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Distributed Robust Optimization for Scalable Video
Multirate Multicast Over Wireless Networks
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Abstract—This paper proposes a distributed robust optimiza-
tion scheme to jointly optimize overall video quality and traffic
performance for scalable video multirate multicast over prac-
tical wireless networks. In order to guarantee layered utility
maximization, the initial nominal joint source and network
optimization is defined, where each scalable layer is tailored
in an incremental order and finds jointly optimal multicast
paths and associated rates with network coding. To enhance the
robustness of the nominal convex optimization formulation with
nonlinear constraints, we reserve partial bandwidth for backup
paths disjoint from the primal paths. It considers the path-
overlapping allocation of backup paths for different receivers
to take advantage of network coding, and takes into account
the robust multipath rate-control and bandwidth reservation
problem for scalable video multicast streaming when possible
link failures of primary paths exist. Specifically, an uncertainty
set of the wireless medium capacity is introduced to represent
the uncertain and time-varying property of parameters related
to the wireless channel. The targeted uncertainty in the robust
optimization problem is studied in a form of protection functions
with nonlinear constraints, to analyze the tradeoff between
robustness and distributedness. Using the dual decomposition and
primal-dual update approach, we develop a fully decentralized
algorithm with regard to communication overhead. Through
extensive experimental results under critical performance factors,
the proposed algorithm could converge to the optimal steady-
state more quickly, and adapt the dynamic network changes
in an optimal tradeoff between optimization performance and
robustness than existing optimization schemes.

Index Terms—Multirate multicast, network coding,
rate-distortion, robust optimization, scalable video coding.

I. Introduction

V IDEO STREAMING over wireless networks has been
compelling for a wide range of applications, from
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home entertainment and video surveillance to audiovisual
communication [1]. To benefit the overall network utility,
scalable video coding (SVC) is developed to adapt different
user requirements and heterogeneous network conditions in
a multirate multicast mode. SVC can allow rate adaptation
not only at the encoder/decoder but also at the intermediate
network nodes while achieving highly efficient rate-distortion
(RD) performance [2]. An SVC stream comprising a base
layer and one or multiple enhancement layers, with a flexible
multidimension layer structure, can provide various operating
points in spatial resolution, temporal frame rate, and video re-
construction quality. For multirate multicasting, different SVC
layers are transported in different Internet protocol (IP) mul-
ticast groups and are subscribed by heterogeneous receivers
with different computation and communication resources and
capabilities. In communication networks, on the other hand,
it has been demonstrated that coded network can achieve
the capacity in single-source multiple-terminal multicast via
algebraic operation at intermediate nodes [3]. Also, recent
research has shown that network coding can significantly
improve the network throughput and robustness to link or
node failures [4] and packet losses [5], [6]. Distributed random
linear coding schemes [7], [8] have been proposed for practical
implementation of network coding. Chen et al. [9] developed
adaptive rate-control algorithms for networks with and without
coding subgraphs.

When both SVC and network coding are taken into account,
layered multirate multicasting is equivalent to a generalized
multisource problem where the progressive interlayer depen-
dency is considered as fairness between different sources
(layers) [10], and also network coding is implemented at relay
nodes to enhance the communication efficiency of the network.
In practical wireless networks, dynamic network changes (e.g.,
fluctuations of links or link failures) might occur due to wire-
less channels and mobility in wireless nodes [11]. Therefore,
it is imperative to formulate the corresponding rate-control
scheme in a robust way, to ensure service feasibility and
availability against such uncertainties. Furthermore, the lack
of centralized control in a wireless network requires that the
scheme be performed in a distributed manner. In this paper, we
aim to develop a robust and efficient optimization framework
for scalable video streaming over wireless networks, where
the layered SVC stream is generated at the source node, and
distributed via network coding by relay nodes to different users
through the wireless network. The objective is to maximize the
overall video quality of all receivers with dynamic network
changes.
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The contribution of this paper is twofold. First, we are
motivated to make a robust formulation of jointly optimizing
overall video quality and traffic performance for scalable
video multirate multicast over practical wireless networks. To
guarantee layered utility maximization, we define a nomi-
nal joint source and network flow optimization where each
scalable layer is tailored in an incremental order and finds
jointly optimal multicast paths and associated rates. At relay
nodes, network coding is utilized for a decent multicast
capacity. To enhance the robustness of the nominal convex
optimization problem with nonlinear constraints, we reserve
partial bandwidth for backup paths disjoint from the primal
paths during the transmission of SVC multicast stream. It
considers the path-overlapping allocation of backup paths for
different receivers to take advantage of network coding, and
takes into account the robust multipath rate-control and band-
width reservation problem for SVC multicast streaming when
possible link failures of primary paths exist. Impressively, an
uncertainty set of the wireless medium capacity is introduced
to represent the uncertain and time-varying property of param-
eters related to the wireless channel. The targeted uncertainty
in the robust optimization problem is studied in a form of
protection functions with nonlinear constraints, to analyze the
tradeoff between robustness and distributedness. Second, using
dual decomposition and the primal-dual update approach, we
develop a fully decentralized algorithm where the globally
optimal solution is achievable via distributed computation, by
iteratively updating optimization variables. Extensive numeri-
cal and packet-level experimental results under critical factors
demonstrate that the proposed algorithm (PA) can converge to
the optimal steady-state more quickly, and adapt the dynamic
network changes in an optimal tradeoff between optimization
performance and robustness than existing schemes.

The remainder of this paper is organized as follows. Sec-
tion II reviews related research on rate allocation schemes
of scalable video streaming, as well as robust optimization
frameworks. The notations, system models, and nominal flow
control and resource allocation problem for SVC-based multi-
rate multicasting with network coding-based routing over wire-
less networks is formulated in Section III. In Section IV, the
robust problem formulation is presented, with consideration
of uncertain factors in practical wireless networks. The fully
distributed algorithm for the robust optimization formulation
is proposed in Section V, where we also provide an efficient
implementation scheme. Extensive results of both numerical
experiments and packet-level simulations are presented in
Section VI. Section VII concludes this paper.

II. Related Work

Over the past years, a few of rate-control schemes have
been developed in literature to address the scalable video
streaming problem over networks [10], [12]–[14]. The dis-
tributed rate allocation scheme in [10] addressed the problem
of rate allocation for multiple SVC multicast sessions over
wireless mesh networks, with the goal of minimizing total
video distortion of all peers. To incorporate network coding
as well as interlayer dependency into layered overlay multi-

cast over networks, Zhao et al. [12] proposed a distributed
heuristic algorithm with suboptimal performance. Recently,
Zou et al. [13] explored the path cost and price of each layer
as the priority parameters to capture interlayer dependency
and developed a rigorous distributed algorithm proven to be
stable and convergent. As a further improvement, a joint
source and flow optimization scheme with mathematically
rigorous layer dependency constraints has been shown the best
overall performance for heterogeneous receivers via a fully
distributed implementation supporting partial layer reception
in [14]. This kind of optimization problems, although can
achieve optimal or near optimal performance, would make
the unrealistic assumption that data defining the optimization
formulation can be obtained precisely, which may lead to
poor or even infeasible solution in practical dynamic networks.
Hereinafter, we call the corresponding optimization problems
with deterministic parameters “nominal” problems.

As a framework of tackling optimization problems under
data uncertainty, a couple of robust optimization schemes have
emerged to seek a solution that remains feasible and near
optimal under the fluctuation of parameters in the optimization
formulation [15]– [18]. Each robust optimization problem is
defined by three-tuple: a nominal formulation, a definition of
robustness, and a representation of the uncertainty set. The
process of making an optimization formulation robust can
be viewed as a mapping from one optimization problem to
another. In [15], it was demonstrated that optimal solutions
of linear programming (LP) problems may become severely
infeasible if the nominal data is slightly perturbed, also robust
solutions of the above LPs which were in a sense immune
against uncertainty were developed. A D-norm approach [16]
has been proposed to model the data uncertainty, and has
advantages such as guarantee of feasibility independent of
uncertainty distributions and flexibility in tradeoff between
robustness and performance. Yang et al. [17], [18] discussed
several efficient models for describing parameter uncertainty
sets that can lead to decomposable problem structures, and
applied these models in distributively solving a robust flow
control problem in wireline networks. These work mainly fo-
cus on the robust formulation of linear optimization problems
and is thus not suitable for complicated video application.

