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Abstract—Within the existing reconstruction process of dis-
tributed video coding (DVC), there are two major approaches:
the maximum probability reconstruction and the minimum mean
square error (MMSE) reconstruction. Both of them assume that
each node, a pixel in pixel domain DVC or a coefficient in
transform domain DVC, is i.i.d., and reconstruct the value of
each node independently by only exploiting statistical correlation
between source and side-information. These kinds of models
produce considerable amount of artifacts in decoded Wyner–
Ziv (WZ) frames and degrade the objective performance. In
this paper, we propose a context-adaptive Markov random
field (MRF) reconstruction algorithm which exploits both the
statistical correlation and the spatio-temporal consistency by
modeling the corresponding MRF of a generic DVC architecture,
and solve the inference by finding its MRF-based maximum
a posteriori (MAP) estimate. The energy function of the MRF
model consists of two terms: a data term measuring the statistical
correlation, and a geometric regularity term enforcing local spatio-
temporal structure consistency which is modeled by optical
flow estimation with regard to the critical parameters under a
wide variety of DVC scenarios. In case the unreliability of the
derived local structure, a confidence parameter is introduced to
prevent inappropriate penalizing. To find the reconstructed patch
assignment with the largest expected probability in the context-
adaptive MRF, the energy minimization for the MRF-based MAP
estimate of the WZ frames is solved by global optimization and
greedy strategies. Compared to the existing maximum probability
and MMSE reconstruction with i.i.d. model, a better subjective
and objective performance is validated by extensive experiments.

Index Terms—Distributed video coding (DVC), Markov ran-
dom fields (MRFs), maximum a posteriori, reconstruction,
Wyner–Ziv coding.

I. Introduction

D ISTRIBUTED video coding (DVC), also known as
Wyner–Ziv (WZ) video coding, acts as a new video
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coding paradigm motivated by the requirements of recent
emerging applications, e.g., mobile camera phone and
wireless visual sensor networks, which desire low encoding
complexity due to the battery life constraint [1], [2]. It avoids
the computationally intensive temporal prediction loop at
the encoder by shifting the exploitation of the temporal
redundancy to the decoder. Although Wyner and Ziv have
theoretically proved that WZ coding suffers no performance
loss for Gaussian memoryless sources under mean-squared
error (MSE) distortion metric [3], practical DVC schemes
often have a considerable performance loss compared with
traditional predictive coding engines, e.g., H.264/AVC. To
improve the rate-distortion performance, researchers have ex-
tensively developed a variety of approaches which are mainly
composed of constructing more accurate side information [4],
adopting decorrelation transform to exploit spatial correlation
[5], using advanced channel codes, e.g., Turbo [6] and
low-density parity-check (LDPC) codes [7], and designing
advanced reconstruction algorithms [8], [9]. In this paper, we
will devote to the DVC reconstruction problem by formulating
it as a Markov random field (MRF) model to exploit the
intrinsic geometric regularity (GR) constraint of WZ frames.

So far, there are two major reconstruction algorithms in
DVC applications: the maximum probability [10] and the min-
imum mean-square error (MMSE) [8], [11], [12]. In maximum
probability reconstruction algorithm, the reconstruction value
is chosen in the quantization bin with the maximum condi-
tional probability for the given side-information. The MMSE
algorithm chooses the value so as to minimize the MSE of
the reconstructed frame. Recently, Roca et al. proposed an
adaptive reconstruction algorithm [9] which adopts a spatial
non-stationary correlation noise model instead of devising a
new reconstruction algorithm. Overall, all these algorithms
adopt i.i.d. models for both the WZ frame and the correlation
noise. For the i.i.d. model, the MMSE algorithm is optimal in
the sense of MSE distortion metric.

However, a natural image has high spatial correlation
between neighboring pixels [13]. Although decorrelation
transforms, e.g., DCT, are usually introduced to eliminate
spatial redundancy [5], GR still exists between neighboring
coefficients in low frequency coefficient bands. Coefficient
bands are formed by grouping together the DCT coefficients
of the entire Wyner–Ziv frame, according to the position
occupied by each DCT coefficient. In this sense, the i.i.d.
model cannot characterize the property of natural images well
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and degrades the objective performance. Furthermore, it also
induces annoying artifacts: contouring and blocking artifacts
for pixel domain and transform domain DVC, respectively.
Martins et al. [14] also noticed the blocking artifacts and
proposed an adaptive deblocking filter to smooth the artifacts
according to the boundary strength of blocks. To improve both
the subjective and objective performances of reconstruction,
a new model is desired to exploit not only the statistical
correlation between the WZ frame and the side-information
but also the GR constraint between neighboring pixels and
coefficients of the WZ frame [15].

