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Deformable Shape Preserving Video Retargeting
with Salient Curve Matching

Botao Wang, Hongkai Xiong Senior Member, IEEE, Zhiquan Ren, Chang Wen Chen Fellow, IEEE

Abstract—Video retargeting is dedicated to resizing the reso-
lution of videos in a content aware manner, and it involves three
critical challenges, namely, visual saliency preservation, deforma-
tion prevention, and temporal consistency persistence. Existing
retargeting algorithms include seam carving based approaches,
warping based approaches, and cropping based approaches,
which mainly concentrate on saliency preservation and fail to
prevent the deformation of salient shapes. This paper proposes
a deformable shape preserving video retargeting scheme where
salient curves extracted from frames are protected from defor-
mation by minimizing the matching cost of curves in the original
frames and the retargeted frames. Correspondingly, a curve
matching algorithm is developed to generate the deformation
cost which is invariant to translation, rotation and scaling with
the Bookstein coordinate transform. In turn, the deformation
cost of salient curves will be incorporated into the energy map
of seam carving. Furthermore, the proposed scheme defines a
temporal energy term to penalize the change of the relative
position of curves in consecutive retargeted frames with respect
to the original frames. Extensive experiments are validated by
the visual comparison, user evaluation, deformation analysis and
temporal consistency evaluation, which prove that the proposed
scheme outperforms state-of-the-art video retargeting methods.

Index Terms—Video retargeting, seam carving, curve detection,
curve matching, dynamic programming.

I. INTRODUCTION

In recent years, the rapid development of handheld devices,
e.g. smart phones, tablets and laptops, whose screens come
in different aspect ratios and resolutions, puts forward an
imperative requirement for the content aware image and video
resizing to adapt the resolution of the source video and images
to different display formats.

Intuitively, conventional video resizing methods are stretch-
ing, cropping, and padding [1], as displayed in Fig. 1. The
linear stretching approaches would homogeneously compress
or stretches the image content and may cause noticeable dis-
tortion. The cropping approaches may not bring distortion to
the video, however, some contents in the frames are inevitably
sacrificed. Although the padding approaches do not cause
distortion or lose contents, it would not make full use of
the integration of visual and screen content at all. Obviously,
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traditional retargeting techniques can not provide satisfactory
visual effects so that content-aware video retargeting are
widely addressed.

stretching cropping padding retargeting 

Fig. 1. Conventional image/video resizing approaches, e.g., stretching,
cropping and padding, can not obtain satisfactory visual effects in comparion
to content-aware image/video retargeting approaches.

In general, there are three critical objectives in video re-
targeting, known as (1) saliency preservation, (2) deformation
prevention, and (3) temporal consistency persistence. On one
hand, video retargeting should preserve “important” contents
and regions in the retargeted videos which are most attrac-
tive to the observers. When manipulating the frames during
retargeting, it is vital to prevent deformations and artifacts to
the largest extent, including waving, flickering and jittering
effects. On the other hand, the retargeted video should exhibit
smooth and consistent motion in the temporal domain. To
achieve the above objectives, three classes of video retargeting
techniques have been developed, known as seam carving based
methods, warping based methods, and content-aware cropping
based methods.

Seam carving was initially introduced in [2] for image retar-
geting, where an image is shrunk by iteratively removing the
minimum energy seam along vertical or horizontal connected
path with dynamic programming. Rubinstein et al. extended it
to video retargeting in 2008 [3], and the temporal consistency
was preserved by iteratively removing the minimum energy
surface obtained by graph cut from the image volume. In 2010,
Grundmann et al. [4] claimed that the temporal smoothness
of the seams is sufficient but not necessary to obtain tempo-
rally coherent videos. Correspondingly, a discontinuous spatio-
temporal seam carving algorithm aims to calculate temporally
discontinuous seams and allows for carving around fast mov-
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Fig. 2. The diagram of the proposed shape preserving video retargeting
scheme.

ing salient regions. In 2011, Mansfield et al. [28] introduced
scene carving, which combines a relative depth map with
conventional seam carving algorihm to retarget images while
maintaining the correct depth ordering. In 2013, the seam
carving based video retargeting was improved to preserve the
temporal smoothness of seams by matching the frame pixels
with the keypoints [5]. Obviously, seam carving based methods
change the aspect ratio of a video by compressing unsalient
regions where the distortion is less noticeable to the viewer.
However, they often bring about severe deformation when the
video exists few textureless regions.

Motivated by warping based image retargeting [6] [7], Wolf
et al. transformed the original video to the target resolution by
solving a sparse linear system of equations [8]. In 2009, Wang
et al. suggested to align the consecutive frames by estimating
the inter-frame camera motion, and then warp the aligned
frames [9]. Later, a non-uniform, pixel-accurate warping was
dedicated to interactively defined features which involve video
saliency, edge preservation, and scene cut detection [10]. To
overcome a variety of constraints and parameters, Niu et al.
proposed a warp propagation video retargeting scheme [11]
which achieves temporal consistency by introducing a motion
history map that propagates information about moving objects
between frames. Wang et al. [29] decomposed the video
retargeting problem into the spatial component and temporal
(motion) component, which can be solved independently. In
the spatial domain, each frame is resized individually without
the consideration of motion information. In the temporal
domain, they keep the pathlines in the optical flow field of
the retargeted video as close as the original frames. The major
drawback of warping based methods is the waving and jittering
effect caused by the global warping on frames.