III. System Models and the Nominal Optimization

Problem Formulation

In this section, related system models are addressed. As a
fundamental step for optimization formulation of robust SVC
multirate multicast over wireless networks, in the sequel, we
formulate the nominal optimization problem.

A. Wireless Network Model

Consider video content distribution over a wireless network
G = (V, E) with a set of wireless links E and a set of wireless
nodes V = {s} ∪ N ∪ D, where s denotes the source node,
and N and D represent the sets of relay nodes and destination
nodes, respectively. The SVC-coded stream is encoded at the
source s and then multicasted to destination nodes through a
wireless network with network coding-based routing.
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In wireless networks, the capacity of a wireless link is
interrelated with other adjacent wireless links. Consequently,
we should consider the wireless link contention in a shared
transmission medium by introducing constraints of the
location-dependent contention among the competing wireless
data flows [19]. In the target problem formulation, the
assumption is that the wireless medium capacity is shared
among a wireless link l and the cluster of its competing links.
A typical protocol model considers the spatial locations of the
nodes and determines that transmission can be successfully
received by its intended recipient [20]. It hypothesizes that
any link originating from node k will interfere with link (i, j)
if the link distance d(k,j) < (1 + γ)d(i,j), γ ≥ 0 and define
�(i,j) for each link (i, j) ∈ E as the cluster of links that cannot
transmit when link (i, j) is active. As compared to individual
links in traditional wired network, the notation of cluster
can be treated as a basic resource unit. Wireless data flows
compete for the capacity of individual cluster that is equivalent
to the capacity of the wireless shared medium. Hence, the
wireless network channel capacity constraint [21] is

0 ≤ f(i,j)

1 − ρ(i,j)
+

∑
(p,q)∈�(i,j)

f(p,q)

1 − ρ(p,q)
≤ C(i,j), ∀(i, j) ∈ E (1)

where f(i,j) denotes the physical flow rate that is required to
transmit through link (i, j), C(i,j) is defined as the maximum
rate of link (i, j) and its corresponding cluster �(i,j) supported
by the wireless shared medium, and ρ(i,j) is assumed to be the
packet loss probability at wireless link (i, j). Theoretically, this
packet loss rate (PLR) can be derived from the Gilbert–Elliott
model [22], [23].

B. SVC Coding Model
The layered scalability is adopted here, and assume that

the SVC video stream is encoded into a set of M layers
{L1, L2, . . . , LM} with a predefined encoding rate based on
the network condition. According to the encoding rates of
layers, we can make the optimal adaptation decision in the
scalability cube model illustrated in Fig. 1 by mapping from
an SVC elementary stream with fully scalable representation
into the layered representation. Correspondingly, the multicast
of SVC video stream is divided into M multicast sessions.
Each multicast session m has one source node s, a set of
destination nodes D, and a set of relay nodes N. In order to
successfully decode received SVC video streams, we should
make sure that all destination nodes are able to subscribe
to SVC multicast layers in an incremental order, since layer
m + 1 is not decodable without its previous layers 1 to m.
In accordance with the SVC layer dependency constraint,
lower layers need be received before higher layers for each
destination node to promise the most efficient SVC decoding.

Considering both fluctuating network adaptation and
optimization condition [27], [28], each layer is distributed
over a multicast session at a variable transmission rate within
a tolerable rate region [rm

min, r
m
max]. Mathematically, the upper

bound rm
max (e.g., the encoding rate with a resilient margin) and

the lower bound rm
min (e.g., the minimum partial margin for

layer m) are specified for a confidence interval of the layered
transmission rate in layer m. It differentiates the layers with

Fig. 1. Typical structure of scalable video bitstream with multiple dimen-
sions.

the piecewise confidence intervals along the layer-dependent
direction, namely, the achievable transmission rate for each
layer is mathematically extended from an encoding rate point
to a tolerable rate region. From the layered optimization, the
fine-granular continuity of the targeted variables (rates) could
specifically urge the convexity of optimization problem for
developing a distributed solution, and support a strong notion
of fairness.

C. Network Coding Model

To transmit multiple multicast sessions over a shared net-
work, we might perform network coding across session to
achieve the optimal throughput. However, combining data
belonging to different layers makes it difficult to recover all
original data for destination nodes that only receive partial
layers. Thus, network coding is limited within each session in
this paper. This approach is often referred to as intra-session
coding or superposition coding [26].

For each multicast session, we find multiple paths from
the source node to destination nodes using existing multipath
routing schemes [29], [30], which are chosen based on general
cost criteria that are independent of flow rates. Since each
multicast session uses only a limited set of paths, it is
shown that such approach may give lower rates compared
with optimizing over the entire network, but it is much less
complex [9]. For each destination node d ∈ D, we use a
matrix Hd = {hl

dj} to represent the relationship between its
transmission paths and corresponding links. More specifically,
suppose destination node d has J(d) alternative paths from
source node s, then hl

dj = 1 if the path j of node d uses link
l, and hl

dj = 0 otherwise. In network coding-based routing, let
Rm

dj denote the information flow rate of destination node ds
jth path in multicast session m, and fm

l represent the physical
flow rate for link l in multicast session m.

With intra-session network coding, flows to different des-
tinations of a multicast session are allowed to share network
capacity by being coded together. Therefore, it is only required
to set the actual physical flow on each link to be the maximum
of the individual destinations’ information flows, and accord-
ingly the network coding constraint is

J(d)∑
j=1

hl
djR

m
dj ≤ fm

l , ∀m ∈ M, ∀l ∈ E, ∀d ∈ D. (2)

D. RD Model

From the perspective of application-layer quality of service,
RD-related models [31] could be picked as the optimized
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targeted utility for video applications as follows:

De(Re) =
θ

Re − R0
+ D0 (3)

where De is the distortion of the encoded video sequence
and Re is the encoded rate. The remaining variables θ, R0,
and D0 are the parameters of the RD model, which can be
fitted to empirical data from trial encodings using nonlinear
regression techniques.

To characterize the video streaming performance of each
layer m, we introduce a utility function Um(·), which is
continuously differentiable, increasing, and strictly concave
with respect to the receiving rate. In this paper, we multicast
the video streams to all destination nodes and attempt to
maximize the total utility of all recipients, and accordingly
the objective function is

max
∑
d∈D

∑
m∈M

Um(Rm
d ) = max

∑
d∈D

∑
m∈M

Um

⎛
⎝J(d)∑

j=1

Rm
dj

⎞
⎠ (4)

where Rm
d denotes the received rate at destination node d in

multicast session m.
Within the context of SVC, the utility function Um(Rm

d ) is
defined for destination node d to represent the corresponding
distortion decrement when a new layer m is successfully
received and decoded as follows:

Um

(
Rm

d

)
= −

[
De

(
m−1∑
i=0

Ri
d + Rm

d

)
− De

(
m−1∑
i=0

Ri
d

)]
. (5)

E. Nominal Optimization Problem Formulation

In SVC streaming problems, layered multirate multicasting
is equivalent to a generalized multisource problem where the
interlayer dependency is considered. The proposed nominal
optimization problem integrates the prior context of source de-
composition into the layered multirate multicast optimization,
which can be formulated as follows:

P1 : max
R

∑
d∈D

∑
m∈M

Um

⎛
⎝J(d)∑

j=1

Rm
dj

⎞
⎠ (6)

s.t.

1)
J(d)∑
j=1

hl
djR

m
dj ≤ fm

l ; ∀m ∈ M, ∀l ∈ E, ∀d ∈ D

2)
∑
m∈M

fm
l

(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

(1 − ρk)
≤ Cl; ∀l ∈ E

3) rm
min ≤

J(d)∑
j=1

Rm
dj ≤ rm

max, or

J(d)∑
j=1

Rm
dj = 0; ∀m ∈ M, ∀d ∈ D

4)

J(d)∑
j=1

Rm
dj

rm
min

≥

J(d)∑
j=1

R
(m+1)
dj

r
(m+1)
max

; ∀m ∈ {1, 2, . . . , M − 1}, ∀d ∈ D

5) Rm
dj ≥ 0; ∀j ∈ J(d), ∀m ∈ M, ∀d ∈ D

6) fm
l ≥ 0; ∀l ∈ E, ∀m ∈ M.

