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Abstract—Detecting multiple targets and obtaining a record
of trajectories of identical targets which interact mutually, infer
countless applications in a large number of fields. It however
presents a significant challenge to the technology of object
tracking. This paper describes a novel structured learning-
based graph matching approach to track a variable number of
interacting objects in complicated environments. Different from
previous approaches, the proposed method takes full advantage
of neighboring relationships as the edge feature in structured
graph, which performs better than using the node feature only.
Therefore, a structured graph matching model is established, and
the problem is regarded as structured node and edge matching
between graphs generated from successive frames. In essence,
it is formulated as the maximum weighted bipartite matching
problem to be solved using the dynamic Hungarian algorithm,
which is applicable of optimally solving the assignment problem
in situations with changing edge costs or weights. In the proposed
graph matching model, the parameters of the structured graph
matching model are determined in a stochastic learning process.
In order to improve the tracking performance, the bilateral
tracking is also used. Finally, extensive experimental results
on dynamic cell, football, and car sequences demonstrate that
the new approach deals with complicated target interactions
effectively.

Index Terms—Multiple object tracking, structure feature,
learning-based graph matching, dynamic environments, dynamic
Hungarian algorithm

I. INTRODUCTION

This work is concerned with the problem of multi-object
tracking in dynamic environments, which is an active research
field in recent years. It is significantly more challenging to
track multiple targets than a single object, and even more
difficult to obtain a record of trajectories of multiple identical
targets, which however has many applications in reality. This
paper hence deals with the tracking of multiple targets which
have complicated interactions. We call those types of objects
dynamic objects (targets) in this paper.

A. Problem Description

The difficulty of tracking multiple dynamic objects grows
considerably with increasing density of objects, while frequent
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dynamic interactions between the objects make the problem
even more challenging. Research on video object tracking can
be categorized into two major classes: object representation
and localization, e.g. mean-shift tracking [1], and data as-
sociation, and filtering, e.g. particle filtering [2]. Mean-shift
tracking finds local minima of a similarity measure between
the color histograms or kernel density estimates of the model
and target image, and could be considered as local search with
low computational cost and little information requirement on
motion and structure factors. Particle filtering solves the object
localization problem by sequentially estimating the state of
objects using a sequence of noisy measurements about the
object states. Unfortunately, particle filtering and its variants
fail to deal with the interaction of the objects in structured
environments [5] [6], where objects of interest are constrained
in certain area, e.g. street and football pitch. Consequently,
there has been active research on learning based methods for
analyzing and understanding behavior prediction in videos [3].
Through the observations, this paper is motivated to handle
complicated interactions of targets in dynamic environments,
which could involve the occurrences of entering, exiting,
splitting, and touching of objects as shown in Fig. 1.

(a) Cells

(b) Cars (c) Football match

Fig. 1: Illustrations of object tracking difficulties in different
scenes where object entering, exiting, touching, and splitting
could occur.

B. The Proposed Approach

In this paper, we propose a structured learning-based graph
matching method for dynamic multiple object tracking. The
chart of the proposed method is illustrated in Fig. 2, where
the cell sequences are used for describing the structured
learning-based graph matching method. The contributions of
the proposed method are primarily in three aspects.

The first contribution of the paper is to include structure
features for tracking a variable number of interacting ob-
jects in complicated dynamic environments. The proposed
structure features involve neighboring relationships including
the lengths and angles of the edges in the structured graph,
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Fig. 2: The proposed multi-object tracking method

and represent nonlocal structure information of the whole
graph. Most previous approaches [4] [7] using graph matching
consider only the features of the objects, but not take into
account the structure features of the graphs. As a result, they
cannot obtain good performance for tracking multiple dynamic
targets. The proposed method pays more attention to the struc-
ture relationships among multiple objects, and the structure
information of the graphs is considered as the features of
graphs, which can improve the performance of object tracking
significantly, especially in complicated situations.

The second contribution is to establish a structured learning-
based graph matching model. The new model replaces the
generic graph matching cost with a novel structured graph
matching cost to incorporate the structured factor. Unlike
previous graph matching approaches [8] which only exploit
the local geometrical features to derive a similarity measure,
it makes full use of the whole graph topology to obtain
mutual correspondences between components of the graphs.
By doing so, we are able to generate an undirected graph
whose nodes represent the targets to be tracked. The proposed
structured graph matching problem maximizes the matching
cost of subgraphs that consist of structured nodes and edges,
where two graphs are considered isomorphic only if the
correspondence between their nodes pairs up nodes with equal
labels. In essence, it is formulated as the maximum weighted
bipartite matching problem, which is to be solved by the
dynamic Hungarian algorithm. Because it is applicable of
optimally solving the assignment problem in situations with
changing edge costs or weights, which are most common in
the subsequent image pair of this problem. The method based
on the dynamic Hungarian algorithm can effectively reduce
computational complexity when the number of objects is large,
and bilateral tracking is utilized in order to obtain even better
performance.

The third and final contribution is to avoid the manual
parameter selection process which is time-consuming. The pa-
rameters of the model can be acquired in a stochastic learning
process. In previous works [1] [4], the graph matching model
has to be chosen in terms of a large amount of experiments,
and different models are manually established to achieve good
performance on different objects according to their inherent
characteristics, which we use the proposed structured graph
matching model for an approximation. When the dimension
of parameters is large, it is difficult to adjust them manually.
Therefore, the learning step is proposed for the multi-object

tracking problem. Consequently the structured graph matching
model can be adaptive for tracking different kinds of objects,
by adjusting its own parameters automatically.

The rest of the paper is organized as follows. Section II
provides a brief review of the previous related work. Section
III describes the graph model and the proposed structure
features. In section IV, a structured learning based graph
matching algorithm is presented for tracking multiple dynamic
objects. Section V provides experimental results, and we
conclude the paper in Section VI.

II. RELATED WORK

To track dynamic objects in the image sequences and videos,
the model of the object has to be established first. A number
of techniques have been developed to address this problem
including (1) movement analysis, (2) dynamic state theory,
(3) kernel-based tracking, and (4) graph matching.