In this paper, the WZ frame is modeled as an MRF which
reflects interactions among neighboring nodes on a 2-D lattice
for natural video, and its maximum a posteriori (MAP)
estimate is solved for the desired reconstruction to achieve
better subjective and objective performance than the i.i.d.
model of the existing maximum probability and the MMSE
algorithms. The major contributions of this paper are: 1) to
formulate the reconstruction process of a generalized DVC
scheme as an MRF to exploit the spatio-temporal consistency
of video sequences along with the statistical correlation be-
tween the WZ-frame and side information, and 2) to pro-
pose an energy function with context-adaptive spatio-temporal
constraint to exploit local structures of video sequences. All
parameters in the energy function are derived by analyzing
the temporal consistency property of successive frames. With
the energy function, the energy minimization for the MRF-
based MAP estimate of the WZ frames is solved by global
optimization, the sequential tree reweighted message passing
(TRW-S) algorithm [16], and greedy strategies, the iterated
conditional modes (ICM) algorithm [17]. Compared to the
existing maximum probability and the MMSE reconstruction
with i.i.d. model, a better subjective and objective performance
is validated by extensive experiments.

The rest of this paper is organized as follows. The exist-
ing DVC schemes are briefly summarized in Section II. In
Section III, we analyze the existing reconstruction algorithms
and formulate the reconstruction problem by an MRF model.
Implementation details are presented in Section IV. Extensive
experimental results are shown in Section V with both objec-
tive and visual metrics. Section VI concludes this paper.

II. Overview of DVC Architectures

Existing practical DVC architectures are composed of pixel-
domain DVC (PD-DVC) [18]–[20],1 transform-domain DVC
(TD-DVC) [5], and DVC-related applications without feed-
back channel [21]–[23]. PD-DVC is the simplest DVC scheme
with less encoding complexity and worse RD performance
than TD-DVC since no decorrelation transform is used to
eliminate spatial redundancy.

1To increase performance and preserve the low complexity property of PD-
DVC, MRF-based algorithms have been introduced to exploit spatial cor-
relations in the Slepian–Wolf decoding process [18]–[20]. These approaches
attempt to reduce the required bit-rate encoding a bit-plane, while the proposed
algorithm in this paper is dedicated to increasing the reconstruction quality
of Wyner–Ziv frames after the bit-planes have been decoded.

Fig. 1. DVC codec architecture with the proposed context-adaptive MRF-
based reconstruction algorithm. (a) PD-DVC. (b) TD-DVC.

A. Pixel-Domain DVC (PD-DVC)

In the PD-DVC scheme, a subset of frames, termed as
“Key frames,” are encoded and decoded using conventional
intra-frame encoding schemes, e.g., H.264/AVC Intra coding.
The rest frames, called “WZ frames,” are intra-frame encoded
but inter-frame decoded. Fig. 1(a) presents the corresponding
PD-DVC codec architecture with the proposed MRF-based
reconstruction algorithm.

For a WZ frame Xn, each pixel xn,i is uniformly quantized
into M bits. The bits of all pixels in a WZ frame would
form M bit-planes which are fed into the Slepian–Wolf (SW)
encoder to generate the WZ bit-stream. The low-density parity-
check accumulate (LDPCA) approach [24], [25] with degree
distribution in (14), is used as SW codec.

At the decoder side, side-information Yn is generated by bi-
directional motion compensation of previously decoded Key
frames [26]. Specifically, forward motion estimation is adopted
to get the candidate motion vectors for each non-overlapped
block in the Wyner–Ziv frame. From the available candidate
vectors, the motion vector that intercepts the Wyner–Ziv frame
closer to the center of the block is taken as the final motion
vector, and bidirectional motion compensation is performed to
produce the side-information.

The statistical correlation between the generated side-
information and current WZ frame is modeled at the decoder
to compute the log-likelihood of each bit. Together with
received WZ bit-stream, the log-likelihood is fed into the SW
decoder to recover the original bit-plane. If it fails, the decoder
would request additional bits from the encoder’s buffer through
feedback channel (FBC). The correctly decoded bit-planes are
combined to determine the quantization bin [BL, BU] of each
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Fig. 2. Bit-stream structure of the error-resilient video coding scheme for
TD-DVC without feedback channel [31].

pixel xn,i in the WZ frame. Finally, reconstruction process
would derive a best estimate of the original pixel value xn,i

as the output of the DVC decoder. If a refinement decoding
process is activated, the best estimate will in turn be used to
assist the SW decoding of less significant bit-planes [27].