Constraint 1) specifies the required physical flow rate on
each link for each layer under the network coding condition.
With network coding, different destinations will not compete
for link bandwidth within the same layer, therefore the re-
quired physical flow rate on link l for layer m is the largest
information flow rate on link l consumed among all destination
nodes. Note that the impact of network coding is embedded
in this constraint. Constraint 2) characterizes the wireless link
contention in a shared medium. For each wireless link l, the
sum of ls actual physical flow rate and the actual physical
flow rates of links in �(l) cannot exceed the maximum rate
Cl. Constraint 3) gives the lower bound and upper bound of
the transmission rates allocated for layer m, denoted by rm

min,
and rm

max, respectively. The SVC layer dependency constraint
is taken into account and promised by Constraints 3) and
4), according to [14, Prop. 1]. Constraints 5) and 6) specify
that the allocated rates and required physical flow rates are
nonnegative.

To make sure the convexity of the proposed optimization
problem P1, Constraint 3) needs to be redefined to meet the
convexity requirement. Based on the nonnegativity Constraint
5), it can directly imply

∑J(d)
j=1 Rm

dj ≥ 0 from Rm
dj ≥ 0. Hereby,

we can simply extend the second equality term
∑J(d)

j=1 Rm
dj =

0 in Constraint 3) to
∑J(d)

j=1 Rm
dj ≤ 0 because

∑J(d)
j=1 Rm

dj = 0
can be promised along with the nonnegativity Constraint 5).
Therefore, Constraint 3) is formalized as rm

min ≤ ∑J(d)
j=1 Rm

dj ≤
rm

max, or
∑J(d)

j=1 Rm
dj ≤ 0, and further simplified as a cubic

inequality (
∑J(d)

j=1 Rm
dj)(

∑J(d)
j=1 Rm

dj −rm
min)(

∑J(d)
j=1 Rm

dj −rm
max) ≤ 0.

We can see that the nominal optimization problem P1 has a
unique optimal solution since its objective function is strictly
concave and the solution space defined by the constraints is
convex. In other words, this is a convex optimization problem
with either centralized or distributed feasible solutions under
the assumption that the input parameters are precisely known
and equal to some nominal values. This approach, however,
does not take into account the influence of data uncertainties
on the quality and feasibility of the practical problem. It is
therefore noticeable that as the parameters take values different
from the nominal ones, several constraints may be violated,
which may further lead the optimal solutions obtained by the
nominal problem to no longer optimal or even infeasible ones.
To tackle the optimization problems under data uncertainty
in practice, in the following sections, we will extend the
nominal problem with deterministic parameters into a robust
optimization problem that is still feasible in practical wireless
networks, and accordingly develop a distributed solution to the
proposed robust optimization problem.

IV. Robust Multipath Rate Control for SVC

Multicast Streaming

In this section, we consider a practical wireless network
where some link failures might occur due to wireless channels
and mobility in wireless nodes [11]. To enhance the robustness
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of the wireless communication network, an efficient way is to
reserve partial bandwidth for backup paths disjoint from the
primal paths during the transmission of SVC multicast stream,
such that a partial or all of the traffic would be rerouted to the
corresponding disjoint backup paths when the primary paths
fail. Here we consider the robust multipath rate-control and
bandwidth reservation problem for SVC multicast streaming
when possible link failures of primary paths exist, to ensure
service feasibility and availability in the presence of link
failures. In the meanwhile, an uncertainty set of the wireless
medium capacity is introduced to represent the uncertain and
time-varying property of parameters related to the wireless
channel, in accordance with the fluctuation and perturbation
in practical wireless networks.

A. Preliminaries to Distributed Robust Optimization

According to the form of the nominal optimization problem
P1, we focus on a class of optimization problems with the
following nominal form: maximization of a concave objective
function over a given data set characterized by linear con-
straints as follows:

max
x

U(x) (7)

s.t. Ax � c

where A is an M × N matrix, x is an N × 1 vector, c is an
M×1 vector, and Ax � c denotes that c−Ax is componentwise
nonnegative.

The uncertainty of (7) may exist in the objective function
U(x), the matrix parameter A, and the vector parameter c. It is
demonstrated by [16] that the uncertainty in the objective func-
tion U(x) can be converted into uncertainty of the parameters
defining the constraints. In the next section, we show that it is
also possible to convert the uncertainty in c into uncertainty in
A in certain cases. In the remainder of this section, therefore,
we focus on studying the uncertainty in the matrix parameter
A, the structures and physical meaning of which can readily
lead to distributed algorithms in many networking problems.
Furthermore, quantifying the tradeoff between robustness and
distributedness is also studied in this paper.

In the robust counterpart of (7), the constraint Ax � c is
required to be valid for any A ∈ A, where A denotes the
uncertainty set of A. In this case, the definition of robustness is
the worst-case robustness [34], since the solution of the robust
optimization problem is always feasible. However, this uncer-
tainty definition may be too conservative. A more meaningful
choice of robustness is the chance-constrained robustness,
where the probability of infeasibility is upper bounded. By
solving the worst-case robust optimization problem over a
properly selected subset of the exact uncertainty set, the
chance-constrained robustness of the robust solution can be
flexibly adjusted.

If A is assumed to be an arbitrary uncertainty set, the robust
optimization problem is difficult to solve even in a centralized
manner [15]. Therefore, we focus on the study of constraint-
wise (row-wise) uncertainty set, where the uncertainties be-
tween different rows in matrix parameter A are decoupled.

Though restricted, this type of uncertainty set characterizes the
data uncertainty in many practical problems, and also leads
the robust optimization problem to a distributively solvable
formulation.

To introduce uncertainty in the matrix parameter A, denote
the jth row of A by aT

j , which lies in a compact uncertainty
set AjT . Then the robust optimization formulation of (7) can
be written as follows:

max
x

U(x) (8)

s.t. aT
j x ≤ cj; ∀aj ∈ Aj, ∀1 ≤ j ≤ M.

It is shown by [17] that the uncertainty sets in robust
optimization problem (8) can be equivalently written in the
form of protection functions. Denote the matrix parameter in
the nominal counterpart of (7) as a coefficient matrix Ā with
the jth row’s coefficient āj ∈ Aj when there is no uncertainty,
we have the following proposition as proven in [17].

Proposition 1: Problem (8) is equivalent to the following
convex optimization problem:

max
x

U(x) (9)

s.t. āT
j x + gj(x) ≤ cj; ∀1 ≤ j ≤ M

where

gj(x) = sup
aj∈Aj

(aj − āj)T x (10)

is the protection function for the jth constraint depending on
both the uncertainty set Aj and the nominal row coefficient
āj . Each gj is a convex function.

B. Robust Formulation

As the extension of the nominal problem with deterministic
parameters as proposed in Section III, the robust formulation
of multipath rate-control and bandwidth reservation problem
for SVC multicast streaming is taken into account. First,
to ensure robust data transmission against the wireless link
failures and thus enhance the robustness of the wireless com-
munication network, each destination node d also determines
a backup path when it joins the network, in addition to the set
of J(d) primary paths. To take advantage of network coding,
the path-overlapping allocation of backup paths for different
receivers is considered. The nonnegative backup path choice
matrix is denoted as

Bd = {bl
d},

{
bl

d ∈ [0, Bd], link l is on ds backup path

bl
d = 0, otherwise

where Bd > 0 indicates the maximum percentage that desti-
nation node d allocates its rate to the backup path. The actual
rate percentage of backup link bl

d could be a random variable
between 0 and Bd , depending on whether the primary paths
fail. Furthermore, we assume that a path can only be selected
as either a primary path or a backup path but not both for the
same destination node.