A. Movement Analysis

The methods based on moving analysis can effectively track
moving objects from stationary cameras, e.g. background sub-
traction and optical flow method. Elgammal et al. [9] present
a non-parametric background model and related subtraction
approach, which can handle situations where the background
of the scene is cluttered and not completely static but contains
small motions such as tree branches and bushes. However,
it is not a concise enough representation for the long term
model of the scene by estimating the required sample size
for each pixel in the scene depending on the variations of the
pixel. Unal et al. [10] consider the addition of a prediction
step to active contour-based visual tracking using an optical
flow, and clarify the local computation along the boundaries
of continuous active contours with appropriate regularizers.
Nevertheless, the target objects are more complicated, which
cannot be approximated by a polygon.

B. Dynamic State Theory

The methods based on dynamic state theory, e.g. particle and
Kalman filtering, model object states and related observations
in tracking. Jin et al. [11] propose an edge-based multi-
object tracking framework which tracks multiple objects with
occlusions using a variational particle filter. The method can
avoid complicated object shape model assumptions in the
optical flow method. An object is modeled by a mixture of
a non-parametric contour model and a non-parametric edge
model using kernel density estimation. However, the particle
filtering method needs a large number of samples in the
process of tracking, which is difficult to satisfy in some cases.

Chen et al. [15] introduce an HMM model for contour
detection based on multiple visual cues in the spatial domain
and improve it by joint probabilistic matching to reduce
background clutters. Instead of assuming the one-to-one map-
ping between observations and targets in traditional multiple
hypothesis trackers [12], Markov Chain Monte Carlo (MCMC)
based sequential tracking methods [13] allow multiple tempo-
ral associations between observations and targets, and simulate
the distribution of the association probability with a number
of targets [14]. However, a prohibitively large number of



samples would be required to approximate the underlying
density functions with desired accuracy.

It is further integrated with an unscented Kalman filter to ex-
ploit object dynamics in nonlinear systems for robust contour
tracking [16]. However, being applied to a high-dimensional
state space, a prohibitively large number of samples may be
required to approximate the underlying density functions with
desired accuracy, and Kalman filters become quite inefficient.

C. Kernel-based Tracking

The methods based on kernel-based tracking represent local
object characteristics, e.g. mean shift and generalized kernel-
based tracking [4] etc. Comaniciu et al. [1] proposed a
new approach toward target representation and localization,
with the central component for visual tracking of non-rigid
objects. The feature histogram based target representations are
regularized by spatial masking with an isotropic kernel. The
method can overcome the shortcoming of particle filtering in
terms of computational load, however, the performance cannot
be improved when the feature dimension increases.

D. Graph Matching

The methods based on graph matching [17] solve the
global optimization problem of target matching, for instance
region matching and feature matching etc. Using abstractive
representations for complex scenes, attributed graph matching
problems could be formulated to find the close-to-optimum
solution [18] where two graphs are considered isomorphic only
if the correspondence between their node pairs up nodes with
equal labels. Chen et al. [19] presented a tracking algorithm
to address the interactions among objects, and to track them
individually and confidently via a static camera. It is achieved
by constructing an invariant bipartite graph to model the
dynamics of the tracking process, of which the nodes are
classified into objects and profiles. Pallavi et al. [20] proposed
a graph-based approach for detecting and tracking multiple
players in broadcast soccer videos. In the method, a directed
weighted graph is constructed, where probable player candi-
dates correspond to the nodes of the graph while each edge
links candidates in a frame with the candidates in the next two
consecutive frames. The method can gain good performance
on multi-object tracking. However, applying it to tracking
other kinds of objects, the tracking model has to be modified
through a large number of experiments, which is inconvenient
in applications, e.g. biological and medical imaging. In [8],
a cell tracking approach exploited the local geometrical and
topological features of cells to generate graphs, where a seed
cell pair as a starting point between local regions in the graph
is progressively moving outwards to obtain correspondences of
neighboring cells. However, the correspondence of successive
graphs is a local estimation, which cannot achieve good
performance without the global topology information.

To avoid the time-consuming manual labeling of corre-
spondences, active research on learning based methods for
analyzing and understanding tracking model from videos has
recently been pursued [21], including both supervised and
unsupervised learning methods. By clustering both similarity
and comparison confidence, Wang et al. [42] provided a

comparison confidence measure to indicate the approximation
between the measured image-based similarity and the physical
similarity. Hospedales et al. [43] developed an approximation
to online Bayesian inference which is in favor of dynamic
scene understanding and behavior mining in video data. With
the insight of learning-based graph matching, Caetano et
al. [22] integrated the structural quadratic compatibilities on
mutual association (labeled as 0 or 1) and local compatibilities
on point pattern matching into the objective function to find the
optimal assignment in a dynamic behavioral model. A method
for learning the activity patterns from video was proposed in
[23], which extracts a large set of object motion patterns from
videos over extended periods of time. This method utilizes
a codebook of activity patterns in terms of an online vector
quantization on the whole set of acquired motion patterns.
However, little structure information on motion prediction is
provided, which is useful for validating the efficiency and
improving the performance of object tracking.

III. STRUCTURE FEATURE

In this section, the concept of graph is defined for the
proposed algorithm in section III-A. In order to make full use
of neighboring relationships in the whole structured graph, the
node and structure features are defined in section III-B.

Time Lapse
K frame —  » K+N frame

Fig. 3: Original indices of cells.

A. Graph Definition

In this sub-section, we first generate the conception of an
undirected graph, in which the target objects are the nodes.

Definition 1 ( Graph Definition ). In the sequence of images,
graphs are generated from two consecutive images which are
denoted by G and G’, respectively. Each graph is a complete
set of all the nodes and edges (i.e., G := (V, E)) residing in
the target image. Each segmented object is defined as a node
in the graph. As shown in Fig. 3, node set that generated from
G with k elements can be expressed by:

V:{U17v231}35"' avk’} (1)

Basic features for each separate object are recorded by a
node, including the features of its spatial coordinate, color,



shape and so on. These features are utilized in nodes match-
ing and parameters learning. The relationships between the
structured nodes are described as the neighborhood, which
represent the structure of the graph.