In the proposed reconstruction algorithm, MMSE recon-
struction X̂MMSE is firstly derived as an initial estimate. A
good initial estimate can accelerate the following energy min-
imization process and prevent falling into a local minimum.
With the MMSE estimate, the warping-based motion compen-
sation X̃Warp is adopted to estimate the local GR constraints
∇n,k,i through an optical flow based method [28] between the
WZ frame and the adjacent Key frames. Considering some
regions are unreliable because of occlusion or abrupt motion,
a weighting parameter wn,k,i is derived based on the reliability
of the warping results. With the local GR constraint ∇n,k,i,
weighting parameter wn,k,i, and the quantization bin [BL, BU],
energy minimization is solved to find an optimized estimate
of the WZ frame X̂MRF .

B. Transform-Domain DVC (TD-DVC)

Decorrelation transform, e.g., DCT, is widely used in DVC
applications to eliminate the spatial redundancy. A corre-
sponding TD-DVC scheme with the proposed reconstruction
algorithm is shown in Fig. 1(b). At the encoder side, a Wyner–
Ziv frame is partitioned into non-overlap 4 × 4 blocks, and
each block is transformed into DCT domain with 4 × 4 DCT.
The generated coefficients at the same position are grouped
to form a coefficient band, e.g., DC band is composed of
the DC coefficients of all the 4 × 4 blocks. The DC band
is quantized with uniform scalar quantizer and AC bands are
quantized with scalar quantizer with a deadzone around zero
[5]. The quantization step Qs is derived from a quantization
parameter for WZ coding (QPW). The QPW range is 4–51,
and QPW value 4 corresponds to Qs value 1. Like the standard
H.264/AVC quantization process [29], Qs doubles in size for
every increment of 6 in QPW, and increases by 12.5% for
each increment of 1 in QPW. After a DCT band is quantized
with quantization step Qs, the quantized coefficients in the
band are extracted to �log2(Vmax)� bit-planes for DC band,
or �log2(Vmax)� + 1 bit-planes for AC band where the extra
bit-plane is the sign, Vmax is the maximum absolute value
of quantized coefficients in the band, and �·� is the ceiling
function. In this configuration, all bit-planes extracted from
quantized coefficients are fed into SW encoder, and induce
no distortion. At the decoder side, the WZ-frame is decoded
on the basis of the derived side-information and statistical
correlation model. With the correctly decoded bit-planes and
side information, the reconstruction module is activated to

produce an optimized estimate of the original coefficients.
Finally, 4 × 4 IDCT operation is implemented to generate the
decoded WZ frame.

In the proposed MRF-based reconstruction, MMSE recon-
struction is likewise implemented to acquire an initial estimate
F̂MMSE. In turn, F̂MMSE is transformed into pixel domain
with IDCT to derive the optical flow field between the WZ
frame Xn and the adjacent Key frames Xn−1 or Xn+1, and
then produce the warping image X̃Warp to estimate the GR
constraint ∇n,k,i. The weighting parameter wn,k,i in transform
domain is derived based on the coefficients reliability of
the warping image, and is fed into the “transform-domain
energy minimization” (TDEM) model with the quantization
bin [BL, BU]. The output F̂

′MRF is transformed into the pixel
domain to eliminate the blocking artifact along with the
“pixel-domain energy minimization” (PDEM) module, and the
output X̂

′MRF would be transformed into DCT domain for the
next iteration. The reconstruction process terminates till the
iteration limit is reached or the energy minimization converges.

C. TD-DVC With Side-Information Refinement (SIR)

In a standard DVC, the side-information is generated only
once before SW decoding and unchanged in the entire decod-
ing process. To generate a better side-information and improve
the R-D performance, side-information refinement (SIR) ap-
proaches have been proposed [12], [27] which iteratively refine
the side-information along the decoding of DCT bands or bit-
planes instead of keeping it unchanged as the standard DVC.