Both seam carving based and warping based techniques
are also regarded as heterogenous approaches [12]. As an
alternative, content-aware cropping based techniques aim to
preserve temporal coherence and visual saliency at the cost
of some contents [13]-[16]. Based on cropping and scaling,
Liu et al. resized the frames by minimizing the information
loss [14]. Further, Wang et al. advanced to crop the frames
to eliminate recurring regions and warp the cropped frames

to mask deformation [15]. In common, the cropping based
approaches sacrifice the contents in the borders of the frames
to protect salient regions from distortion. Essentially, it has
been observed that the most unpleasant distortion in existing
video retargeting schemes is caused by the deformation of
salient curves in the frames [17]. Moreover, it is sufficient
but not necessary to preserve temporal consistency by keeping
the smoothness of the seams in the frames. Motivated by the
perspective of curves, this paper is dedicated to solving the
problem of distortion in video retargeting.

The proposed video retargeting algorithm is dedicated to
protecting the shapes of the salient curves from deformation,
and attaining temporal consistency in videos by keeping the
relative position of the corresponding curves in consecutive
frames. Its diagram is demonstrated in Fig. 2. The contribution
of this paper is two-fold.

First, a deformable shape preserving video retargeting
scheme is proposed where salient curves extracted from frames
are protected from deformation by minimizing the matching
cost of curves in the original frames and the retargeted frames.
The salient curve detection algorithm obtains the salient curves
in the frames by maximizing the curve weight that consists of
a boundary response term, a smoothness term, and a length
term. The deformation term is incorporated into the energy
map of seam carving so as to penalize the deformation of
salient curves in the retargeted frames. Specifically, a curve
matching algorithm is developed by transforming the curves
in the Bookstein coordinate, which is invariant to translation,
rotation and scaling. It can generate the deformation cost by
calculating the matching costs of the curves in the retargeted
frames and in the original frames. In this sense, the shapes of
the salient curves in the video can be protected by minimizing
the deformation term.

Second, the temporal consistency of video is maintained
by keeping the relative position of the matched curves in
consecutive retargeted frames with respect to the original
frames. To be concrete, we match the curves in consecutive
frames and encode the relative position of each curve in the
current frame with respect to the corresponding curve in the
previous frame. To improve the curve matching accuracy,
a centroid cost, a scale cost and an orientation cost are
incorporated in the matching cost of two curves in consecutive
frames, so that false matched curves that have similar shape
but different sizes, orientations and positions can be excluded.
During retargeting, we keep the relative position of the curves
in the retargeted frames to be consistent with the ones in
the original frames. Namely, a temporal term is introduced
that penalizes the change of the relative position of curves
in the retargeted frames with respect to the original frames.
By minimizing the variation of the relative position of curves,
temporal consistency of the retargeted video can be preserved.

The rest of the paper is organized as follows: Section II
presents the salient curves detection algorithm; Section III
describes the curve matching algorithm; Section IV illustrates
the proposed shape preserving seam carving approach; Section
V shows the experimental results, and Section VI concludes
the paper.
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II. SALIENT CURVES DETECTION

In an image, salient curves would attract viewers’ attention
more than others [19]-[21]. Although it is difficult, or rather
impossible, to mathematically define a salient curve, it is
characterized of a few properties: First, a salient curve is a
connected path that exhibits abrupt changes in grayscale or
color, because human perceptual system is sensitive to high
frequency components in an image, where intense variations
occur; Second, salient curves reveal sufficient length; Third,
salient curves tend to be smooth. As follows, a salient curve
detection algorithm is designed to extract salient curves from
frames.

A. Curve representation

The basic elements of curves are depicted as 16 oriented
segments S = {S1, S2, . . . , S16} in Fig. 3. Since an oriented
segment connects two adjacent points in a curve, there are
two equivalent representations of curves: the segment-based
representation and the point-based representation.
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Fig. 3. The basic elements of salient curves: sixteen oriented segments S =
{S1, S2, . . . , S16}.

In the segment-based representation, given the initial point
of a curve x1, the curve is denoted as a sequence of ori-
ented segments: c = (s1, s2, . . . , sn−1), where si ∈ S ,
si = xi+1−xi, i = 1, . . . , n−1. It is invariant to translation,
that is, the shape of a curve does not change with choice of
x1. Thus, the segment-based representation can be adopted to
evaluate the shape of curves in Fig. 4 (a). In the point-based
representation, a curve is represented as a sequence of points:
c = (x1,x2, . . . ,xn), where n is the number of points in the
curve and xi = (xi, yi) is the coordinate of the i-th point.
Since it is easy to access the points in the curves, the point-
based representation can be adopted to evaluate the grayscale
intensities of a curve in Fig. 4 (b).

B. Curve weight

The saliency of a curve c = (xi)
n
i=1 is measured by its

weight, which is defined as

w(c) = F (c) + λT (c) + γL(c)

=
1

n

n∑
i=1

f(xi) + λ
1

n− 2

n−1∑
i=2

t(si−1, si)

+ γ log(n),

(1)
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Fig. 4. Curve representation. (a) segment-based representation, (b) point-
based representation.

which consists of three terms: the intensity term F (c), the
smoothness term T (c) and the length term L(c). λ and γ are
constants that balance the three terms.