Definition 2 ( Neighborhood Definition ). Let V' denotes the
set of all nodes of a graph. Yv; € V, the neighborhood of v;
is defined as

N(vs) = {v},v?, 03, - o}

i Y Vi i

2
such that

Vo' € N(v;), W' € V — N(v;),|v; —'| < |vi =" (3)

where m is the number of neighbors.

The neighborhood of a node is defined as its m nearest
neighbors, where m is called the degree of the node. An edge
will be constructed between every two spatially neighboring
nodes, and the edge set inside graph G is denoted by E.
Another possible criterion to define neighborhood is with
respect to distance. However, it may lead to unbalanced neigh-
borhood, namely, nodes in high density area would have much
more neighbors than those in low density area. To avoid the
unbalanced density occurrence, each node is endowed with the
same degree to generate regular graphs. All the nodes generate
either one connected graph or several connected graphs, which
does not affect the deviation in the following sections. Fig. 4
shows a graph of the cell sequence, where the degree of nodes
is set to 3, and the arrows are from neighboring objects to
target objects.

Fig. 4: Neighborhood and degrees of nodes in cell graph.

B. Structure Feature

In the proposed method, a node v; € G, has three kinds of
features: spatial feature Spat(v;), gray level feature Gray(v;),
and shape feature Shape(v;), which are defined as follows.

Definition 3 ( Node Feature ).

Spat(vi) = (i, Y:) “4)
where (x;,y;) is the coordinate of the node v;.
Gray(”i) = (gaver(vi)7 gmax(vi)a gmin(vi)7 gvar(vi)) (5)

where Gaver(*), Gmax(*), Gmin(-) and gyar(+) fetch the average,
maximum, minimum, and variance gray level of the objects,
respectively.

Shape(vi) = (Ssize(vi)y SaverT('Ui)a Svarr(vi)a Scomp(vi))

(6)

where Ssize(-), Saver, (), Svar,(-) and Scomp(-) are the area,
average radius, variance radius and compactness of the ob-
jects.

To join the three kinds of node features together, the node
features of objects are formulated as

fn(vi) = (Spat(v;), Gray(v;), Shape(v;))

where f,, () is the node features of the node v;.

Since the exponential decay can achieve good performance,
the node matching cost between the node pair {v;, v;s }, where
v; € G, vy € G, is defined as

Definition 4 (Node Matching Cost).
Fo(vi,vir) = exp {—| fu(vi) = fulvi)[*} (®)

To make use of the neighboring relationships in the struc-
tured graphs, the structures in the graph should be taken
into account. The structure reflects the relationship between
the object and its neighborhood, which is demonstrated in
Fig. 5. Obviously, the probability of correct matching would
be much higher when the object and its neighborhood can
simultaneously satisfy. Hence, we define the edge feature in
the proposed algorithm. As a related work, [22] utilized a
coarse edge representation where 1 or O demonstrates whether
the edge exists or not. It takes advantage of the nodes and the
connection of them in the edge matching process; however,
the attributes of edges are ignored, e.g. the length and angle.
The structure features are derived from edge features which
are the relationships between the adjacent nodes, including
the cost and angle of the edges between the object and its
neighborhood. In this way, the edge feature between node pair
{v¢, v;} to {vg, vy } is calculated by the following definition:

N

Definition 5 (Edge Feature).

Nl

Dist(v;,vj) = ((a:Z — xj)2 + (yi — yj)Q) 9)
Arg(v;,vj) = arctan m (10)

where (x;,y;) and (x;,y;) are the coordinates of the node v;
and node v;, Dist(v;,v;) is the distance between node v; and
vj, and Dist(v;,v;) is the angle of edge e;;

Definition 6 (Edge Matching Cost).
fe(viaa Vi, ’Uf')a Ui')

= F.(v2,v5) x exp

2RI

dist

B |Dz’st(vf‘vi)—Di3t(U?/ v;r)|
(11)
rg(viv;)—Ar v?,v-/
xeXp{_lA 9(vfv0)~Arg(s] nl}

0

where v € N(v;), vf/ € N(vy), the function f.(-) is the
edge matching cost of the graph, including node features
(spatial feature, gray level feature, and shape feature) and
edge features (Dist(-) and Arg(-)).

The edge features are kept relevant to not only the node
features of the object’s neighborhood but also the angles and
lengths of two matching edges. It is noted that the angular
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Fig. 5: The subgraph of the node and its neighborhood.

factor considers the degrees between two edges e(vv;) and
e(vﬁvi/). Fig. 4 shows the edge features in cell tracking.

The proposed algorithm adopts both node and subgraph
matching, where a subgraph consists of one node and its
neighborhood as Fig. 5. For several edges in a subgraph, the
total structure feature is defined as.

Definition 7 (Structure Matching Cost).

> o0 vi, 0 vir) (12)

o EN () ,vF EN(vy1)

Fe(viavi/) =

where vi'* and Uﬁk are the neighborhood of the object v;
and vy, respectively, i.e. vi* € N(v;) and vf:" € N(vy),
k=1,2,--- ,m

To combine the node matching and the structure matching
cost, we obtain the final matching cost on node v; and node
Vi

F(Uz‘,Ui/) = (Fc(Uin/),Fe(Ui»Ui’)) (13)

Once the features of the node and its neighbors are attained,
the structured learning graph matching approach for multi-
object tracking is presented in the next section.

IV. THE PROPOSED STRUCTURED LEARNING-BASED
GRAPH MATCHING METHOD

In order to track multiple dynamic objects, we consider
a structured learning graph matching algorithm. Since graph
matching models are variable for different targets, an adaptive
graph matching model is required to ensure a robust response.
For this purpose, the proposed algorithm is learning-based
to adjust the coefficients by itself in a stochastic learning
process and avoid manual interference. Moreover, the dynamic
Hungarian algorithm is utilized to reduce computational com-
plexity as well as bilateral tracking to improve the tracking
performance in dynamic environments.