Second, due to the fluctuation and perturbation in practical
wireless networks, the rate of each wireless link and its corre-
sponding cluster supported by the wireless shared medium are
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time-varying and cannot achieve the maximum rate Cl most
of the time. To represent the uncertain property of parameters
related to the wireless channel, we introduce a perturbation
factor δ ∈ [�, 1], which indicates the instant percentage of
maximum rate Cl that can be practically achieved by the
wireless channel. Therefore, the actual rate of wireless link l

and its corresponding cluster �(l) fluctuates between the lower
bound �Cl and the upper bound Cl. Accordingly, the robust
multipath routing rate allocation problem for SVC multicast
streaming is given by

P2 : max
R

∑
d∈D

∑
m∈M

Um

⎛
⎝J(d)∑

j=1

Rm
dj

⎞
⎠

(11)

s.t.

1)
J(d)∑
j=1

hl
djR

m
dj + gm

l (Bv, R) ≤ fm
l ; ∀m ∈ M, ∀l ∈ E, ∀d ∈ D

2)
∑
m∈M

fm
l

(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

(1 − ρk)
≤ δCl; ∀δ ∈ [�, 1],

∀l ∈ Eand 3), 4), 5), 6) in P1

where gm
l (Bv, R) is the protection function for the traffic from

a set of destination nodes {v} ⊆ D whose backup paths use
link l.

Stipulating that nature will be restricted in such behavior
that only a subset of destination nodes will suffer from link
or path failures in order to adversely affect the solution,
we propose a method similar to the D-norm approach [16],
[35] to model the protection function gm

l (Bv, R). Denote the
notation D� as the subset of destination nodes that might
experience link or path failures, and � represents the number
of destination nodes within this subset, i.e., D� ⊆ D and
|D�| = �. It is noted that the definition of robustness associated
with the D-norm formulation is to maintain feasibility if at
most � out of all possible |D| destination nodes experience
link or path failures. Considering network coding condition
that different destination nodes will not compete for link
bandwidth within the same layer, the protection function can
be written as

gm
l (Bv, R) = max

D�⊆D

⎧⎨
⎩max

v∈D�

bl
v(

J(v)∑
j=1

Rm
vj)

⎫⎬
⎭ . (12)

In (12), � is a parameter instead of a optimization variable. If
� = 0, then gm

l (Bv, R) = 0, and the corresponding constraint is
reduced to the nominal constraint. On the contrary, if � = |D|,
then gm

l (Bv, R) = maxv∈D bl
v(

∑J(v)
j=1 Rm

vj) and the corresponding
constraint becomes the worst-case formulation [16]. Therefore,
the value of � theoretically takes control of the tradeoff
between robustness and performance.

Centralized algorithms can be used to solve the convex
optimization problem P2. In practice, however, such solutions
require global information and coordination between all nodes
and links, which is very costly and sometimes infeasible [34],

[36]. In comparison, distributed algorithms can be used to
dynamically adjust the rates in accordance with changes in the
network. In the following section, we will develop a distributed
solution of the proposed multipath rate-control problem. Since
robustness, i.e., service reliability, is taken into account in
this application, it is most likely that such a change and
corresponding update are only required infrequently.

V. Distributed Algorithm

In this section, we develop a distributed solution to the pro-
posed robust optimization problem P2 that allows each node
and link to control and update the transmission parameters by
itself.

A. Equivalent Formulation

Observing P2, it is uncertain that Constraints 1) and 2)
prevent the robust optimization problem from a fully dis-
tributed solution. We first show that the perturbation factor
δ in Constraint 2) can be moved into the left part and thus the
uncertain Constraint 2) is converted to a linear constraint with
certain parameters.

Proposition 2: For any link l ∈ E, the constraint

∑
m∈M

fm
l

(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

(1 − ρk)
≤ δCl, ∀δ ∈ [�, 1] (13)

is equivalent to the following constraint:

∑
m∈M

fm
l

�(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

�(1 − ρk)
≤ Cl. (14)

Proof: See Appendix A.
As for Constraint 1), it is shown by Proposition 3 that this
nonlinear constraint with the protection function gm

l (Bv, R)
can be replaced by a set of linear constraints.

Proposition 3: For any link l ∈ E, any destination node
d ∈ D, and any layer m ∈ M, the single constraint

J(d)∑
j=1

hl
djR

m
dj + gm

l (Bv, R) ≤ fm
l (15)

is equivalent to the following set of constraints:

J(d)∑
j=1

hl
djR

m
dj + bl

v

⎛
⎝J(v)∑

j=1

Rm
vj

⎞
⎠ ≤ fm

l , ∀v ∈ D�, ∀D� ⊆ D. (16)

Proof: See Appendix B.
Note that the number of constraints in (16) is

(|D|
�

) · �, and
increases quickly with |D| and �. However, due to the spe-
cial structure of the protection function that utilizes network
coding, most of the constraints in (16) should be inactive and
thus redundant. This motivates us to formulate the protection
function gm

l (Bv, R) into another set of linear constraints, the
number of which is much less.



LI et al.: DISTRIBUTED ROBUST OPTIMIZATION FOR SCALABLE VIDEO MULTIRATE MULTICAST 949

Proposition 4: For any link l ∈ E, any destination node
d ∈ D, and any layer m ∈ M, the single constraint (15) is
equivalent to the following set of constraints:

J(d)∑
j=1

hl
djR

m
dj + bl

v

⎛
⎝J(v)∑

j=1

Rm
vj

⎞
⎠ ≤ fm

l , ∀v ∈ D. (17)

Proof: See Appendix C.
It can be observed that the set of constraints (17) no longer
relies on D� and �. Propositions 2 and 4 together transform the
robust optimization problem P2 into a simplified formulation
P3 independent of uncertainty δ, �, and D� as follows:

P3 : max
R

∑
d∈D

∑
m∈M

Um

⎛
⎝J(d)∑

j=1

Rm
dj

⎞
⎠ (18)

s.t.

1)
J(d)∑
j=1

hl
djR

m
dj+bl

v

⎛
⎝J(v)∑

j=1

Rm
vj

⎞
⎠ ≤fm

l ; ∀v, d∈D, ∀m∈M, ∀l ∈ E

2)
∑
m∈M

fm
l

�(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

�(1 − ρk)
≤ Cl; ∀l ∈ E

and 3), 4), 5), 6) in P1.

To analyze the impact of the protection parameters, Bd

denotes the maximum backup percentage of destination node
ds total rate on the backup path. If Bd = 0, then there is no
rate allocated for the backup paths, and Constraint 1) in P3 is
reduced to the nominal constraint. As Bd increases from 0 to
1, the protection rate of backup path becomes larger, which
may cause the overall allocated rates for destination nodes
to decrease. Similarly, � reflects the extent of fluctuation of
wireless links’ maximum transmission rate. When � = 1,
the wireless channel condition is determined with known
maximum transmission rate, and Constraint 2) in P3 is reduced
to the nominal constraint. As � decreases, the protection
level for wireless channel’s fluctuation becomes greater, and
accordingly the overall allocated rates for destination nodes
may decrease. Therefore, Bd and � can control the tradeoff
between robustness and performance in P3.

B. Dual Decomposition

Decomposition theories provide a mathematical foundation
for the design of modularized and distributed control of net-
works [36]. The decomposition procedure aims to decompose
a large and complex optimization problem into a set of small
subproblems, which can be then solved by distributed and
often iterative algorithms that converge to the global optimum.
It is observed that problem P3 can be decoupled using dual
decomposition. More specifically, by relaxing the coupling
Constraints 1)–4) in P3 with Lagrange multipliers λ, μ, η, and

Fig. 2. Schematic diagram of dual decomposition.