In this paper, we also test the proposed reconstruction
algorithms for TD-DVC with the SIR algorithm [12], where
the side-information is gradually improved as the decoding
proceeds: The DC coefficient band is primarily decoded,
reconstructed and transformed into pixel domain with IDCT;
with the current reconstructed frame from the already decoded
coefficient bands and the current side-information, the blocks
for SIR would be determined on basis of their difference; these
selected blocks will search for their better side information
candidates within a given window; the refined side information
will be generated by weighted averaging over the candidate
side information blocks, and be used for the decoding of the
next coefficient band. The proposed MRF-based reconstruction
for TD-DVC with SIR is similar to the traditional TD-DVC
with the feedback channel, except that the side-information
is gradually enhanced along the WZ decoding process. It is
worth mentioning that the proposed algorithm itself is not an
SIR scheme. The involved optical flow warping is devoted
to estimating the local gradient of the WZ frame instead of
generating a better estimate of the WZ frame.

D. TD-DVC Without Feedback Channel (FBC)

To allocate the proper number of bits, most DVC schemes
resort to the feedback channel. In most practical scenes, a
feedback channel does not exist or the end-to-end delay is
too large to realize real-time rate allocation [21]–[23]. To
deal with the SW bit-plane decoding failure without feedback
channel, there exist two kinds of approaches: 1) use only the
correctly decoded bit-planes for reconstruction and discard all
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Fig. 3. Illustrative example of a WZ frame and the derived side-information. (a) Original WZ frame of the Foreman sequence. (b) Derived side-information.
(c) Difference between (a) and (b). (d) Probability distribution of (c). (e)–(g) Random permutation of (a)–(c). (h) Probability distribution of (g).

the subsequent bit-planes of the coefficient band if one bit-
plane fails to decode [12], and 2) use all bit-planes in the
reconstruction process [30]. In fact, the reconstruction process
is still similar to a conventional DVC reconstruction except
the quantization bin [BL, BU] varies.

In this paper, we adopt an error resilient video coding
scheme to represent the TD-DVC architecture without the
feedback channel [31]. As shown in Fig. 2, a set of frames,
called anchor frames, are protected by a WZ bit-stream
to stop temporal error propagation, and the state-of-the-art
H.264/AVC is used to generate the primary bit-stream. The
WZ redundant bit-stream will be discarded if the anchor frame
is error free; otherwise, it will be decoded to correct errors
and terminate error propagation. To allocate appropriate bit-
rate for each bit-plane, the conditional entropy of each bit-
plane is firstly estimated given previous decoded bit-planes
and the transmission distortion, and the encoding rate is then
determined together with the error correction capacity of the
LDPCA codec and the predefined bit-plane decoding failure
probability [32]. The proposed reconstruction algorithm will
be validated under bit-plane decoding failure conditions.

III. Problem Formulation

The target of the reconstruction algorithm in a generic DVC
system is to minimize the distortion based on the decoded bit-
planes and the priors of video sequence. The motivation of the
proposed algorithms is addressed, and we formulate the DVC
reconstruction process as an MRF problem.

A. The Maximum Probability and MMSE Approaches

At the decoder side, the decoded bit-planes restrict the
reconstructed value x̂i in quantization bin [BL, BU], where
BU = BL + Qs − 1 and Qs is the quantization step. The
maximum probability reconstruction of xi is calculated with
the mode of conditional probabilistic distribution fX|Y (xi|yi)
in quantization bin [BL, BU] [10]

x̂MP
i = arg max

xi∈[BL,BU ]
fX|Y (xi|yi) (1)

where fX|Y (xi|yi) is the conditional probability distribution of
xi given the side-information yi.

In comparison, the MMSE reconstruction aims to minimize
the MSE of the output by computing the conditional expec-
tation of variable xi given the quantization bin xi ∈ [BL, BU]
and side-information yi [8]

x̂MMSE
i = E[xi|xi ∈ [BL, BU], yi]

=

∑BU

xi=BL
xifX|Y (xi|yi)∑BU

xi=BL
fX|Y (xi|yi)

. (2)

B. Motivation

As shown in (1) and (2), both maximum probability and
MMSE reconstruction algorithms are based on an i.i.d. model
which does not reflect interactions between neighboring nodes,
e.g., pixels for PD-DVC or coefficients for TD-DVC. Fig. 3
describes an illustrative example, where Fig. 3(e)–(g) dis-
plays a random permutation of the corresponding images in
Fig. 3(a)–(c), respectively. Despite being visually different,
they have identical statistical distribution of the correlation
noise and the source. In this sense, the i.i.d. model cannot
benefit from the geometric smoothness property of natu-
ral images. In addition, the MMSE reconstruction results
also suffer annoying artifacts, as depicted in Fig. 4, where
contouring artifacts for the PD-DVC schemes and blocking
artifacts for the TD-DVC schemes appear in high motion
regions.