A. Structured Graph Matching Model

Initially, we define the structured graph matching model and
denote the notations in the model. Given a pair of graphs G
and G’, v; is denoted as the i*" attribute of the node and €;; as
the edge 7j in graph G. In a standard graph, the edge attributes
ei; € {0,1} are binary.

In a matching matrix y of the structured graph matching
problem, y;» € {0,1}, y;# = 1 if node ¢ of G matches
node ' of G’, and y;;; = 0 otherwise. ¢;;» is defined as the
coefficient of the compatibility function for linear assignment
(¢ — '), and d;;j;» is defined as the coefficient of the
compatibility function for quadratic assignment (ij — i’j").
The structured graph matching problem is formulated in a
typical way, namely, the matching solution ¢ is given by a
quadratic assignment problem:

§ = argmax E CiirYiir + E it 30 Yiar g0
il i34

Zy“‘/ S 17 fOr all i/

7

Zyw < 1, for all ¢

il

(14)
s.t.

When only node matching is considered, Eq. (14) of the
structure graph matching model is simplified as a linear assign-
ment. It is a quadratic assignment when one attempts to match
edges. The quadratic assignment problem (QAP) is a NP-
hard problem, where the coefficients of ¢;;» and d;; ;- depend

on the node feature (v;,v;,) and the edge feature (e;;, €} ),

i
respectively. Most previous work neglects the coefficients of
di;r 5 to reduce the computational complexity, so that it
is degraded into a linear assignment problem of o(n?). It
is unable to achieve the optimal performance without the
structure features of the graph. It is worth mentioning that
edges exist only between the objects and their neighbors,

which can be expressed as:

5)

dii’jj’ #0, v; € N(Uﬁ and vy € N(U,‘/)
diir 550 = 0, otherwise

Hence, the matching cost in Eq. (14) can be changed into

E CiitYii + E it 50 Yiar g0

w'j5’
= Z Yiir (Ciir + Z diirjj1Yj50)
i3/ Ji’
16
= Z i o, Y dugpy) 0O
v node matching cost v; € N(Ul)
v € N(’Ui/)

structure matching cost

which involves both node and edge features.

Since y;;» € {0,1}, y;; = 1 if node j of G matches node ;'
of G, and y;;; = 0 otherwise. According to v; € N(v;) and
vjr € N(vir), node v; and vj are, respectively, in the subgraph
of node v; and v;,. Therefore, the proposed structured graph
matching model could make use of the edge feature of the
neighborhood N (v;) instead of each neighborhood node

D it + Y Dy vy = >y (Cir + i) (17)

it i jj’ i
where dj;, is the matching cost of the edge feature between
the subgraphs of nodes ¢ and 4'.



B. Structured Learning-based Graph Matching
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Fig. 6: A diagram of the structured learning-based graph
matching algorithm.

The structured learning-based graph matching algorithm is
demonstrated in Fig. 6. Training datasets are N observations
x from an input set X', and N corresponding labels from an
output set ), which compose the structured training pairs of
dataset {(z*,y1), (z%,9%),..., (™, y™N)}. 2" is an observa-
tion of graphs G™ and G'™, including the node feature and
edge feature, and y” is the matching matrix between G™ and
G'™, as defined in the previous section. G is the space of graph,
X = G x G is the space of graph pairs, and ) is the space of
matching matrices. The learning task of the structured graph
matching model would find a parameterized function of the
graph matching model g, : G X G — ), which minimizes
the matching cost on the test dataset. Hence, we define a
graph matching loss which consists of the empirical risk and
a regularization term. The empirical risk is the average loss in
the training dataset, and the regularization term is introduced
to avoid learning overfitting.

A9, (G™,G™),y")+  AQw) (18)
——

u[vjz

regularization term

empirical risk

where A(g,(G™, G'™),y™) is the loss incurred by the pre-
dictor ¢ when predicting. The output g,(G™,G'™), as the
prediction of the matching matrix y”, is used instead of y™.
The term (w) is a regularization function of w and A a
parameter in the loss, which are used against overfitting in
the training dataset. In g,,(G,G’), the parameter w would
be optimized over a loss function A in Eq. (23) and the
regularization term Q(w). To specify the function g.,(G,G’),
we use the standard approach of discriminant functions. The

discriminant function f(G,G’,y;w) is maximal for the case
of gw(G,G’), which is the optimal estimate for y (i.e.,
9w(G,G") = argmax f(G,G’,y;w)). In a typical way, we
define f(G,G’,y;w) as linear functions, f(G,G', y;w) =
(w,®(G, G, y)), where ®(G,G',y) is the discriminant func-
tion of object features ( node and edge features). Correspond-
ingly, the predictor g,,(G,G’) is formulated as:
9.(G,G") = arg mea)%((w, d(G, G, y)) (19)
Y
Furthermore, the joint feature of graph pairs is required
to be defined to contain the properties of both graphs and
a matching matrix y between graphs. To achieve it, we can
find the relationship between the learning scheme given by Eq.
(19) and the structured graph matching model given by Eq.
(17). The solution of the optimization problem is the estimate
of function g, i.e., y* = g, (G, G’). The discriminant function
in Eq. (19) is introduced into Eq. (17) to yield:

(®(G, Gy Zyw ciir +diy)

i3’

(20)

The graphs and the parameters must be represented in the
compatibility functions. As the way f(G,G’,y;w) is defined,
we choose the coefficients of the compatibility functions as:

Ciir = <F (U’Hvz ), w1>

dy = (F.(vi,0))), ws) 1)

where F.(v;,v],) represents the node matching cost of node
pairs (v;,v},). Fe(v;,v},) is the edge matching cost in the
subgraph pairs of the nodes v; and v},, which can be defined in
details in the experiment. v; and v;s are regarded as a potential
candidate pair {v;, v}, v; € G,vy € G'.