The intensity term

F (c) =
1

n

n∑
i=1

f(xi) (2)

is the mean boundary response of the points in the curves. The
boundary response of an image is measured by a function
f(x), which gives a noisy indication of whether point x is
located in the boundary. In experiment, we use the gradient
magnitude of the image as the boundary response.

f(x) =
√
Ix(x)2 + Iy(x)2, (3)

where
Ix(x) = I(x+ 1, y)− I(x− 1, y), (4)

Iy(x) = I(x, y + 1)− I(x, y − 1). (5)

Given the input image I(x), Ix(x) and Iy(x) are, respectively,
the gradient of the image with respect to x and y. Because only
pursuing high boundary-like energy in curve detection would
often lead to jagged and twisted curves [22], a smoothness
term is defined as:

T (c) =
1

n− 2

n−1∑
i=2

t(si−1, si). (6)

where t(si−1, si) is a function that measures the orientation
consistency of two adjacent oriented segments

t(si, si−1) = exp(−|si − si−1|). (7)

To prevent abrupt orientation changes in two adjacent oriented
segments, the smoothness term can be scaled by

t(si, si−1) =

{
exp(−|si − si−1|), if |si − si−1| ≥ TH ,
−∞, if |si − si−1| < TH .

(8)
where TH is the threshold of inconsistency in orientation of
two consecutive segments. In experiments, we set TH = 2.

The length term
L(c) = log(n) (9)

rewards the length of a curve, while the gradient of L(c)
decreases with respect to the length of c. Intuitively, once a
curve is short, we can exert more reward to the curve weight.
As long as the curve has sufficient length, we should impose
a little reward on it. The logarithm length term can accurately
convey our expectation on the length of salient curves.
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C. Curve detection

Existing salient curve detection approaches, e.g. dynamic
programming, greedy approximation and best-first search, are
of high computational complexity which limits the video
retargeting application. Here, we design an efficient curve
detection algorithm which is illustrated in Fig. 5.

Keypoint localization 

Boundary response 

Input image 

Fig. 5. The underlying curve detection procedure.

It consists of four steps: (1) keypoint extraction, (b) bound-
ary response estimation, (c) curve tracing, and (4) non-
maximum suppression. There are two reasons to start salient
curves from keypoints: to reduce computational complexity
and to facilitate curve matching. In general, keypoints are
located on edges and boundaries, so they can be used to
identify possible locations of salient curves quickly. In ex-
periment, we adopt Shi-Tomasi corner detector [23] to extract
keypoints. The boundary response is defined by Eq. (3). In
turn, curves are traced in the boundary response map from the
keypoints. Assume a curve c = (x1, . . . ,xm), or equivalently
c = (x1, s1, . . . , sm−1), the optimal one-segment extension
of c is

s = argmax
s∈S

f(xm + s) + λt(sm−1, s). (10)

Specifically, the next segment of a curve that ends at xm is the
one that has the maximum weight in the candidate segment set
S. To compress overlapping curves, a non-maximum suppres-
sion is used where the curves are re-arranged in descending
order of their weights.

{ci}ni=1, s.t. w(ci) ≥ w(ci+1), i = 1, . . . , n− 1 (11)

where n is the number of curves. Iteratively, the curve with the
largest weight joins the final salient curve set, and all curves
that overlap with it are removed. Fig. 6 illustrates the examples
of the underlying salient curve detection.

III. CURVE MATCHING

To prevent salient curves from deformation in retargeting,
we propose a shape matching algorithm which can measure
the similarity of two curves. In order to be invariant to
translation, rotation and scaling, it matches two curves in the
Bookstein coordinate [26][17]. To be concrete, the Bookstein
coordinate encodes the location of a point xi in a curve
c = {xi}ni=1 relative to the start point x1 and the end point
xn as B(xi|x1,xn). We shall simplify the notation of the

Fig. 6. The test image samples from the underlying salient curve detection.

Bookstein coordinate as xB
i = B(xi|x1,xn) if the start point

and the end point are irrelevant.
The start point of the curve x1 = (x1, y1) is mapped to

xB
1 = (−0.5, 0), and the end point of the curve xn is mapped

to xB
n = (0.5, 0) in the Bookstein coordinate. The Bookstein

coordinate of any point xi = (xi, yi) in the curve can be
denoted as xB

i = (xBi , y
B
i )

xBi =
(xn − x1)(xi − x1) + (yn − y1)(yi − y1)

(xn − x1)2 + (yn − y1)2
− 0.5, (12)

yBi =
(xn − x1)(yi − y1)− (yn − y1)(xi − x1)

(xn − x1)2 + (yn − y1)2
. (13)

Thus, the curve c = {xi}ni=1 can be represented in the
Bookstein coordinate as cB = {xB

i }ni=1. Fig. 7 shows the
examples of the Bookstein coordinate representation of curves.
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Bookstein coordinate

Fig. 7. Bookstein coordinate representations of salient curves. Three curves
are extracted from three different images, and represented in the Bookstein
coordinate in a rotation, translation and scale invariant manner.