To improve the subjective and objective quality of re-
construction algorithms, we model a WZ frame as an
MRF to exploit the intrinsic spatio-temporal consistency
[33]–[35], in addition to the statistical correlation for
reconstruction.

To intuitively illustrate the proposed MRF-based recon-
struction algorithm, we show the reconstruction results in
Fig. 5 with and without inter-node constraint for part of
one row in a frame. In this example, the difference between
side-information and source is approximated by Laplacian
distribution, and the target gradient between neighboring
nodes is available. According to the maximum probabil-
ity algorithm, the reconstruction result is the one in the
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Fig. 4. Artifacts in the MMSE reconstruction (the 14th frame of the Foreman
sequence). (a) Contouring artifacts for PD-DVC. (b) Blocking artifacts for
TD-DVC.

quantization bin [BL, BU] with the maximum conditional
probability fX|Y (xi|yi) given yi, while the MMSE reconstruc-
tion minimizes the expected MSE distortion for the given
fX|Y (xi|yi) and yi. In fact, the MMSE reconstruction is the
centroid of the conditional probability fX|Y (xi|yi) and is closer
to the center of quantization bin than the maximum probability
reconstruction. Without exploiting the inter-node constraint,
both the maximum probability algorithm and the MMSE
algorithm suffer from the i.i.d. model and result in artifacts.
For example, nodes 7 and 8 have identical reconstruction
value with either the maximum probability or the MMSE
reconstruction algorithm since both of them have the same
conditional probability distribution in the quantization bin.
In this way, the difference between nodes 8 and 9 increases
and results in artifacts. However, the proposed methods with
inter-node constraint would penalize the inter-node differ-
ence, and thus improve both the subjective and objective
performance.

C. The MRF Model for DVC Reconstruction

If an image is modeled as an MRF, the overall prob-
ability of each assignment x can be written as the prod-
uct of potential functions ψC(xC) over cliques of the graph
[36]

p(x) =
1

Z

∏
C

ψC(xC) (3)

where Z =
∑

x

∏
C ψC(xC) is a normalization constant, and

xC is a set of variables in clique C. Assuming that the
potential functions ψC(xC) are strictly positive, it is convenient
to express them in exponential form. Accordingly, (3) turns out
to be a Gibbs random field

p(x) =
1

Z

∏
C

e−EC(xC) =
1

Z
e
−
∑

C
EC(xC) (4)

where EC(xC) is called an energy function for clique C.
Therefore, finding an MAP estimate of the MRF is equivalent
to minimize the energy function E(x) =

∑
C EC(xC), that is

x̂MRF = arg max
x

p(x) = arg min
x

∑
C

EC(xC). (5)

Fig. 5. Demonstrative example to show how the inter-node constraint can
improve the reconstruction performance.

1) Constraints in DVC Reconstruction: To formulate the
energy function E(x), we need to analyze the prior constraints
that can be used in the reconstruction process at the DVC
decoder.

a) The bit-planes of the WZ frame are sequentially de-
coded, as shown in Fig. 6(a). The decoded bit-planes
define the quantization bin [BL, BU], e.g., the possible
range of each xn,i in the WZ frame, as shown in
Fig. 6(b).

b) fX|Y (xn,i|yn,i), the statistical correlation between the WZ
frame and the side-information.

c) The spatio-temporal consistency constraint, as shown in
Fig. 6(b) and (c).

These constraints are graphically depicted in Fig. 7, where
xn,i is the desired node value, yn,i is the value of the side-
information, xn,k,i is a neighbor of xn,i in direction k, and ∇n,k,i

is the gradient between xn,i and its neighbor in direction k. In
this paper, we regard a frame as an 8-connected regular lattice,
and ignore second and higher order cliques for simplicity.
The underlying nodes consist of two types of cliques: clique
{xn,i, yn,i} and cliques {xn,i, xn,j}. The clique {xn,i, yn,i}, in
Fig. 7(b), is denoted the data term, which uses the energy
function Ei(x̂n,i) to measure the cost of assigning label x̂n,i

to pixel xn,i given side-information yn,i, the quantization bin
[BL, BU] and statistical correlation fX|Y (xn,i|yn,i). The cliques
{xn,i, xn,j} in Fig. 7(c) are called the GR term, which mea-
sures the spatio-temporal consistency constraint with energy
function Ei,j(x̂n,i, x̂n,j) to penalize the cost of assigning labels
x̂n,i and x̂n,j to a pair of neighboring nodes, where j ∈ N (i)
indicates the index of neighbors of node i. In consequence,
the energy function E(x̂) can be written as

E(x̂) =
∑

i

Ei(x̂n,i) + η
∑
i,j∈N

Ei,j(x̂n,i, x̂n,j) (6)

where parameter η regularizes the relative ratio between the
data term and the GR term. Obviously, the MMSE recon-
struction acts as a special independent case of the proposed
reconstruction model when Ei,j(x̂n,i, x̂n,j) is set to 0 and
Ei(x̂n,i) adopts MSE metric.