As an extreme case of Eq. (20), c;;» and d;;/ ;- only relate
with the features of node and edge of graphs by defining w :=
[w1 wa] where wy and woy are constants. In this way, we obtain
the final form of ®(G, G’,y) from Eq. (20) and Eq. (21) as:

(G, G y) =

Z yu’F Vi, U Z yu’F Vi, U

In the loss function A(g,y"), ¢ is the estimation of the
matching matrix and y" is the matching matrix of the n'”
training set. Over the multi-object tracking, average error is
defined as the fraction of mismatches between matrices ¢ and
y™ in Eq. (23), which is also called normalized Hamming loss:

||y TR

i’

. (22)

A, y") = (23)
Finally, the regularization term ((w) is specified as 3 [|w||?.

To solve the problem, one approach to minimize (18)
is to replace the empirical risk by a convex upper bound
on the empirical risk. In our problem, the convex function
4>, €n is an upper bound for & > A(g,(G",G'™),y")
with appropriate constraints. The optimization problem of
structured learning-based graph matching becomes



1 Y A
. 2
rg}fnﬁgén + 5wl

st {w, U™ (y)) > A(y,y") — &n,Vn and y € V.

(24)

However, the constraints of Eq. (24) is of a large amount
which is determined by the number of possible matching
matrices ||y|| times the number of training instances N. It
is difficult to obtain the exact solution of the optimization
problem. To overcome it, an optimization method known as
column generation [24] is used to find the solution. To solve it,
we might find the worst boundary and replace the formulation
in Eq. (24) by an equivalent form, which has only single slack
variable instead of n variables. Instead of directly solving Eq.
(25), one could calculate the most violated constraint in Eq.
(24) iteratively for the solution. The final optimization problem
becomes:

. A 9
rg}?£+ §IIWII

sty S ) 2§ S A - &

n

(25)

Vn and y € Y

where ¥"(y) = ®(G", G, y") — ®(G",G"™, y).
It is the tightest form of the constraint of Eq. (24), and the
solution is obtained by:
On = argmax(w, ®(G", G, y)) + Ay, y")  (26)
Y

In the next step, we introduce Eq. (26) into the problem of
Eq. (25) and obtain

1 A
5 2 A" = (@ @) + el @D

whose gradient (with respect to w) is
1 "
Ao = an W (i) (29)

Hence, we can thus obtain the final form with the loss function:

(P(G, G, y),w) + Ay, y") = Zyiif(c;i, +dj;) +C (30)

%/

n
where C' is a constant, ¢}, = (F.(v;,v},),w1) + Nyl ang

& = (F (05, 0] ), 2) v ly™1°
i1’ e\Vi, Uy ), W2/-

It is equivalent to find the solution to the maximization of
(30), which is a quadratic assignment problem. In the process
of simplifying the structured learning-based graph matching
model in terms of the constraints, the training and predicting
optimization could be turned into linear assignment problems
in a low complexity. Finally, we summarize the training
process of the structured learning-based graph matching as
shown in Algorithm 1, e.g. the learned weight w for the cell
tracking as shown in Fig. 7.
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Fig. 7: The learned weight w on cell tracking.

Define:
\Ijn(y) = (I)(G”7 va yn) - (I)(Gn’ G/nv y)
H"(y) = (w, ®(G™, G, y")) + Ay, y")
Input:
training graph pairs {(G™,G'™)},
training matching matrices {y"},
sample size NV, tolerance e
Initialize 1 = 1, w =0
while £ < € do
for n=1to N do
‘ Un = arg maXye(vy) Hn(y)
end
Compute p; = dw — w5 >, U"(§y,)
Compute
G =% Yo Alln,y") — (@, ¥ () + 3 l|w]]?
w;11 = argminy, %Hsz + max;<; ((pj,w> + qj)
141+1

end

Algorithm 1: The learning process in the proposed algo-
rithm

C. Dynamic Hungarian Algorithm

The structured learning-based graph matching problem is re-
garded as the maximum weighted bipartite matching problem,
and we adopt a dynamic Hungarian algorithm [25] to solve
it in situations with changing edge costs or weights. Initially,
we describe the assignment problem of the basic Hungarian
algorithm which is also called the Kuhn-Munkres algorithm.
Given a graph pair {G, G’} and a matrix F' of the matching
cost, it assigns dual variables «; to each node v; and dual
variables f3;; to each node v;/, where v; € G and vy € G'.
P is the set of edges on the selected augmenting path. The
output y is the matching matrix of the assignment problem.

In the proposed model, we can get the matching results as

9 = arg m;i,X Z yiir (ciar + diyr)
3

Zyn’ < 17f0r all ’il (31)

S.t.
Zyw < 1, for all ¢

il



Because there is a short instant between two consequent
images in the sequence, it is possible to add or remove one
or several nodes between the graphs of consequent image.
The dynamic Hungarian algorithm can solve this problem
with changing edge costs or weights effectively. It has a
computational complexity of o(kn?), where k is the number of
rows or columns of the cost matrix that have changed, instead
of the traditional Hungarian algorithm’s o(n?). Therefore, the
dynamic Hungarian algorithm is more suitable for the graphs
of large size. The adopted dynamic Hungarian algorithm is
described as Algorithm 2, where {G, G’} is defined as a graph
pair and F' is the matrix of the feature cost in Section III-B.
F* and y* are, respectively, the feature cost matrix and the
match solution of the previous assignment problem. Finally,
the output y is the solution of the current assignment problem.
yr—1 is the matching from the previous stage, and P is the
set of edges on the selected augmenting path.

D. Bilateral Tracking

As in Fig. 8, bilateral tracking is considered in the proposed
multi-object tracking algorithm. It involves both the forward
and backward tracking to acquire the forward weight w; and
backward weight wp, and the matching solution to obtain a
smaller one from the forward and backward matching costs is
selected.