Given two curves c = (xi)
n
i=1 and c′ = (x′i)

m
i=1, their

deformation cost is measured in the Bookstein coordinate with
cB = (xB

i )
n
i=1 and c′B = (x′Bi )mi=1

ds(c, c
′) =

1

2n

n∑
i=1

min
1≤j≤m

|xB
i − x′Bj |

+
1

2m

m∑
i=1

min
1≤j≤n

|x′Bi − xB
j |

(14)
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Each point xB
i ∈ cB is matched to a point x′Bj ∈ c′B , such

that

j = argmin
1≤j≤m

|xB
i − x′Bj |. (15)

Hence, the deformation cost of two curves is the mean distance
of matched points in the curves with the Bookstein coordinate.

Considering that the orientation, location, and scale of two
curves are normalized in the Bookstein coordinate, two curves
which have similar shapes but different orientations, locations
and scales may be mismatched. It is demonstrated in Fig. 8. To
eliminate the mismatch, three cost terms are introduced into
the curve matching cost, i.e., the orientation cost, the centroid
cost and the scale cost.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

Bookstein coordinate

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Bookstein coordinate

Fig. 8. Mismatched curves that have similar shapes but different orientation,
scale and location. The left image shows the curves in the image domain, and
the right image shows the curves with the Bookstein coordinate.

Based on the fact that the displacement of corresponding
curves in two consecutive frames is small, the centroid cost is
to bound the maximum displacement of the centroids of two
curves. The centroid of a curve c = (xi)

n
i=1 is defined as

xc =
1

n

n∑
i=1

xi. (16)

Hence, the centroid cost of two curves c and c′ is

dc(c, c
′) =


|xc − xc′ |

Tc
, if |xc − xc′ | < Tc

∞, otherwise.
(17)

where Tc is the maximum displacement of the centroids of
two curves.

The scale factor of a curve c = (xi)
n
i=1 is defined as

rc =
1

n

n∑
i=1

|xi − xc|, (18)

where xc is the centroid of the curve. The scale factor is
the mean distance of the points on the curve to its centroid.

Consequently, the scale cost of two curve is

dr(c, c
′) =


min{rc, rc′}
max{rc, rc′}

, if
min{rc, rc′}
max{rc, rc′}

> Tr,

∞, otherwise.
(19)

where Tr ∈ (0, 1] is the minimum ratio of scales of the two
curves. That is, the relative scale of two curves may vary
within (Tr, 1/Tr). In experiments, Tr = 0.8.

The orientation of a segment si = xi+1 − xi in the curve
c = (xi)

n
i=1 is defined as

o(si) = arctan
yi+1 − yi
xi+1 − xi

∈ [0, 2π) (20)

Hence, an orientation histogram h(c) ∈ RNb
+ of the segments

can be attained, which consists of Nb bins which are evenly
spaced between [0, 2π). Each segment casts a vote for the
histogram, which is linearly interpolated between two adjacent
bins. Eventually, the histogram is normalized so that |h(c)| =
1. In experiments, the number of bins is set Nb = 8. The
orientation cost of two curves is the absolute difference of the
orientation histograms

do(c, c
′) =

{
|h(c)− h(c′)|, if |h(c)− h(c′)| ≤ To
∞, otherwise

(21)

where To is the threshold of the maximum orientation cost.
That is, if the orientation distributions of segments in two
curves are distinct, they can not be matched either. In experi-
ments, To = 0.2.

Finally, the matching cost of two curves c and c′ is the
sum of the deformation cost, centroid cost, scale cost, and
orientation cost:

d(c, c′) = ds(c, c
′) + dc(c, c

′) + dr(c, c
′) + do(c, c

′). (22)

Fig. 9 provides the test image examples where salient curves
detected by the proposed curve matching approach are marked
in red. For each salient curve, its centroid is illustrated with a
yellow asterisk, its scale with a green circle, and its orientation
histogram with blue lines. It can be seen that the dotted blue
lines involve eight orientation bins, and the solid blue lines
denote the orientation histogram. The length of a solid blue
line is proportional to the intensity of the corresponding bin.

Fig. 9. Salient curves are marked in red. The yellow asterisk illustrates the
centroid of the curve, and the radius of the green circle centered at the centroid
describes the scale of the curve. The dotted blue lines denote the orientation
bins of the curve, and the solid blue lines denote relative weights of the
orientation histogram.

IV. SHAPE PRESERVING SEAM CARVING

We shall shrink the width of a video to illustrate the
proposed shape-preserving video retargeting algorithm. The
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original video is denoted as {IWi }Ni=1, where W is the width
of the frames, the i denotes the frame index and N is the
number of frames. In the k-th step of retargeting, a seam is
removed sequentially from the first frame IW−k+1

1 to the last
frame IW−k+1

N . In this way, the width of the video can be
reduced by one: {IW−k+1

i }Ni=1 → {I
W−k
i }Ni=1.

In seam carving, a vertical seam is a path p = (pi)
H
i=1 from

the first row to the last row of the frame, where H is the
height of the frame. The i-th row contributes one and only
one point to the seam, whose coordinate is (pi, i). The points
in the seam are connected, so that |pi− pi−1| ≤ 1. An energy
function E(p) defines the “importance” of a seam p. Typically,
the least significant seam is removed from the frame. In the
proposed algorithm, the energy function of a seam is defined
as

E(p) = Es(p) + αEd(p) + βEt(p), (23)

which consists of three terms: the saliency term, the de-
formation term and the temporal term. The saliency term
Es(p) depicts the visual saliency of seam p. The deformation
term Ed(p) provides the matching cost of salient curves
after removing seam p. The temporal term Et(p) reflects the
misplacement of corresponding curves in consecutive frames.
Two constants α and β control the relative weights of the
deformation term and the temporal term.

