c a t t a c a g g
c # c a t t a c a g g a
c a t t a c a g g a c

i F L SA LF

1 # c a t t a c a g g a c 12 6

2 a c # c a t t a c a g g 10 9

3 a c a g g a c # c a t t 5 11

4 a g g a c # c a t t a c 7 7

5 a t t a c a g g a c # c 2 8

6 c # c a t t a c a g g a 11 2

7 c a g g a c # c a t t a 6 3

8 c a t t a c a g g a c # 1 1

9 g a c # c a t t a c a g 9 10

10 g g a c # c a t t a c a 8 4

11 t a c a g g a c # c a t 4 12

12 t t a c a g g a c # c a 3 5

Figure 2: Example of Burrows-Wheeler transform process for the string T = cattacaggac.
T bwt(L) = cgtccaa#gata obtained from the right matrix MT . F denotes the first column of
MT , sorted by lexicographical order. LF gives the mapping relationship between L and F.

3.1 Variable-length search using FM-index

The FM-index is a compressed self-index based on Burrows-Wheeler transform, be-
cause of its efficient searching for occurrences of a specified length pattern P as a sub-
string of the text T. Text T needs to be preprocessed in advance whereas pattern P is
provided according to the query requirements. Because of its smaller space occupancy
and shorter time for query than other indexes, FM-index is used for variable-length
matching between sequences.

Recall that all rows are sorted in lexicographical order in MT . Given a pattern P,
all occurrences of P in T have a corresponding row in MT within the range (sp, ep),
with an initial state (1,n). The FM-index consists of the data structure required to
compute C[·], Occ(·), and LF(·) according to Eq.(1). C[·] is directly stored in |Σ|logn
bits. To compute Occ(s,i) in a constant time, the FM-index stores a compressed
representation of T bwt together with some auxiliary information. LF(i) is computed
provided that we have access to T bwt[·]. We use the backward searching to build
the full-text index to find the repeated pattern between two sequences, where one
is preprocessed as reference, and the other provides variable-length patterns in real-
time. Algorithm 1 provides the detailed variable-length match procedures. It starts
with the reverse index of the reference sequence. The symbol s for variable-length
match is obtained in order from the target sequence. The parameter sp points to the
first row of the BWT matrix MT prefixed by P[1,i], while ep points to the last row of
MT prefixed by P[1,i]. As the algorithm performs last-to-first mapping, the number
of pattern occurrences is determined by ep-sp+1. The search stops until finding
the longest match. Figure 2 provides an example for the sequence T = cattacaggac,
which is the reverse of supposed reference sequence S = caggacattac. Suppose we
have searched for the longest match from the start position of T with predetermined

8585

range (2,3) of the rows corresponding to the prefix ac. We can now determine the
rows in MT that match gac by performing sp = C[g] + Occ(g,1) = 9 and ep = C[g]
+ Occ(g,3) + 1 = 9. Thus the rows prefixed by gac are bounded within (9,9). If
next symbol is g, we can find matches, while other symbols are not matched. The
result in the above example determines the number of the substring cag in T and
finds the longest substring until sp > ep. Thus, the running time of finding matches
is dominated by the cost of the 2i computations of the value Occ(·). It should be
noted that every row in MT is prefixed by some suffixes of T. For example, the ninth
row of MT is prefixed by the sequence suffix T[9,11] = gac in Figure 2. When sp ≤
ep, only the first matched sequence needs to be specified. When i = sp, Algothrim 1
offers a way to find the starting position of the substring prefixed in the i-th row of
MT . We use the backward searching for text T and find the substring position by LF
mapping until the searching row is marked, as described in Section 2.

To improve compression performance, we introduce a parameterminlen to indicate
minimum matched length to encode. How to choose the value of this parameter will
be discussed in Figure 3. We represent each match with a triploid 〈f,P,L〉 where f is
one-bit matching flag indicating whether the matched length can obtain lower bound
for compression, L is the matching length and P is the matching offset. (L - minlen)
is encoded instead of L to get a shorter bit code. Since the estimated probabilities for
L and P decrease with the growth of their values, matched length L and the offset
P are encoded using Gamma coding[10]. Gamma coding uses (2�log2n�+1) bits for
input n as described in Algorithm 1.

3.2 Complementary contextual models

The matched triploids from the first pass can be encoded with binary coding. Subse-
quently, the remaining uncoded symbols are encoded with complementary contextual
models in the second pass. Complementary contextual models are able to accurately
estimate a weight probability for prediction conditioned on certain prior knowledge
of the symbol/bit to be encoded.