K frame

K+1 frame

K+2 frame

Forward
weight

Backward

weight
me = e matehing - WW\NH

o il

| Compute graph matching cost |

| |

| Choose the match with smaller cost

Matching
result

Fig. 8: The process of bilateral tracking

The bilateral tracking examples on cell images are shown
in Fig. 9. It is evaluated between unilateral and bilateral
tracking, where the error of cell tracking is labeled in red
rectangular, the emerging cells are indexed in green numbers,
and the errors of segmentation are indexed in red numbers.
Fig. 9 describes the difference between the unilateral and
bilateral tracking methods. In Fig. 9 (a), the cell indexed
‘16’ cannot be tracked due to the missed segmentation in
the previous frame where the two cells indexed ‘16’ and
‘19’ are overlapped. Blob indexed ‘16+19’ actually consists
of two cells. It can be distinguished from neither threshold
based nor geometric method. However, the correct results can
be attained by tracking from the next frame, because the
backward tracking cost is much less than the forward one. In
Fig. 9 (b), the cells indexed ‘16’ and ‘19’ can be easily tracked

Input: A bipartite graph, (G, G’) and an matrix of
feature cost F'.

The feature cost matrix F* and match solution y* of the

previous graph matching problem.

Output: A new matching matrix y of the new graph

matching problem

1. Initialization:

if a row ¢* of the cost matrix changed: then

(a) Remove the edge (v;-, mate(v;«)) from the

matching y*

(b) ASSigl’l Qi = miniz (Fi*i’ — Bz’)

else

if a column " X of the cost matrix changed: then
(a) Remove the edge (mate(v;/+), vy +) from the
matching y*
(b) Assign ﬁil* = mini(Fiir* — Ozi)

end

end
2. Perform one iteration from the basic Hungarian
algorithm
(a) Designate each exposed (unmatched) node in G as
the root of a Hungarian tree.
(b) Grow the Hungarian trees rooted at the exposed
nodes in the equality subgraph.
if an augmenting path is found then

| go to step (d).
else

| proceed to step (c).
end
(c) Modify the dual variables « and (3 as follows to add
new edges to the equality subgraph. Then go to step (b)
to continue the search for an augmenting path.

0= %miniel*,i’¢1/*(F’ii' —a; — Byr)
S +0iel”
sy — ! /*
8, By —0i el

Bir+0i ¢ I
(d) Augment the current matching by flipping matched
and unmatched edges along the selected augmenting
path. The matching matrix at stage k,
Yk = (Yk—1 — P)U (P — yr—1)
3. Output the resulting matching y.
Algorithm 2: The dynamic Hungarian algorithm in the
graph matching problem

by the bilateral tracking. It can reduce the errors of object
tracking, especially for disappeared and emerged objects.

V. EXPERIMENTS AND RESULTS

To validate the efficiency of the proposed method, we
demonstrate extensive experimental results on medical cell
sequences and standard multi-object sequences, e.g. football,
car, and UBC hockey [44]. The experiments are performed in
MATLAB (Version R2008a) on the computer with Intel Core2
Duo CPU E8400 @3.00GHz.
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Fig. 9: The comparison between unilateral and bilateral track-
ing on cell images. (a) Unilateral tracking, (b) Bilateral track-

ing.

frame 7

frame 48

frame 84

AVI Result with marked cell index

Fig. 10: Sampled image blocks from tracking results of cell
sequences.

A. Medical Cell Sequence

In the first experiment, we consider the cell tracking
problem [26] which is a challenging problem in biological
and medical imaging. Initially, cell image sequences with
distinct features are used to test efficiency of the proposed
approach, which consist of 550 frames sampled from time-
lapse fluorescence microscopy in the cell tracking experiment.
We divide them into two parts, the training dataset of 50
frames and the test dataset of remaining frames. These image
sources are all recorded in a spatial resolution of 617 x 512
pixels, and a temporal resolution of 3 minutes between two
consecutive frames. Cells in the sequence are low in intensities
but with much irregularity in shapes. Difficulty in processing
the cell sequence lays in correct segmentations. Due to the
irregular properties of shapes, usually more convoke points
are found than expected, thus bringing the problems of over-
segmentation. Sampled image blocks from the sequence are
shown in Fig. 10. Cell indices are marked with different colors
for discrimination of cells tracked correct, with error, and
emerging in the sequence.

(a) Cell Segmentation

In most of cell tracking researches, accurate segmentation of

original images is crucial for the subsequent tracking process.

(@) (®) © )

Fig. 11: Segmentation results comparison between the LBF
level set and the Mumford-Shah functional based level set [28].
(a), (c) are the results of segmentation using the LBF level set,
and (b), (d) are the results on the same test images using the

Mumford-Shah functional based level set.

Fig. 12: Discriminations against isolated, touching, merging,
disappearing cells etc. (a) Isolated Cells, (b) Touching Cells,
(c) Merging Cells, (d) Boundary Cells.

Previous methods primarily utilize low-level information of
image, such as pixel intensity and image gradient. Threshold
based methods can obtain good results only if the images
have the specific characteristics, both intensity homogeneity
within the objects and good constant contrast between fore-
ground and background. Its essence limits its application to
images with touching or occlusion objects. Comparatively, the
watershed algorithm shows better ability in segmentation of
touching objects. However, the scheme may suffer from the
over-segmentation problem. Many efforts have been made to
overcome the shortcoming.

Other methods based on deformable models generate a more
robust and accurate boundary. The contours of objects are
driven by different kinds of forces and converge to the real
boundary where the energy function of the contours reaches
its minimum. In this way, the segmentation problem can be
transformed into finding the optimal solution to the minimal
defined energy. The level set methods indeed have many strong
points, but the need of the costly re-initialization procedure
and the incompetence in dealing with intensity in-homogeneity
which often occurs in medical images induce bad performance
in some specific segmentation cases. The level set evolution
scheme without re-initialization using the local intensity in-
formation was proposed by Chunming Li et al. [27] [29] for
intensity in-homogeneity images segmentation. Success of the
local binary fitting (LBF) energy based active contour evolving
algorithm has been demonstrated on segmentation of images.