A. Visual saliency term
Saliency map reflects the visual attractiveness of each region

in the frame. The gradient magnitude is a local indicator of
the textureness of the frame which is sensitive to the edges
and boundaries, so that it is prone to preventing curves from
deformation. Thus, a combination of spectral residual saliency
[24] and the gradient magnitude of the frame is adopted as
the saliency term. The spectral residual saliency map can be
obtained by computing the log-spectrum of the frame and
extracting the spectral residual. Specifically, the amplitude
spectrum A(u, v) and phase spectrum P (u, v) of the input
image are attained with the Fourier transform,

F[I(x, y)] = A(u, v) exp[i · P (u, v)], (24)

where F denotes the 2-D discrete Fourier transform. The
log-spectrum of the image is the logarithm of the amplitude
spectrum,

L(u, v) = log[A(u, v)]. (25)

The average spectrum is obtained by convoluting the log-
spectrum with a 3× 3 average filter,

L(u, v) =
1

9

 1 1 1
1 1 1
1 1 1

 ∗ L(u, v). (26)

Hence, the spectral residual is defined to be the difference of
the average spectrum and the log-spectrum,

R(u, v) = L(u, v)− L(u, v). (27)

The spectral residual saliency map can be obtained by com-
puting the inverse Fourier transform of the spectral residual
and the phase spectrum,

Mr(x, y) = |F−1 [exp (R(u, v) + i · P (u, v))] |2. (28)

where F−1 denotes the inverse Fourier transform and Mr(x, y)
is the spectral residual saliency map. In sum, the final saliency
map is the convex combination of the spectral residual saliency
map and the gradient magnitude,

Ms(x) = θMr(x) + (1− θ)|∇I(x)|, (29)

where |∇I(x)| is the gradient magnitude of the frame,
θ ∈ [0, 1] is the weight parameter, and Ms(x) is the final
saliency map. In the experiment, we favor the edge-preserving
gradient magnitude, thus we set θ = 0.4. The test images and
their corresponding spectral residual saliency maps, gradient
magnitudes and the final visual saliency maps are displayed
in Fig. 10.

Fig. 10. Visual saliency maps. The first column is the original frames. The
second column is the gradient magnitudes. The third column is the spectral
residual saliency map. The last column is the final visual saliency map.

Given a saliency map, candidate seams can be extracted
with the standard seam carving method. Briefly, the cumulative
minimum energy Mc(x, y) of the saliency map Ms(x, y) is
computed

Mc(x, y) =Ms(x, y) + min
i=−1,0,1

Mc(x+ i, y − 1). (30)

A seam can be detected by tracking the minimum energy path
in Mc(x, y) starting from a point in the last row,

p(i) = p(i+ 1) + argmin
j=−1,0,1

Mc(p(i+ 1) + j, i+ 1). (31)

In this sense, a set of minimum energy seams can be
extracted P = {pi}ni=1, where n is the number of candidate
seams. To avoid overlapping seams, the mean distance between
two seams should satisfy

1

H
|pi − pj | > Ts,∀pi,pj ∈ P (32)

where | · | stands for the sum of absolute difference, and Ts
is the minimum mean distance between two seams. In the
experiment, Ts = 5. The examples of the candidate seams are
illustrated in Fig. 11. Hence, the visual saliency term for each
candidate seam p ∈ P is

Es(p) =
1

H

H∑
i=1

Ms(p(i), i). (33)
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Fig. 11. Candidate seam extraction.

B. Deformation term
The deformation term aims at minimizing the matching cost

of the salient curves in the retargeted frames and the original
frames. The salient curves detected in the original frame are
denoted as CW = {cWi }ni=1, where W is the width of the
original frames and n is the number of salient curves. After
seams are removed from the frame in the retargeting operation,
salient curves may be deformed, which are denoted as Cw =
{cwi }ni=1, where w is current width of the frame and cwi is the
deformed version of cWi . Naturally, we expect the shapes of
the retargeted curves Cw to be as similar as possible to the
original curves CW . In other words, the matching costs of the
retargeted curves and the original ones should be minimized.

If a vertical seam p = (p1, . . . , pH) is removed from the
frame Iw(x, y), a salient curve cw = (xw

i )
m
i=1 can be deformed

to cw−1(p) = (xw−1
i )mi=1. Given xw

i = (xwi , y
w
i ), x

w−1
i (p) =

(xw−1i , yw−1i ) is a function of p:

xw−1i =

{
xwi , if pyi

> xi

xwi − 1, if pyi
≤ xi

yw−1i = ywi

(34)

The deformation of a curve after seam removal is demonstrated
in Fig. 12.
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Fig. 12. A curve can be deformed after removing a seam from the frame. The
left image shows a frame Iw(x) of width w before seam removal. The seam
p = (pi)

H
i=1 is marked with red blocks. The curve cw = (xw

i )mi=1 is marked
with green blocks. The right image shows the frame Iw−1(x) after seam p
is removed form Iw(x). cw = (xw

i )mi=1 deforms to cw−1 = (xw−1
i )mi=1.