θ, respectively, the Lagrangian of P3 is obtained as follows:

L(R, f, λ, μ, η, θ) =
∑
d∈D

∑
m∈M

Um

⎛
⎝ J(d)∑

j=1

Rm
dj

⎞
⎠

−
∑
l∈E

∑
d∈D

∑
m∈M

∑
v∈D

λml
d(v)

⎡
⎣ J(d)∑

j=1

hl
djR

m
dj + bl

v

⎛
⎝ J(v)∑

j=1

Rm
vj

⎞
⎠− fm

l

⎤
⎦

−
∑
l∈E

μl

[∑
m∈M

fm
l

�(1 − ρl)
+
∑
k∈�(l)

∑
m∈M

fm
k

�(1 − ρk)
− Cl

]

−
∑
d∈D

∑
m∈M

ηm
d

⎡
⎣
⎛
⎝ J(d)∑

j=1

Rm
dj

⎞
⎠
⎛
⎝ J(d)∑

j=1

Rm
dj − rm

min

⎞
⎠
⎛
⎝ J(d)∑

j=1

Rm
dj − rm

max

⎞
⎠
⎤
⎦

−
∑
d∈D

M−1∑
m=1

θm
d

⎡
⎢⎢⎢⎢⎢⎣

J(d)∑
j=1

R
(m+1)
dj

r
(m+1)
max

−

J(d)∑
j=1

Rm
dj

rm
min

⎤
⎥⎥⎥⎥⎥⎦ (19)

and the corresponding Lagrange dual function is

g(λ, μ, η, θ) = sup
R	0, f	0

L(R, f, λ, μ, η, θ). (20)

Then the Lagrange dual problem of P3 can be formulated as

min
λ	0, μ	0, η	0, θ	0

g(λ, μ, η, θ). (21)

According to convex optimization theories [36], [37], if the
original problem P3 is convex, it is equivalent to its Lagrange
dual problem in (21). Then, P3 can be decomposed into a
master dual problem P3a and a set of subproblems P3b–P3c
that can be solved in a distributed manner as follows:

P3a : min
λ,μ,η,θ

g(λ, μ, η, θ) (22)

s.t. λ 	 0, μ 	 0, η 	 0, θ 	 0

P3b : max
R

Ub(R) (23)

s.t. Rm
dj ≥ 0; ∀j ∈ J(d), ∀m ∈ M, ∀d ∈ D

P3c : max
f

Uc(f) (24)

s.t. fm
l ≥ 0; ∀l ∈ E, ∀m ∈ M

where L(R, f, λ, μ, η, θ) = Ub(R) + Uc(f), Ub(R) and Uc(f)
denote the summation of terms relating to R and f in (19),
respectively.

As illustrated by the relationship in Fig. 2, subproblems
P3b and P3c are controlled by the master dual problem
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P3a through Lagrange prices. In the meanwhile, they can
conversely affect the master dual problem through primal
variables. At the lower level, subproblems P3b for each d,
j, and m, and P3c for each l and m can be solved separately.
Accordingly, the primal variables R and f are updated, re-
spectively, and then sent to the master dual problem P3a. At
the higher level, the master dual problem P3a aims to update
Lagrange prices (dual variables) λ, μ, η, and θ, which are
further used for the solution of P3b and P3c.

Since the objective functions of the master dual problem
P3a and subproblems P3b–P3c are differentiable with respect
to the dual variables λ, μ, η, and θ, and primal variables R
and f , all problems can be solved by the gradient algorithm
[38], [39]. Based on this observation, we propose the following
primal-dual algorithm that updates the primal and dual vari-
ables simultaneously to solve the optimization problem P3:

Rm
dj(t + 1) =

[
Rm

dj(t) + α(t)
∂L(R, f, λ, μ, η, θ)

∂Rm
dj

]+

(25)

fm
l (t + 1) =

[
fm

l (t) + α(t)
∂L(R, f, λ, μ, η, θ)

∂fm
l

]+

(26)

λml
d(v)(t + 1) =

[
λml

d(v)(t) − α(t)
∂L(R, f, λ, μ, η, θ)

∂λml
d(v)

]+

(27)

μl(t + 1) =

[
μl(t) − α(t)

∂L(R, f, λ, μ, η, θ)

∂μl

]+

(28)

ηm
d (t + 1) =

[
ηm

d (t) − α(t)
∂L(R, f, λ, μ, η, θ)

∂ηm
d

]+

(29)

θm
d (t + 1) = [θm

d (t) − α(t)
∂L(R, f, λ, μ, η, θ)

∂θm
d

]+ (30)

where t denotes the iteration index, α(t) are positive step sizes,
and [·]+ denotes the projection onto the set of nonnegative real
numbers.

In terms of physical meanings of Lagrange multipliers,
λ represents the “congestion prices” of information flow at
wireless links, i.e., λml

d(v) can be considered as the “congestion
price” of information flow at link l for destination node d

(l is on ds primary paths) and v (l is on vs backup path)s
bandwidth requirement in layer m. At link l, if the total infor-
mation flow bandwidth demand

∑J(d)
j=1 hl

djR
m
dj + bl

v(
∑J(v)

j=1 Rm
vj)

in layer m exceeds the supply fm
l , then the “congestion price”

λml
d(v) will increase. Accordingly, in problem P3b, Rm

dj will
decrease in order to meet the link’s bandwidth requirement
of information flow, fm

l , and vice versa, and μ specifies the
“aggregated congestion prices” of physical flows at wireless
links. At link l, if the total physical flow bandwidth demand∑

m∈M

fm
l

�(1−ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

�(1−ρk) exceeds the supply
Cl, then the “aggregate congestion price” μl will increase.
Consequently, fm

l in problem P3c will decrease in order to
meet the link’s bandwidth supply of physical flow, Cl, and

Algorithm 1 Distributed optimization algorithm

Initialization
Set t = 0, and set Rm

dj(0), fm
l (0), λml

d(v)(0), μl(0), ηm
d (0), and

θm
d (0) to some nonnegative value for all d, v, m, l, and j.

repeat
Update at wireless link l ∈ E:

1) Receives fm
k (t) from the cluster {k|k ∈ �(l)};

2) Receives μk(t) from the cluster {k|k ∈ (l)};
3) Receives Rm

dj(t) from {d ∈ D|hl
dj = 1 or bl

d > 0};
4) Fetches λml

d(v)(t), μl(t), fm
l (t) stored in local proces-

sors;
5) Updates fm

l (t), λml
d(v)(t), and μl(t) by (26)–(28),

respectively;
6) Transmits the control packet (CP) comprising the

updated physical flow rate fm
l (t + 1) to the cluster {k|k ∈

(l)};
7) Transmits CP that comprises the updated price μl(t+

1) to the cluster {k|k ∈ �(l)};
8) Sends the CP that comprises updated price λml

d(v)(t+1)
in the downstream direction to the subset {d ∈ D|hl

dj =
1} ∪ {v ∈ D|bl

v > 0}.
Update at destination node d ∈ D:

1) Receives λml
d(v)(t) from {l ∈ E|hl

dj = 1 or bl
v > 0};

2) Fetches Rm
dj(t), ηm

d (t), θm
d (t) stored in local proces-

sors;
3) Updates Rm

dj(t), ηm
d (t), and θm

d (t) by (25)–(30), re-
spectively;

4) Sends the rate packet (RP) comprising Rm
dj(t + 1) in

the upstream direction to {l ∈ E|hl
dj = 1 or bl

d > 0}.
until All variables converge to the optimums or the maxi-
mum iteration number is achieved.

vice versa. Similarly, the other two Lagrange multipliers, η

and θ, can be considered as the “SVC encoding prices” for
each destination node in a multicast session. Furthermore, all
updating operations are distributed and can be implemented at
individual links and nodes using only local information.

The convergence behavior of the PA can be analyzed by
applying Lyapunov stability theorem [14], [38], [40]. Regard-
ing the proposed primal-dual algorithm outlined in (25)–(30)
as a nonlinear autonomous system, it can be shown in a similar
way as in [14] that the equilibrium point of this dynamic sys-
tem is asymptotically stable. Therefore, the global asymptotic
stability of the primal and dual variables in (25)–(30) can be
guaranteed, which leads to the convergence behavior of the
distributed solution to the dual problem of P3. Since P3 is
convex, we can solve it through the equivalent dual problem
using the proposed distributed algorithms [36].

C. Implementation Issue

To implement the proposed distributed algorithm, each
link l or destination node d is treated as an entity capable
of processing, storing, and communicating information. In
practice, each link l = (i, j) is delegated to its sender node i,
and all computations related to link l = (i, j) will be executed
on node i. Here, we assume that the processor for link l keeps
track of variables fm

l , λml
d(v), and μl, while the processor of
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Fig. 3. Network topologies associated with maximum transmission rates,
where (a) is a typical butterfly topology for numerical experiment and
(b) is with additional backup path.

destination node d keeps track of variables Rm
dj , ηm

d , and θm
d . A

distributed implementation of the proposed iterative algorithm
is summarized in Algorithm 1.