Furthermore, it is a very challenging segmentation task after
the denoising process for the wide dynamic range of image
contrast. It is not an easy task to segment bright and dark cells
simultaneously using only one algorithm. Because the bright
cells are easy to handle, we focus on testing the proposed



approach on the segmentation of dark cells. The segmentation
results of the LBF based level set [27] and the Mumford-Shah
functional based level set [28] methods are given in Fig. 11.
In Fig. 11 (a) (c), a slice with both bright and dark cells is
selected. Specifically, most cells of Fig. 11 (c) are very dark.
The approach can segment all the cells with little error. In Fig.
11 (b) (d), we can find that the piecewise constant model can
only find the bright ones and consider the dark ones as noise
to be ignored.
(b) Cell Tracking

In this experiment, we manually index the cells in a number
of frames and label the training matching matrices. In the cell
sequences, we set the degree of nodes to 3. The node and edge
features in the experiment refer to Section III-B.
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Fig. 13: Statistical performance of six tracking algorithms in
each frame. (a) Statistical performance on cell sequence 1, (b)
Statistical performance on cell sequence 2
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Fig. 14: Average performance of six tracking methods on cell
sequences.

With the proposed algorithm, Fig. 12 demonstrates the
discriminations against cell touching, merging, and disappear-
ing etc. In Fig. 12 (a), for isolated cell indexed ‘78’, it is

10

0.055

—©— Learning w/o Structure
Learning + Structure
Learning + Structure + Bilateral

0.051

0.0451

0.04 -

Average error

0.0351

0.03 . . . . . . .
10 20 30 40 50 60 70 80 90
Size of training dataset

Fig. 15: Statistical performance of different learning-based
graph matching methods converges with the increasing size
of training dataset (A = 10).

reasonable to take the one that is nearest to its previous
position in the next frame as a matched record, even though
the distance might be large. It works well in tracing fast
moving cells. Fig. 12 (b) shows touching cells, which are not
necessarily merged because they separate later on. During the
process that cells ‘40’ and ‘41’ approach to each other and
separate once again, no frame indicates that they are close
enough to be judged as fusion, even though we can predict
their exact overlapping according to their moving directions.
Different from conditions in Fig. 12 (b), the approaching cell
pair shows sufficient evidence to have merged, for instance
cells ‘84’ and ‘85’ in the second image of (c). Since the cells
are merged and not separated later on, only one of the indexes
would be retained. Fig. 12 (d) shows the location of boundary
cells. Boundary cells are defined for those newly appeared or
disappeared from image boundaries. When a boundary cell
moves out of view, its node and edges go away with it. To
identify it when it appears once again, its vanished location
should be recorded. It is demonstrated by cell indexed ’105°
which disappears in the second image of (d) and returns later
on.

(© (d

Fig. 16: The dense cell tracking results in different frames
(dynamic environments).



Fig. 13 provides the average error A in Eq. (23) on each
sequence. Besides the proposed method as well as the graph
matching with learning (bilateral tracking), we also use the
Maximum Cross-Correlation (MCC) [30], the particle filtering
(PF) [31], Incremental Learning for Robust Visual Tracking
(IVT) [39], and TLD (Tracks the object, Learns appearance
and Detects) [40] for comparisons. As IVT and TLD are
originally designed for single object tracking, we test them by
individually tracking each object in the test sequence to ensure
their reliable performance in evaluation. It can be seen that
the proposed algorithm always achieves better performance.
With the increase of the frame number, there is a smaller
accumulation of tracking error by bilateral tracking than other
methods. Fig. 14 illustrates the statistical performance of
Maximum Cross-Correlation (MCC), Particle Filter (PF), IVT,
TLD, and the proposed approach. In the three cell sequences,
the third one has a larger density than the others. Obviously,
the proposed method can favor the cells of large density.

Fig. 15 illustrates the average errors of cell tracking in dif-
ferent learning-based graph matching methods without struc-
ture features, with structure features, and with structure fea-
tures plus bilateral tracking. Obviously, the structured learning-
based graph matching with structure features obtains better
performance on cell sequence while the one with learning and
bilateral tracking obtains the best performance than the others,
especially when the size of the training dataset is not large
enough. As shown in Fig. 15, the average errors in the three
methods converges as the density. Fig. 16 shows the tracking
results on a dense cell sequence where the cell indexes are
labeled in red.

(b)

Fig. 17: Statistical performance of six tracking algorithms in
each frame. (a) Statistical performance on football sequence
1, (b) Statistical performance on football sequence 2.
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Fig. 18: Average performance of six tracking algorithms on
football sequences.

B. Football Match Sequence

In this experiment, we use a football match sequence of
221 frames from 2010 UEFA Champion League final, Bayern
Munich vs. Internazionale, whose resolution is 1280 x 720
pixels. We divide them into two parts, the training dataset of
50 frames and the test dataset of remaining frames. Similar to
cell sequences, we also set the degree of nodes to 3 for the
football match sequence. Besides the node and edge features
in Section III-B, the popular scale-invariant feature transform
(SIFT) [32] is extracted to train the detection and tracking
models.

Fig. 19: Comparisons on football match sequences. (top)
Tracking players using the particle filtering method. (bottom)
Tracking players using the proposed method.

Fig. 17 provides the average error A in Eq. (23) on
each sequence. Besides the proposed method as well as the
graph matching with learning (bilateral tracking), we also use
the Mean Shift [1], the Particle Filtering [31], Incremental
Learning for Robust Visual Tracking (IVT) [39], and TLD
(Tracks the object, Learns appearance and Detects) [40] for
comparisons. The diagraph shows that the proposed approach
always achieves better performance. With the increase of the
frame number, there is a smaller accumulation of tracking error
than other methods with bilateral tracking. Fig. 18 illustrates
the statistical performance in Mean Shift (MS), Particle Filter
(PF), IVT, TLD, and the proposed approach.