Therefore, the deformation term of frame Iw−1(x) with
respect to the original frame IW (x) is the sum of deformation

costs of corresponding curves:

Ed(p) =
1

n

n∑
i=1

ds(c
W
i , cw−1i (p)), (35)

where ds is the deformation cost in Eq. (14). Here, we do not
use the matching cost in Eq. (22) to measure the dissimilarity
of two curves, because cw−1i is the same but deformed version
of cWi , so the centroid cost, scale cost and the orientation cost
would not be necessary. Finally, the deformation term pursues
the optimal seam p to deform the curves Cw = {cwi }ni=1 to
Cw−1 = {cw−1i }ni=1 so that the deformation cost of Cw−1

with respect to the original curves CW can be minimized.

C. Temporal term

The temporal term aims at preserving the temporal consis-
tency of the retargeted frames by keeping the relative positions
of the curves in consecutive frames. Initially, we match the
salient curves in consecutive frames Ii−1(x) and Ii(x), where
the subscript denotes the index of the frame. The salient curves
detected in Ii−1(x) is denoted as Ci−1 = {ci−1j }ni−1

j=1 , and the
salient curves detected in Ii(x) is denoted as Ci = {cij}

ni
j=1,

where ni−1 and ni is the number of salient curves in Ii−1(x)
and Ii(x), respectively. Curve ci−1j ∈ Ci−1 matches curve
cil ∈ Ci, if j and l minimize

min
1≤j≤ni−1,1≤l≤ni

d(ci−1j , cil)

s.t. d(ci−1j , cil) < Td
(36)

where d is the matching cost defined in Eq. (22), and Td is
the threshold of the matching cost. Unlike the curve matching
in the deformation term, the matching cost of two curves in
consecutive frames contains the deformation cost, the centroid
cost, the scale cost and the orientation cost altogether, because
here we match two curves from different frames, where
variations in centroids, scales and orientations may introduce
many false matches.

Given two matched curves ci−1 = (xi−1
j )

Li−1

j=1 in Ii−1
and ci = (xi

j)
Li
j=1 in Ii, the backward matching vector

m = (m1, . . . ,mLi
) of ci associates each point in ci with

the closest point in ci−1,

mk = argmin
1≤m≤Li−1

|xi
k − xi−1

m |. (37)

Thus, the relative location of ci with respect to ci−1 can be
denoted as r = (r1, . . . , rLi

), where

rj =


1, if xi−1mj

< xij

0, if xi−1mj
= xij

− 1, if xi−1mj
> xij

(38)

for 1 ≤ j ≤ Li. Fig. 13 displays an example of the relative
location of a curve with respect to the previous frame.

Temporal consistency can be preserved by maintaining
the relative position of corresponding curves in consecutive
frames. The matched curves in Iw−1i−1 and Iw−1i is, respectively,
Cw−1

i−1 = {cw−1i−1,j}nj=1 and Cw−1
i = {cw−1i,j }nj=1, where cw−1i−1,j

matches cw−1i,j . In retargeting, cw−1i,j is determined by removing
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Fig. 13. The relative location of two curves in consecutive frames. The blue
curve ci−1 is in the (i-1)-th frame. The green curve is the corresponding curve
in the i-th frame. The matched points are bound together with red circles.The
locations of the points in ci relative to the corresponding points in ci−1 is
encoded with Eq. (38) .

seam p from Iwi , so the relative position of cw−1i,j with respect
to cw−1i−1,j is also parameterised by p. The temporal term
penalizes the difference of the relative location of curve cw−1j

and the one in the original frame cWj ,

Et(p) =
1

n

n∑
j=1

|rWj − rw−1j |, (39)

where rWj is the relative location of curve cj in the original
frame IW .

D. Optimal seam detection

Finally, for each seam in the candidate seam set P =
{pi}ni=1, its energy in Eq. (23) can be obtained by combining
the saliency term, the deformation term, and the temporal term.
The optimal seam for the i-th frame of width w is the one in
the candidate seam set that has the minimum energy,

pw
i = argmin

p∈P
E(p) = Es(p) + αEd(p) + βEt(p). (40)

Fig. 14. The blue curves are the detected salient curves. The green seams are
the optimal seams obtained by the proposed method. The red seams are the
seams of minimal visual saliency. The proposed algorithm effectively prevents
salient curves from deformation.

Fig. 14 displays the typical examples of the optimal seams
in the test frames, where the blue curves denote the salient
curves detected in the frames and the red curves denote the
minimum saliency seams, i.e., the minimizer of Eq. (33),
that would be selected by most seam carving based video

retargeting schemes. Obviously, the removal of these seams
would deform the salient curves and cause severe artifacts.
The green curves denote the optimal seams attained by the
proposed algorithm, i.e., the minimizer of Eq. (23). It con-
siders the preservation of visual saliency, the prevention of
deformation and the temporal coherence, thus achieves the
best visual effects. The procedure of the proposed algorithm
is illustrated in Algorithm 1.