To exploiting varying correlations within DNA sequences, a variety of contextual
models are combined, including non-sequential models, sequential models and other
available models. We take third order sequential and non-sequential models as ex-
amples. A third order sequential contextual model for a binary sequence uses the
previous three bits as contexts, while third order non-sequential contextual model
utilizes the bit yt−3 and yt−1 to generate the context for yt. In some cases, however,
non-sequential models can give a higher probability and result in a better compression
performance. Thus, we adaptively combine these context models for complementary.
In practice, maximum order needs to be specified for finite contexts.

Let us denote Mc the number of context models adopted for prediction. Logistic
regression model is leveraged to estimate the most probable probability P(yj|tMc

1) to
encode the next symbol yj. The estimated probability P(yj|tMc

1) can be obtained by
weighting all the context models. Let wi represent the weight of the i-th model, we
get

8686

Algorithm 1 Variable-length searching and match encoding
Input: To-be-compressed string S and reverse index of reference sequence R
Output: encoding triploid 〈f,P,L〉; encoded binary bits
1: sp ← 0; ep ← lenR; i ← 0;
2: while 0 ≤ sp ≤ ep do
3: s ← S[i]
4: sp ← C[s] + Occ(s,sp-1);
5: ep ← C[s] + Occ(s,ep) + 1;
6: i ← i+1;
7: end while
8: L ← i
9: if L > Lm then
10: t ← 0; k ← sp;
11: while row k is not marked do
12: k ← LF[k];
13: t ← t+1;
14: end while
15: P = Pos(k) + t;
16: end if
17: write(flag,1), encode L and P using gamma coding
18: if n = 1 then
19: write(0,1);
20: end if
21: k ← �log2(n)�;
22: write(1,k); write(0,1); Encode n-2k using binary code

P (yj|tMc
1) = g(

∑

i

witi), g(x) =
1

1 + e−x
(2)

As a result, each symbol will be encoded by an arithmetic encoder.

4 Experiment

The compression method is supposed to be given the same index of the reverse ref-
erence sequence between the encoder and decoder. The compression ratio is closely
related to the similarity of the the reference and target sequences. We compare the
proposed method FM-context with three state-of-the-art DNA compression methods:
GRS[5], GReEn[3] and Compact[4] over arbitrary alphabets. The experiments are
conducted on a computer with Intel(R) Core(TM) 3.2GHz CPU and 32GB of RAM,
with C++ performed.

Table 1 shows compression results of GReEn, Compact and FM-context for two
different human genome assemblies(KOREF 20090131 and YH) with reference se-
quence hg18(NCBI36). KOREF 20090131 and YH are two genome databases gener-
ated by different organizations. YH is the first diploid genome sequence of a Han Chi-
nese, a representative of Asian population, completed by Beijing Genomics Institude

8787

Table 1: Compression of KOREF2009 0131 and YH using hg18 as reference. ’T’ refers to
”Total”. For ease of comparison, we transforms all characters to lowercase and maps all
unknown nucleotides to ’n’ before compression. After this transformation, all sequences are
composed only of characters from the alphabet{a,c,g,t,n}.

KOREF 20090131 YH
Chr Size GReEn Compact Ours GReEn Compact Ours

Bytes MB Secs MB Secs MB Secs MB MB MB
1 247 249 719 0.81 14 1.31 411 1.02 1185 0.67 1.09 0.90
2 242 951 149 0.90 13 1.30 391 1.01 860 0.74 1.19 0.93
3 199 501 827 0.75 12 1.08 304 0.86 767 0.64 1.02 0.80
4 191 273 063 0.84 11 1.24 392 0.92 1071 0.66 1.10 0.85
5 180 857 866 0.69 10 0.96 306 0.73 840 0.55 0.85 0.68
6 170 899 992 0.69 10 1.09 544 0.79 867 0.58 0.96 0.75
7 158 821 424 0.64 9 0.96 302 0.72 753 0.51 0.81 0.65
8 146 274 826 0.57 9 0.88 279 0.64 567 0.47 0.78 0.60
9 140 273 252 0.44 8 0.75 224 0.59 548 0.36 0.62 0.50
10 135 374 737 0.54 8 0.80 228 0.63 642 0.43 0.70 0.56
11 134 452 384 0.52 8 0.83 257 0.62 632 0.45 0.71 0.57
12 132 349 534 0.54 7 0.75 206 0.60 513 0.43 0.66 0.54
13 114 142 980 0.35 6 0.57 168 0.45 437 0.32 0.57 0.44
14 106 368 585 0.31 6 0.50 144 0.40 501 0.27 0.45 0.37
15 100 338 915 0.27 6 0.44 123 0.37 340 0.24 0.42 0.34
16 88 827 254 0.30 5 0.51 169 0.40 418 0.26 0.47 0.36
17 78 774 742 0.29 4 0.44 135 0.34 300 0.24 0.38 0.31
18 76 117 153 0.31 4 0.44 128 0.34 319 0.25 0.40 0.32
19 63 811 651 0.21 4 0.36 161 0.28 223 0.17 0.30 0.24
20 62 435 964 0.23 4 0.35 107 0.26 248 0.19 0.32 0.25
21 46 944 323 0.14 3 0.27 81 0.19 172 0.12 0.21 0.16
22 49 691 432 0.14 3 0.24 93 0.18 193 0.11 0.20 0.16
X 154 913 754 0.55 9 0.61 257 0.51 628 0.19 0.28 0.28
Y 57 772 954 0.07 3 0.19 156 0.10 262 0.02 0.03 0.02
T 3 080 419 480 11.08 176 16.88 5566 12.95 13286 8.84 14.53 11.58