In summary, the centralized approach requires all of the
above primal and dual variables shared in the entire network
and thus causes a great amount of communication overhead.
Utilizing the proposed distributed algorithm, however, the
communication overhead only comprises the sending overhead
of λml

d(v)(t + 1), Rm
dj(t + 1) and the transmitting overhead of

fm
l (t + 1), μl(t + 1) at each iteration.
In terms of amount of message passing, the overhead of

the proposed distributed algorithm consists of two parts: the
network coding overhead and the communication overhead.
According to [8], the side information required by network
coding is the h-dimensional global encoding vector in the
header of each packet, where h is the number of source packets
that need to be transmitted. Therefore, the cost of the practical
network coding scheme is the overhead of transmitting h extra
symbols in each packet. Considering a large size packet with
the number of both header and payload symbols far more than
h, such overhead is approximately negligible. For example, in
the Internet, a typical maximum packet size excluding headers
is somewhat larger than 1400 bytes. Thus, each IP packet can
carry about 1400 symbols if each symbol takes up 1 byte. If
h is 50, then the overhead introduced by the side information
of network coding is approximately 50/1400 ≈ 3%.

On the other hand, the communication overhead is the CP
and RP information at each iteration. Consider the imple-
mentation issues [27] and take Fig. 3(a), e.g., at the end of
each iteration, wireless link (n1, n3) needs only to send its
CP downward to destination nodes d1, d2 and to wireless link
(n2, n3), while destination node d1 needs only to send its RP
upward to the links belonging to its two primal paths and one
backup path. Supposing each updated primal or dual variable
is float type that takes up 4 byte, and let M = 3, then the CP of
link (n1, n3) requires 3×2×2×4+1×4+1×3×4 = 64 bytes
and the RP of node d1 requires 3 × 2 × 4 = 24 bytes. Thus,
the total communication overhead sums up to 88 bytes. For
the same configuration of IP packet with a packet size of
1400 bytes, the communication overhead introduced by the
PA is 88/1400 = 6%. Furthermore, it can be noted that these
packets (CPs and RPs) in practical implementation need not be
communicated as separate packets; the CPs can be conveyed

Fig. 4. Convergence performance of the PA. (a) Allocated rate for d1 and d2.
(b) Physical flow rate for wireless links.

through a field in the video data packets, while the RPs can
be conveyed through a field in the acknowledgement (ACK)
packets. The maximal additional delay introduced by sending
these packets is the one way propagation delay of the particular
multicast destination node.

When a wireless network initializes multicast sessions, the
proposed distributed algorithm would run and determine the
optimal resource allocation rates and routes for all destination
nodes through the convergence time. Within this duration, the
total overhead comprises both network coding overhead and
the communication overhead. Once it converges to the optimal
values, the entire network will work with certain tolerance to
dynamic network changes with only network coding overhead.

VI. Experimental Results

In this section, we will evaluate the overall performance
of the PA. Both numerical and packet-level simulations are
conducted over a typical butterfly network and a large-scale
wireless network, respectively. The corresponding simulation
results evaluate the convergence behavior of the proposed
distributed algorithm, and further demonstrate that the PA can
promise the optimal overall video quality for all destination
nodes with appropriate protection against dynamic network
changes.

A. Algorithm Behavior and Performance Evaluations

First, we implement numerical experiments and evaluate the
PA in the wireless network with a simple but classical butterfly
topology, as illustrated in Fig. 3(a). Here, s, ni, and di represent
source node, relay node, and destination node, respectively.
The maximum transmission rates of wireless links are shown
in Fig. 3(a). Suppose that the packet loss probability of each
wireless link is ρl = 0.1, and set the protection parameters
Bd = 0.5, � = 0.9.

In the numerical experiments, we assume that the video bit
stream has three layers, with the base layer at a rate of 3 (data
units/s), the first enhancement layer at a rate of 2 (data units/s),
and the second enhancement layer at a rate of 1 (data unit/s).
In Fig. 3(a), it is obvious that each destination node has three
alternative paths from the source node. We specify two primal
paths for each destination node, which are s → n1 → d1,
s → n2 → n3 → n4 → d1, and s → n2 → d2, s → n1 →
n3 → n4 → d2, respectively. Accordingly, the rest two paths,
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Fig. 5. Convergence performance of the PA, the maximum backup percent-
age Bd is set to 0.3 in (a) and (b), and 0 in (c) and (d).

s → n1 → n3 → n4 → d1 and s → n2 → n3 → n4 → d2,
are set to be d1s and d2s backup paths.

1) Convergence Behavior of the PA: In accordance with
subproblems P3b and P3c, Fig. 4 shows the convergence
behavior of the two primal optimization variables R and f
at a fixed step size 0.01. For example, Fig. 4(a) illustrates
the iterations of allocated rates for both destination nodes and
Fig. 4(b) represents the iterations of physical flow rates of four
wireless links.

We observe that both variables R and f converge to the
optimal values after 450 iterations, which implies that the PA
converges very quickly. For example, the allocated rate for d1

approaches within 10% of its optimal value after 400 iterations
and achieves the optimal value 3.006 after 450 iterations. The
physical flow rate of link (s, n1) approaches within 10% of
its optimal value after 100 iterations and achieves the optimal
value 4.048 after 400 iterations. In fact, it can also be observed
that in all cases the convergence to 90% optimality is much
faster, with at least 20% fewer iterations than those required for
convergence to optimality. Therefore, we can obtain a feasible
solution to a certain degree of optimality in a much shorter
convergence time.

Furthermore, it is noted in Fig. 4 that since the protection
level is relatively high (i.e., Bd = 0.5), d1 receives the base
layer, while d2 can only subscribe to the base layer partially
with a rate of 2.3 (data units/s). To show the convergence
behavior of the PA at different levels of protection, Fig. 5
presents the iterations of allocated rates for both destination
nodes with Bd = 0.3 and Bd = 0, respectively. Similarly
as in Fig. 4, all allocated rates in Fig. 5 also converge to
the optimal values after several hundred iterations. As Bd

reduces, the protection level becomes lower, and accordingly
both destination nodes can receive more SVC video stream
layers. For example, when Bd = 0.3, both destination nodes
partially subscribe to base layer and the first enhancement
layer. When Bd = 0, d1 fully receives all the three layers,
while d2 partially subscribes to the three layers.

Fig. 6. Impact of maximum backup percentage Bd on allocated rate for
(a) d1 and (b) d2.

2) Impact of Maximum Backup Percentage Parameters:
Next, we study the impact of the maximum backup percentage
parameter Bd and the corresponding results (in forms of
the total allocated rate of all three layers, and the allocated
rate for base layer, the first enhancement layer, the second
enhancement layer) are shown in Fig. 6. Here, we vary Bd

from 0 to 1. Fig. 6(a) and (b) illustrates the impact of Bd on the
allocated rates for d1 and d2, respectively. When Bd increases
from 0 to 1, the protection level of the PA against link failures
becomes higher, meanwhile, the increment of protection rate
of each backup path causes the capacities of links remaining
for primal paths to decrease. Therefore, it can be seen from
Fig. 6 that the total allocated rates of all SVC layers for both
d1 and d2 decrease as a result of the increment of Bd .

It should be noted in Fig. 6(a) that the allocated rate for
d1s base layer dose not always decrease as the increment
of Bd . For example, when Bd varies from 0.4 to 0.5, d1s
allocated rate of base layer increases from 2.3 to 3. This
“unexpected” increasing is mainly because the PA ensures
that every destination node receives as many SVC layers
as possible to achieve the maximum total allocated rate.
Therefore, at Bd = 0.4, d1 subscribes to the base layer partially
at a rate of 2.3 (data units/s) in order to make the rest
bandwidth enough for receiving the first enhancement layer.
As Bd increases to 0.5, the first enhancement layer cannot be
received even if d1 subscribes to the base layer at the minimum
partial margin, however, there is still sufficient bandwidth for
fully receiving the base layer at a rate of 3 (data units/s), and
the total allocated rate of all layers for d1 does decrease when
Bd varies from 0.4 to 0.5.