Algorithm 1: The proposed algorithm

Input: Original frames: {IWf }Nf=1

Output: Retargeted frames: {IW ′f }Nf=1

for f = 1 to N do
CW

f = {cWf,i}
nf

i=1 =salient curve extraction(IWf );
end
for f = 2 to N do
{rWf,i}

n′f
i=1 =inter-frame curve matching(CW

f−1, CW
f );

end
for w =W to W ′ do

for f = 1 to N do
Mg =gradient magnitude(Iwf );
Mr =spetral residual(Iwf );
Ms = θMr + (1− θ)Mg;
P = {pi}NP

i=1 =seam extraction(Ms);
saliency term Es(p) =Ms(p),p ∈ P ;
Ed(p) =curve matching cost(CW

f ,Cw−1
f (p));

temporal cost Et(p) =
∑n′f

i=1 |rWf,i − r
w−1
f,i (p)|;

seam energy E(p) = Es(p) + αEd(p) + βEt(p);
optimal seam p∗ = minE(p), p ∈ P ;
Iw−1f =seam removal(Iwf ,p∗);
Cw−1

f =deform curve(Cw
f ,p∗);

end
end

V. EXPERIMENTAL RESULTS

In experiments, the proposed algorithm is compared with
two state-of-the-art video retargeting methods: the improved
seam carving [3] and the matching area based video retargeting
[5]. The improved seam carving method computes the spatio-
temporal L1 norm as the energy map of the frame, and uses
graph cuts to generate the optimal seam. Within the matching
area based video retargeting method, a blend of gradient
magnitude from the Sobel operator and the saliency map of
[25] [27] is used as the energy map. The parameters are set
according to [5]: NKP = 10, match window = 3, match
threshold = 0.2, search range = H/NKP , where H is the height
of the video and NKP is the number of keypoints.

The test videos involve both movie clips and standard video
sequences, which are further grouped into three categories in
terms of the motion of the background, i.e., static background,
mild motion background, and fast motion background. Exper-
iments are conducted on a laptop with Intel Core 2 Duo CPU
P8700 2.53GHz CPU and Ubuntu 13.10 operating system. The
evaluation consists of four parts: frame comparison, subjective
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evaluation, deformation analysis, and temporal consistency
evaluation, respectively.

Some combinations of α and β in Eq. 23 are tested,
and we found that α = 15 and β = 5 gives relatively
good performance. Thus, we use this parameter setting in the
experiment.

A. Frame comparison

Fig. 15 (a) and Fig. 15 (b), respectively, illustrate the
retargeted frames of the standard video sequences and the
movie sequences, where the first column shows the original
frames; the second column shows the frames retargeted by
the improved seam carving method; the third shows the frames
retargeted by the matching area based retargeting method; and
the last column shows the frames retargeted by the proposed
method. The resolutions of the original frame and the retarget
frames and the run-time of the proposed method are provided
below the frames. It can be observed that the proposed algo-
rithm could preserve the salient curves and primary shapes in
the videos than others. In addition, we enlarge the local patches
in the retargeted frames to elaborately evaluate local detail in
Fig. 16 and Fig. 17. Obviously, the proposed algorithm can
significantly reduce the distortion caused by the deformation
of salient shapes.

In addition, some frames from videos that have large camera
motion are displayed in Fig. 18. It could be observed that the
proposed method is robust with large camera motion.

B. Subjective evaluation

Since subjective evaluation is widely adopted for video
retargeting [5] [10] [9], we also conducted a user study with
9 participants coming from diverse backgrounds. They were
presented with an original video sequence and two retargeted
videos side by side, and asked to answer which retargeted
result was preferred. The users were kept naive about the
purpose of the experiment and were not provided with any
special technical instructions. We used 10 test videos in the
user study, and resized each video to 60% to 75% width using
fully automatic versions of the improved seam carving, the
matching area based retargeting and the proposed method. For
each video, there were three pairwise comparisons, and each
participant was asked to make 3× 10 = 30 comparisons. We
obtained a total 30× 9 = 270 answers, and each method was
compared 2× 10× 10 = 200 times.

TABLE I
PAIRWISE COMPARISON OF THE PROPOSED METHOD WITH IMPROVED

SEAM CARVING (ICS) AND MATCHING AREA BASED RETARGETING (MA)

↓outperforms→ Ours ISC MA Total Prefer%
Ours - 64 79 143 71.5%
ISC 79 - 26 105 52.5%
MA 11 11 - 22 11.0%

Table I shows the result of the pairwise comparison. The
proposed method was preferred in 71.5% (143/200), and was
favored over the improved seam carving in 64.0% (64/100) and
over the matching area based retargeting in 79.0% 79/100).

(a)

(b)

Fig. 15. The visual frame of (a) standard video sequences (b) movie sequences
retargeted, by the improved seam carving (second column), the matching area
based retargeting (third column), and the proposed method (last column). The
original frames are in the first column.

In contrast, the improved seam carving was favored only in
52.5% (105/200) and the matching area based retargeting in
11.0% (22/200).

C. Deformation analysis

Considering that there is no widely accepted objective
metric to assess the quality of video retargeting, we introduce
a matching cost metric to measure the deformation of salient
curves in the retargeted videos with respect to the original
videos. The matching cost of the retargeted frame Iw(x) and
the original frame IW (x) is computed as follows. First, salient
curves are extracted from the two frames as described in
Section II. Then, we match the curves in the retargeted frame
and the original frame as described in Section III. Since the
original frame and the retargeted frame have different sizes,
the centroid cost and scale cost, which are related to the size
of the image, should be taken into account. Here, the matching
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Fig. 16. Local effect of the standard sequences retargeted by the improved
seam carving (second row), the matching area based retargeting (third row)
and the proposed method (last row). The original frames are displayed in the
first row.

cost consists of the deformation cost and the orientation cost.

d(c, c′) = ds(c, c
′) + do(c, c

′) (41)

Thus, the matched curves in the original frames and the
retargeted frames are, respectively, {cWi }ni=1 and {cwi }ni=1,
where n is the number of matched curves, and cwi matches
cWi . The matching cost of the retargeted video and the original
video is defined as

D =
1

n

n∑
i=1

d(cwi , c
W
i ). (42)

To ensure the accuracy of the matching cost, we further
manually examine all of the matched curves and discard false
matched ones.