at ShenZhen. KOREF 20090131 is the first individual Korean genome released in De-
cember 2008. The alphabets of these two databases are different. KOREF 20090131
consists of 21 symbols such as ’A’,’C’,’G’,’T’,’N’,’M’ and etc, while all bases in YH
are confined to ’A’,’C’,’G’,’T’,’N’ by using only ’N’ to represent uncertain bases. We
evaluated the proposed method with maximum order m = 16 and minimum matched
length Lm(KOREF 20090131) = 25, Lm(YH) = 30. Thus, we transformed all char-
acters to lowercase and mapped all unknown nucleotides to ’n’ before compression
for fair comparison. The reference sequence hg18 is preprocessed to obtain the re-
verse index. As shown in Table 1, the proposed method significantly improves the
compression performance of COMPACT, although GReEn seems to show a superior
performance. It is mainly rooted from the fact that GReEn relies on the probability
distribution of characters in the target sequence. The compression performance of
GReEn is degraded with no elimination of the effect of character case as shown in
Table 3.

Table 2 shows the compression performance for the TAIR9 version of the Ara-

8888

Table 2: Arabidopsis thaliana genome: compression of TAIR9 using TAIR8 as reference.
The |C| column indicates the size of the alphabet of the target sequence.

Chr |C| Size GRS GReEn Our method
Bytes Bytes Secs Bytes Secs Bytes Secs

1 11 30 427 671 715 7 1551 10 591 142
2 11 19 698 289 385 4 937 6 354 94
3 10 23 459 830 2989 6 1097 7 499 86
4 7 18 585 056 1951 5 2356 5 1580 89
5 5 26 975 502 604 6 618 8 276 109

Total − 119 146 348 6644 28 6559 36 3300 520

���� ����
���� ����

���� ���	
���
 ����

��
�

�

���

����

����

����

�

������

������

������

������

�������

�������

�������

�������

�� �� �� �� 	� 	�
�
� ��

Size (Bytes) Size I (Bytes) Size II (Bytes) Time (Sec)

Figure 3: The relationship between the compression performance and the minimum matched
length. Size represents the compressed size in total. Size I is from the first pass, and Size
II is from the second pass.

bidopsis thaliana genome using the TAIR8 version as reference. The original sequence
alphabets have been preserved. In general, FM-context generates a compressed file
with 3300 bytes, while GReEn requires 6559 bytes and GRS needs a little more. When
compared with GReEn and GRS, FM-context is shown to achieve the best perfor-
mance in terms of compression ratio for each sequence, with a moderately increased
time cost.

Moreover, we discussed the relationship between the compression performance
and the parameter of minimum matched length to balance the two passes. Large
matched length reduces the number of short substring matches and takes advantage
of complementary contextual models. On the contrary, a small one provides more
matches for the first pass and makes for better compression ratio and less time con-
sumption. Figure 3 depicts two-pass compression performance for human genome
KOREF 20090224 chr1 using KOREF 20090131 chr1 as reference. The time cost
increases with the growth of the minimum matched length, while the compression
performance can be improved using a proper matched length. In Table 3, we pro-
vide compression performance over original sequence alphabets, with the minimum
matched length Lm = 30. The DNA sequences are reduced from 2938 MB(except
chrM) to 13.77 MB, achieving an approximate compression rate of 213 folds.

8989

Table 3: Compression of KOREF 20090224 using KOREF 20090131 as reference. The
original sequence alphabets have been preserved.