Furthermore, in Fig. 6(b), as Bd varies from 0.1 to 0.3 (or
0.4–0.7), the total allocated rate of all layers for d2 remains
approximately the same value. This observation occurs when
d2s reception of lower layers is not affected by the bandwidth
reduction caused by the increment of Bd . For example, at
Bd = 0.1, d2 receives the lower two layers since the remaining
bandwidth cannot support the subscription to the second
enhancement layer. As Bd increases to 0.3, this remaining
bandwidth is accordingly reduced, but there is still sufficient
bandwidth for the reception of the lower two layers. When Bd

further increases to 0.4, d2 can only receive the base layer since
the reception of the first enhancement layer is not supported
by the remaining bandwidth.

3) Impact of Different Backup Path Selections: As men-
tioned in Section IV-B, the backup path of one destination
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Fig. 7. Allocated rate for (a) d1 and (b) d2 with different backup path
selections.

node is selected in such way that the probability of over-
lapping with the backup paths of other destination nodes is
high, so that network coding can be applied. We compare
different choices of backup paths for d1 and d2, and their
impact on the rate allocation is shown in Fig. 7. Here, the
aforementioned primal and backup path selection is denoted as
“path selection 1,” and “path selection 2” represents a different
choice of primal and backup paths, i.e., two primal paths
for each destination node are s → n1 → n3 → n4 → d1,
s → n2 → n3 → n4 → d1, and s → n1 → n3 → n4 → d2,
s → n2 → n3 → n4 → d2, respectively, while s → n1 → d1

and s → n2 → d2 are set to be d1 and d2s backup paths
without overlapping. With this path selection, network coding
can be implemented neither on primal paths nor on backup
paths. Therefore, compared with “path selection 2,” “path
selection 1” with overlapped backup paths generally leads to
greater allocated rates for both destination nodes, especially
when Bd is relatively small. When Bd increases to a larger
value (e.g., greater than 0.4), the allocated rates with “path
selection 1” may be less than “path selection 2,” since at this
time the backup paths of “path selection 1” cannot afford such
protection rates.

In order to further study the impact of different backup path
selections. As illustrated in Fig. 3(b), we set a new relay
node n5 and specify the backup paths as additional paths
s → n5 → d1 and s → n5 → d2, which are denoted by
dashed lines. Note that these two additional backup paths
are overlapped and totally disjoint from the primal paths.
Accordingly, this choice of backup path selection is denoted
as “additional backup path,” whose primal paths are still the
same as in “path selection 1.” It can be seen from Fig. 7 that
when Bd is relatively small, with both backup path selection
(“additional backup path” and “path selection 1”), the allocated
rates for both destination nodes are similar. However, when
Bd increases to a larger value (e.g., greater than 0.4), the
allocated rates with “additional backup path” are greater, since
the two additional backup paths are disjoint from primal paths
and thus have sufficient bandwidth for larger protection rates.
In conclusion, to promise the application of network coding
and sufficient bandwidth for protection rate allocation, it is
encouraged to make the backup paths of different destination
nodes overlapped and disjoint from primal paths.

B. Packet Level Simulations for Larger Scale Network

To evaluate the effect for a more general network, the
packet-level simulation is conducted on the wireless network

Fig. 8. (a) Network topology in packet-level simulation. (b) Convergence of
allocated rate for d1–d5 with the PA.

as shown in Fig. 8(a), which is generated by 20 randomly
placed nodes in a 50 m-by-50 m area. Assume every two
nodes within a distance of 30 m are able to communicate, and
suppose the maximum transmission rate of each wireless link
is 600 kb/s, and the wireless capacity in a shared medium is
3 Mb/s. Also set the protection parameters Bd = 0.4, � = 0.9.
In Fig. 8(a), one node is selected as source node s, and
five nodes are set to be destination nodes d1–d5. For each
destination node, the number of primal paths is randomly set
between 1 and 3, and the one additional backup path is selected
to be overlapped with other backup paths and disjoint from
primal paths, which is signified with red dashed links.

In the packet-level simulations, practical random network
coding [8] is used to distribute the source packets of each
layer. Here, we assume intra-session network coding is imple-
mented within each layer to ensure easy operation. During
data transmission, each relay node (as well as the source
node) combines its received packets from different upstream
links (or video source packets encoded by the source node)
with random linear operations over a large Galois field and
then sends the coded packets to its downstream links. Each
destination node can correctly decode the original packets if
it receives enough coded packets. To cope with asynchronous
transmission, we use the buffer model [8] to synchronize the
packet arrivals and departures. In the buffer model, packets
that arrive at a node on any of the incoming links are put into
a single buffer sorted by the layer number. Whenever there is
a transmission opportunity at an outgoing link, the number of
packets of every layer in the buffer is checked and a packet
is generated containing a random linear combination of all
the packets that belong to the layer with the largest number
of packets. After the generated packet is transmitted to the
outgoing link, certain old packets are flushed from the buffer
according to the flushing policy. Specially, if two layers have
the same number of packets in the buffer, the lower layer is
prioritized to generate a packet for transmission.

We use Joint Scalable Video Model 7 10 reference codec
of H.264/AVC extension standard [41], with three well-known
test sequences (Bus, Football, and Foreman) at frame rate of
30 f/s, CIF (352 × 288) resolution, and a group of picture-
length of 32 frames. They are encoded with 256 kb/s on
the base layer, and 384 kb/s, 512 kb/s, and 1024 kb/s on the
three enhancement layers by fine granularity scalable coding.
Fig. 9(a) shows the RD performance [peak signal-to-noise ratio
(PSNR)] of SVC for the three test video sequences obtained
in the packet-level simulation.
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Fig. 9. (a) PSNR performance achieved by SVC stream for three test video
sequences. (b) Received video quality in PSNR of Foreman sequence for
d1–d5 when Bd varies.

Fig. 8(b) illustrates the iterations of allocated rates for desti-
nation nodes d1–d5. Theoretically, since the PA is implemented
in a distributed manner that only requires local information,
the communication overhead and thus convergence behavior
would not be affected very much by larger scale of net-
works. In comparison with the convergence behavior of simple
butterfly topology as shown in Figs. 4 and 5, for instance,
although the number of iterations needed for convergence in
Fig. 8(b) is moderately larger, it is still less than 1000 and only
takes several hundred iterations to achieve convergence, which
means the convergence speed slows down slightly as the scale
of networks increases. Therefore, the impact on the system
performance affected by larger scale networks is relatively
small.

1) Impact of Protection Parameters and PLR: As analyzed
in Section V-A, the protection parameters Bd and � would
determine the protection level of the PA and thus adjust the
tradeoff between robustness and optimization performance. In
Fig. 9(b), we illustrate the received video quality of Foreman
sequence of d1–d5 when the maximum backup percentage
parameter Bd varies. It can be seen that the results in Fig. 9(b)
conforms the same trend as that in Fig. 6, i.e., the overall
received video quality of all destination nodes will decrease
as the increment of Bd . In detail, when Bd is relatively small
(e.g., not greater than 0.3), the backup path of each destination
node can afford the corresponding protection rate and thus
the received video quality would not be affected by varying
Bd . Also, since only one primal path is specified for d1 and
d5, and the protection rate on their backup paths can always
be allocated when Bd varies from 0 to 1. Therefore, these
two destination nodes would achieve approximately the same
received video quality when Bd changes.

Fig. 10(a) reflects the impact of maximum wireless link
fluctuation parameter � on the received video quality of
Football sequence of d1–d5. Here, � changes from 0.6 to 1.
When � = 1, the wireless channel condition is determined
with known maximum transmission rate, and all destination
nodes achieve best overall video quality without any protection
against wireless links’ fluctuation. As the decrement of �,
the protection level for wireless channel’s fluctuation becomes
higher, and accordingly the overall received video quality of
all destination nodes will decrease.

It is noted that all the aforementioned results are obtained
under an average PLR of each wireless link, and the impact
of PLR of wireless links would be further validated here. By

Fig. 10. Impact of (a) � and (b) ρl on received video quality in PSNR for
d1–d5.