In the experiment, we retargeted four videos for each motion
category (static background, mild motion background and fast

Fig. 17. Local effect of the movie clips retargeted by the improved seam
carving (second row), the matching area based retargeting (third row) and the
proposed method (last row). The original frames are displayed in the first row.

Fig. 18. Frames from videos that have large camera motion. For each video,
the left column shows the original frames, and the right column shows the
retargeted frames.

motion background) with the improved seam carving, the
matching area based retargeting and the proposed method. To
guarantee fairness, we only keep the matching pairs so that
the curve cW in the original video could be matched in at
least two methods. If cW can only find its matches in two
methods, we manually label the corresponding curve in the
remaining method. Finally, the matches curves in the original
video and the videos retargeted by the improved seam carving,
matching area based retargeting and the proposed method
could, respectively, be denoted as {cOi }ni=1, {cIi }ni=1, {cMi }ni=1

and {cPi }ni=1, where cIi , cMi and cPi match cOi . Table II shows
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the matching cost result.

TABLE II
THE DEFORMATION COST COMPARISON (×10−1)

video1 video2 video3 video4 Mean

Static
ISC 0.119 0.125 0.105 0.114 0.116
MA 0.116 0.103 0.104 0.114 0.109
Ours 0.117 0.094 0.102 0.111 0.106

Mild
ISC 0.108 0.138 0.110 0.116 0.118
MA 0.116 0.152 0.098 0.114 0.120
Ours 0.109 0.136 0.095 0.109 0.112

Fast
ISC 0.120 0.112 0.225 0.085 0.136
MA 0.121 0.108 0.219 0.084 0.133
Ours 0.118 0.106 0.218 0.084 0.132

In general, there are less severe deformations in the videos
that has static background, and more severe deformations in
the videos that has fast motion. The proposed algorithm has
lower mean deformation costs than other two methods in most
test videos. On average, it has the lowest mean deformation
cost as well.

D. Temporal consistency evaluation

Temporal consistency is critical to video retargeting, be-
cause human visual system is very sensitive to the temporal
artifacts, such as jittering and waving effects. To simplify
the evaluation, we choose test videos with static backgrounds
so that the misalignment of the salient curves caused by
the temporal inconsistency can be obtained by the frame
difference. Specifically, let It(x) and It+∇t(x) be the t-th
frame and the (t + ∇t)-th frame either in the original video
or in the retargeted video, the frame difference is defined as

∇tI(x) = |It+∇t(x)− It(x)|. (43)

The frame differences of the original frames (first column),
the retargeted frames by the improved seam carving method
(second column), the matching area based retargeting (third
column) and the proposed method (last column) are displayed
in Fig. 19.

As the original frames are temporally coherent, the frame
differences of the original frames can be considered as the
ground truth. Because the backgrounds of the test videos are
static, the temporal inconsistent effects in the retargeted frames
would produce noises in the frame differences. Therefore,
the more similar to the original frame difference the frame
difference of the retargeted frames is, the more temporally
coherent the retargeted video will be.

It could be observed that the improved seam carving method
produces the worst results, because the frame differences of
the improved seam carving method contain a lot of background
noise and the misalignment of salient curves and boundaries.
On the other hand, the proposed algorithm obtains the best
results, because its frame differences is the most similar to
the ones in the original frames.

Also, temporal inconsistency could accumulate along the
frames, which distorts objects frame-by-frame. Therefore, an-
other experiment is conducted to compare the last frames of
the test videos retargeted by the three methods. The result
is displayed in Fig. 20. The improved seam carving and the

Fig. 19. The frame differences of the original frames (first column) and the
retargeted frames by the improved seam carving method (second column),
the matching area based retargeting method (third column) and the proposed
method (last column).

Fig. 20. The last frame of the test videos. Left: improved seam carving.
Middle: matching-area based retargeting. Right: proposed method.

proposed method have similar performance, which is much
better than matching-area based retargeting.

VI. CONCLUSIONS

In this paper, a deformable shape preserving videot retar-
geting algorithm is proposed from the perspective of salient
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curves. A salient curve detection and a curve matching algo-
rithm are designed where a deformation term and a temporal
term are introduced into the energy map of the seam carving
framework. To be invariant to translation, rotation and scaling,
the curve matching is operated by transforming the curves
in the Bookstein coordinate. The temporal consistency of
video is maintained by keeping the relative position of the
matched curves in consecutive retargeted frames with respect
to the original frames. The saliency preservation, salient shape
protection and temporal consistency are jointly considered to
generate the optimal content of the retargeted video. Extensive
experiments are validated by the visual comparison, user
evaluation, deformation analysis and temporal consistency
evaluation, which prove that the proposed scheme outperforms
state-of-the-art video retargeting methods.
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