Fig. 19 demonstrates the comparison between the particle
filtering (PF) algorithm and the proposed algorithm on the
football match sequence. It can be seen that the proposed
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Fig. 20: Statistical performance of different learning algo-
rithms converges with the increasing size of training dataset
A=1).

(c) (@

Fig. 21: The tracking results on football match sequence.
Players are labeled in red rectangle. The blue lines are the
traces of players’ motion.

scheme achieves better performance, especially for partial
occlusions. Furthermore, we compare the learning-based graph
matching methods with and without bilateral tracking for
different sizes of the training dataset. Fig. 20 illustrates that the
average errors converge as the size increases, and the one with
structure features and bilateral tracking always obtains a large
gain. It is different from the cell sequence because the motions
of cells are much more stochastic than players. Therefore, the
bilateral tracking is much more effective for player sequence,
especially when the training dataset is in large size.

The tracking results of frames 1, 76, 151 and 221, are shown
in Fig. 21, where players are labeled in red rectangle and the
blue lines are the traces of players’ motion.

C. Car Tracking

In this experiment, we use the car sequences from the
dataset of [33] whose spatial resolution is 480 x 360 pixels and
the temporal resolution is 15 frames per second. Likewise, we
divide them into two parts, the training dataset of 50 frames
and the test dataset of remaining frames. Similarly, we still
adopt both the node and edge features as well as the SIFT
feature for tracking target cars. We manually label the cars in
the training dataset, and then track the cars using the structured
learning-based graph matching algorithm. Since the number of
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(b)

Fig. 22: Comparisons on car sequences. (top) Tracking cars
using the particle filtering approach. (bottom) Tracking cars
using the proposed approach. (a) Full occlusion, (b) Partial
occlusion.
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Fig. 23: Statistical performance on car sequences in four
different methods.

cars in the sequence is not large and the relationship between
adjacent cars is not as important as the previous experiments,
the normalized Hamming loss function defined in Section IV-B
may be too rough so that the tracking errors grow considerably.
Instead of the normalized Hamming loss, we choose a more
precise loss function which can penalize incorrect matches less
if they are “close to” the correct match:

1 d(G;n(i)’ lm’(i)) ’
AG, G m,m') = — _ 32
(6.6 m,m) = o) Z [ ~ (32)
where (G, G’) are the graph pair (G is the “query” graph and
G’ is the “target” graph), m(i) is the index of the object in G’
to which the ith point in G is mapped, and m/(¢) is the ground
truth. d is simply the Euclidean distance between the object
pair and is scaled by o. Hence, the loss function defines how
distant the matches are from the ground truth, and the loss is
small with a decreasing distance between the matching and
the correct results. The degree of nodes is set to 1 or 2 based
on the number of target cars.
Fig. 22 demonstrates the comparison between the particle



filtering and the proposed algorithm on the car sequences. The
full and partial occlusions always lead to tracking error. In
Fig. 22 (a), the car in full occlusion is lost in the particle
filtering method, while the proposed algorithm can track the
car. In Fig. 22 (b), when the car is in partial occlusion,
the proposed method also obtains a more accurate result
than particle filtering. The average errors of the mean-shift
algorithm (MS), particle filtering method (PF), the generic
graph matching without learning and the proposed method,
are shown in Fig. 23.

D. More Tracking examples

Finally, we evaluate the performance on the “standard
sequence: UBC hockey [44]. In this experiment, we focus
on evaluating the performance on objects of high speed
and intense interactions. The degree of nodes is set to 3
for the UBC hockey sequence, and the performance of the
proposed algorithm is shown in Fig. 24. Because the four
tracked players would occasionally move out of view with
the temporal movement, it could give rise to tracking results
of partial players in the corresponding frames. The statistical
tracking result is demonstrated in Fig. 25 and Fig. 26. Fig.
25 describes the average error A on UBC hockey sequence.
Besides the proposed method as well as the learning-based
graph matching with bilateral tracking, we also use Mean-
Shift [1], Particle Filtering [31], Incremental Learning for
Robust Visual Tracking [39], and TLD (Tracks the object,
Learns appearance and Detects) [40] for comparisons. Fig. 26
illustrates the statistical performance within Mean Shift (MS),
Particle Filtering (PF), Incremental Learning for Robust Visual
Tracking (IVT), TLD, and the proposed approach.
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Fig. 24: The tracking results on UBC Hockey sequence, and
players are labeled in red rectangle.

Fig. 25: Statistical performance of five tracking algorithms in
each frame of UBC Hockey sequence.

VI. CONCLUSIONS AND DISCUSSION
A novel structured learning based graph matching method
on multi-object tracking is proposed in this paper, which
utilizes both the node and structure features in the graphs
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Fig. 26: Statistical performance of five tracking methods on
UBC Hockey sequence.

instead of only the node feature. In the proposed method,
the parameters of graph matching model are acquired in a
learning phase, rather than determined by experience. More-
over, we also use the dynamic Hungarian algorithm to solve
the optimization problem, which can reduce the computation
complexity in the multi-object tracking problem, and bilateral
tracking is also used in the method. There is an interesting
issue in our experiments discussed in section V. We test
the proposed method on three different types of objects,
i.e., cells, football players, and cars. It is shown that the
structured learning-based graph matching algorithm has better
performance than existing tracking approaches, e.g. mean-shift
and particle filtering. Specifically, the proposed scheme would
be in favor the dynamic multi-object tracking with mutual
interaction and identical appearance.

Occlusion is the most difficult obstacle for multi-object
tracking. It can be seen that the proposed algorithm can solve
some occurrences, but there still exist a kind of occlusion
to result in errors, e.g. the football player tracking. Several
variational methods [36] on pictorial structure model [34]
claim to handle the occlusion in some scenes, e.g. people
[35] [37] or animals [38]. However, it is not proved for
more complicated applications. Therefore, our future work
would focus on improving the structured learning-based graph
matching model for multi-object tracking over occlusions.
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