Chr Size GRS GReEn FM-context
Bytes Bytes Secs Bytes Secs Bytes Secs

1 247 249 719 1 336 626 181 1 225 767 24 1 000 014 1906
2 242 951 149 1 354 059 273 1 272 105 24 999 789 1457
3 199 501 827 1 011 124 166 971 527 20 744 639 1186
4 191 273 063 1 139 225 73 1 074 357 19 832 449 1384
5 180 857 866 988 070 84 947 378 18 724 478 1256
6 170 899 992 906 116 55 865 448 17 664 017 1258
7 158 821 424 1 096 646 45 998 482 15 804 107 1100
8 146 274 826 764 313 36 729 362 14 561 320 885
9 140 273 252 864 222 35 773 716 13 654 282 1089
10 135 374 737 768 364 32 717 305 13 562 368 906
11 134 452 384 755 708 34 716 301 13 551 519 1074
12 132 349 534 702 040 31 668 455 12 513 537 851
13 114 142 980 520 598 23 490 888 11 373 386 755
14 106 368 585 484 791 23 451 018 10 352 759 796
15 100 338 915 496 215 20 453 301 10 365 596 681
16 88 827 254 567 989 20 510 254 9 421 091 667
17 78 774 742 505 979 18 464 324 8 373 841 553
18 76 117 153 408 529 16 378 420 8 292 077 612
19 63 811 651 399 807 14 369 388 6 296 189 455
20 62 435 964 282 628 13 266 562 6 205 654 409
21 46 944 323 226 549 9 203 036 4 161 245 333
22 49 691 432 262 443 10 230 049 4 192 361 357
X 154 913 754 3 231 776 74 2 712 153 15 2 373 833 1632
Y 57 772 954 592 791 32 481 307 5 420 482 453

Total 3 080 419 480 19 666 608 1317 17 370 903 298 14 441 033 22 055

5 Conclusions

We have proposed the efficient compression method called FM-context, which is ap-
plied to compress DNA sequences using reference without restriction of the alphabet.
The proposed method combines FM-index and complementary contextual models
to compress DNA sequences efficiently. Variable-length search for longest repeats
gives a full-text matching and encodes the matches with the reference index. For
the remaining uncoded sequence, we use the mixed contextual models for more com-
pression. FM-context is not limited to a certain length of the searched pattern and
it works well for large DNA sequences. Experimental results show that FM-context
can achieve good performance in compression ratio of DNA sequences. In future, we
would modify the alphabet mapping in the FM-index so that the same symbols with
different cases could ”group together”. This would improve the performance of the
proposed method in raw DNA sequences.

9090

References

[1] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Relative Lempel-Ziv Compression of Genomes
for Large-Scale Storage and Retrieval,” in International Symposium on String Process-
ing and Information Retrieval, 2010, pp. 201-206.

[2] C. Wang and D. Zhang, “A novel compression tool for efficient storage of genome
resequencing data,” Nucleic Acids Research, vol. 39, no.7, pp. e45, 2011.

[3] A. J. Pinho, D. Pratas, and S. P. Garcia, “GReEn: a tool for efficient compression of
genome resequencing data,” Nucleic Acids Research, vol. 40, no.4, pp. e27-e27, 2012.

[4] P. Li, S. Wang, J. Kim, H. Xiong, L. Ohno-Machado, and X. Jiang, “DNA-COMPACT:
DNA Compression Based on a Pattern-Aware Contextual Modeling Technique,” Plos
One, vol. 8, no.11, pp. e80377, 2013.

[5] P. Ferragina and R. Venturini, “Indexing compressed text,” Journal of the ACM, vol.
52, no.4, pp. 552-581, 2005.

[6] M. Burrows and D J. Wheeler, “A block-sorting lossless data compression algorithm,”
Technical Report Digital Src Research Report, vol. 57, no.4, pp. 425, 1995.

[7] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches,”
SIAM Journal on Computing, vol. 22, no.5, pp. 935-948, 1993.

[8] S. Kumar, S. Agarwal, and R. Prasad, “Efficient Read Alignment Using Burrows
Wheeler Transform and Wavelet Tree,” in Second International Conference on Ad-
vances in Computing and Communication Engineering, 2015, pp. 133-138.

[9] P. Prochazka and J. Holub, “Compressing similar biological sequences using fm-index,”
in Proceedings of the IEEE Data Compression Conference (DCC), Snowbird, Utah,
USA, Mar. 26-28, 2014, pp. 312-321.

[10] P. Elias, “Universal codeword sets and representations of the integers,” IEEE transac-
tions on information theory, vol. 21, no.2, pp. 194-203, 1975.

9191