Fig. 11. Comparison of the convergence behavior when network fluctua-
tion occurs. (a) Dynamic change of the maximum rate of wireless links.
(b) Wireless link fails and reconnects.

varying the average packet loss rate of each wireless link from
0% to 30%, the overall received video quality of all destination
nodes solved by the PA is shown in Fig. 10(b). It can be seen
that as the average packet loss rate increases, the received
video quality of Bus sequence of each destination node will
accordingly decreases, because of the reduction of available
bandwidth for both primal and backup paths.

2) Adaptation to Dynamic Network Changes: Next, we
study the adaptation of the proposed robust algorithm to
practical networks with dynamic network changes, and further
compare the PA with the Joint optimization Algorithm (JA)
without protection in [14]. On the basis of Fig. 9(b), here Bd

is set to 0.3 such that the proposed algorithm is implemented
with both good performance and certain level of protection.

We study the convergence behavior of the proposed dis-
tributed algorithm under a dynamic fluctuation (perturbation
factor) of Cl (the maximum transmission rates of wireless
links) in Fig. 11(a). For each wireless link with theoretical
maximum transmission rate Cl, suppose practically its maxi-
mum transmission rate fluctuates between [0.8 · Cl, Cl] (i.e.,
[480 kb/s, 600 kb/s]) in realistic situation. Both algorithms (PA
and JA) start the implementation at iteration 0. It is noted
that here one iteration of JA means one high-level iteration
in its two level optimization structure. It can be observed
that although the actual maximum transmission rate of each
wireless link is time-varying, the allocated rate for d4 by
the proposed algorithm with two setups of � (� = 0.8
and � = 0.9) both converge smoothly to the corresponding
steady states after several hundred iterations. In comparison,
the allocated rate obtained by JA cannot converge to a steady
state due to the perturbation of maximum transmission rates
of wireless links, and is observed to fluctuate in accordance
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Fig. 12. Comparison of received video quality in PSNR of (a) Bus, (b) Football, and (c) Foreman sequences for all destination nodes.

with such perturbation. The fluctuation of allocated rate solved
by JA is upper bounded by the convergence rate achieved by
PA with � = 0.9 and lower bounded by the convergence
rate achieved by PA with � = 0.8. Therefore, although d4s
allocated rate by JA is slightly greater than by PA with
� = 0.8, the fluctuation property would make it inapplicable
for smoothness requirement of video quality.

The adaptation of the proposed algorithm to a dynamic
change of network topology is shown in Fig. 11(b), involving
iterations (high-level iterations) of the allocated rates for d2

and d4. At iteration 1000, one of d2s and d4s primal paths fails,
respectively, since the abrupt departure of node n14 and thus
failure of wireless link (s, n14). At iteration 2000, node n14

rejoins, however, node n7 leaves the network, which causes
one of d2s primal paths to fail. At iteration 3000, node n7

also rejoins the network. It can be seen that the allocated
rates for d2 and d4 by PA both converge smoothly to the
corresponding steady states after several hundred iterations.
After convergence, both allocated rates would not affected
by the sudden network topology changes (e.g., link or path
failures) occurring at iteration 1000, 2000, and 3000. However,
JA need recalculate the allocated rates for both d2 and d4

after either abrupt change, in order to reconverge to a new
steady state. In some cases (e.g., d2s allocated rate by JA
between iteration 1000 and 2000), JA may even not approach
to a steady state, since the time interval between two sudden
changes is not sufficient for convergence. Therefore, JA is
infeasible in practice where the sudden changes of network
topology (e.g., link or path failures) occur frequently.

In conclusion, PA can adapt to dynamic changes and thus
applicable in practical networks. Furthermore, it should be
noted that in Fig. 11 we only show the high-level optimization
iterations of JA’s two level optimization structure. In fact, in
order to implement one high-level iteration, it is required by
JA to run a number of low-level iterations first. Therefore,
even if in Fig. 11 it is seen that both PA and JA are with
similar convergence speed, the actual convergence speed of
JA is much slower than PA.

3) Comparison of With or Without Protection: By in-
troducing protection against link failures and wireless links’
fluctuation, and thus robustness to dynamic network changes,
the proposed algorithm achieves the optimal tradeoff between
robustness and optimization performance. We compare the
proposed algorithm with algorithms without protection. The

comparison result is shown in Fig. 12, by the received video
quality of all three test sequences of all destination nodes.
Within each destination node, from left to right, shown are
the PSNR obtained by the shortest path algorithm (SA),
the JA in [14] and the PA with different values of Bd . In
accordance with the results shown in Fig. 9(b), here Bd is set
to 0.3, 0.6, and 1, respectively. It can be seen that SA obtains
the worst results while JA achieves the best performance.
Generally, the performance of PA is lower bounded by SA,
and upper bounded by JA. However, JA is a deterministic
optimization formulation and thus not feasible for practical
networks. In fact, the implementation of JA comprises two
levels of optimization iterations, which cause the convergence
speed to be much slower than PA. It can also be seen that
when Bd is small, e.g., Bd = 0.3, PA obtains the same
results as JA, but with certain reserved rates on backup
paths in case of link failures of primal paths. Therefore, PA
can be applied in practical networks with protection against
dynamic network changes, and achieve the optimal tradeoff
between optimization performance and robustness, according
to requirements of different protection levels.

VII. Conclusion

Aiming at practical applications of wireless scalable video
streaming, this paper investigated a robust optimization prob-
lem for the overall video quality and traffic performance of
scalable video multirate multicast in wireless networks with
network coding. To make the nominal convex optimization
formulation robust, we reserved partial bandwidth for backup
paths in case of possible link failures of primary paths. It
considered the path-overlapping allocation of backup paths
for different receivers to take advantage of network coding,
and also an uncertainty set of the wireless medium capacity
to represent the uncertain and time-varying property of the
wireless channel. Through protection functions with nonlinear
constraints for the targeted uncertainty, we studied the tradeoff
between robustness and distributedness. A fully decentralized
algorithm has also been provided to attain a practical solution
from the dual decomposition and primal-dual update method.
Through extensive experimental results under critical factors,
the proposed algorithm has been validated to adapt to the
dynamic network changes in an optimal tradeoff between
optimization performance and robustness.
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Appendix A

Proof of Proposition 2

If (13) is true, let δ = � ∈ [�, 1], then we have

∑
m∈M

fm
l

(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

(1 − ρk)
≤ �Cl (31)

and thus we have (14). On the other hand, if f satisfies (14),
then ∀� ≤ δ ≤ 1, we have

∑
m∈M

fm
l

(1 − ρl)
+

∑
k∈�(l)

∑
m∈M

fm
k

(1 − ρk)
≤ �Cl ≤ δCl (32)

i.e., it also satisfies (13). Therefore, these two constraints are
equivalent.

Appendix B

Proof of Proposition 3

From the definition (12), we know that bl
v(

∑J(v)
j=1 Rm

vj) ≤
gm

l (Bv, R) for all v ∈ D� ⊆ D. If R satisfies (15), then ∀v ∈
D� and ∀D� ⊆ D, we have

J(d)∑
j=1

hl
djR

m
dj + bl

v(
J(v)∑
j=1

Rm
vj) ≤

J(d)∑
j=1

hl
djR

m
dj + gm

l (Bv, R) ≤ fm
l

(33)

i.e., it also satisfies the set of constraints in (16). On the other
hand, if (16) is true, then we have

J(d)∑
j=1

hl
djR

m
dj + gm

l (Bv, R)

=
J(d)∑
j=1

hl
djR

m
dj + max

D�⊆D

⎧⎨
⎩max

v∈D�

bl
v(

J(v)∑
j=1

Rm
vj)

⎫⎬
⎭

≤ max
D�⊆D

max
v∈D�

⎧⎨
⎩

J(d)∑
j=1

hl
djR

m
dj + bl

v(
J(v)∑
j=1

Rm
vj)

⎫⎬
⎭ ≤ fm

l . (34)

Therefore, these two constraints are equivalent.

Appendix C

Proof of Proposition 4

Given that the following two sets of destination nodes are
equivalent: {v|∀v ∈ D�, ∀D� ⊆ D} = D, we know (16)
and (17) are equivalent. Therefore, according to Proposition
3, single constraint (15) is equivalent to (17).
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