2) Data Term: The data term is measured with the
expected MSE distortion of reconstruction x̂n,i

Ei(x̂n,i) = E[(x̂n,i − xn,i)
2]

=
∑
xn,i

fX|Y (xn,i|yn,i) · (x̂n,i − xn,i)
2 (7)
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Fig. 6. Constraint information that can be used in the DVC reconstruction process, and the graphical representation of the spatio-temporal constraint.
(a) Bit-plane constraint. (b) Spatio-temporal consistency and statistical correlation. (c) Graphical representation of the spatio-temporal correlation.

Fig. 7. Graphical representation of the MRF model for DVC reconstruction.
(a) MRF model. (b) Clique for data term. (c) Cliques for GR term.

where fX|Y (xn,i|yn,i) is the conditional probability of xn,i given
side-information yn,i, and x̂n,i is the reconstruction value.

In the TD-DVC scheme, the quantization bin [BL, BU] is
only available in DCT domain and we define the corresponding
data term for pixel-domain optimization as

Ei(x̂n,i) = (x̂n,i − x′
n,i)

2 (8)

where x′
n,i is the initial value for the pixel domain optimization.

3) GR Term: The choice of the GR term is critical, and
there are different functions to meet the requirements of spatial
constrained priors [36]. In this paper, a weighted quadratic
function is adopted to impose the spatio-temporal consistency
constraint

Ei,j(x̂n,i, x̂n,k(i)) = wn,k,iV (x̂n,i, x̂n,k(i))

=
∑
s=±1

wn+s,k,i(|x̂n,i − x̂n,k(i)| − |∇n+s,k,i|)2 (9)

where k(i) is the index of the neighbor of node xn,i in
direction k, and ∇n,k,i is the target gradient of xn,i in direction
k which measures the spatio-temporal consistency of video
sequence. Since the actual value of ∇n,k,i is unavailable, it is
approximated by ∇n−1,k,u(i) (and ∇n+1,k,u(i) if available) which
is the gradient of pixel xn−1,u(i) in the reference frame Xn−1

in direction k. wn±1,k,i ≥ 0, and
∑

s=±1 wn+s,k,i = 1, is the
weighting factor, which indicates the reliability of derived
target gradient ∇n,k,i. Specifically, if both the warping results
x̃n−1,u(i) and x̃n−1,k(u(i)) are in the quantization bin [BL, BU] of
xn,i and xn,k(i), the wn−1,k,i is set 1, and otherwise set to 0.
If both ∇n−1,k,u(i) and ∇n+1,k,u(i) are available, the wn−1,k,i and
wn+1,k,i are set to 0.5.

D. Energy Minimization Algorithms

With the derived energy function, energy minimization can
be used to find the MAP solution on the joint probability of the
observed variables (the known pixels) and the hidden variables
(the possible assignment with a probability). It aims to find the
marginal distribution for all the variable nodes in the MRF in
order to achieve the maximum of the joint distribution, i.e., the
most likely assignment for each node in the MRF. The well-
known energy minimization algorithms are graph cuts [37]
and message passing algorithm [38]. In view of the fact that
the GR term in (9) is not regular [39], we adopt the TRW-S
algorithm to approach the global minimum [16]. To reduce
the decoder’s complexity, the ICM [17] algorithm is also
evaluated.

1) Sequential Tree-Reweighted Message Passing (TRW-S):
TRW-S is a message-passing algorithm similar to loopy belief
propagation [40], but it computes a lower bound on the energy.
TRW-S can achieve similar energy with the graph cuts and BP
algorithms, and can be applied to any function of the form as
(6) [16].

2) Iterated Conditional Mode (ICM): The ICM algorithm
uses a deterministic greedy strategy to find a local minimum
[17]. It starts with an initial estimate of the desired node value,
and chooses the value which could give the largest decrease
of the energy function for each node. This process is repeated
till convergence or the iteration limit is reached.

Although ICM has low computational complexity, it is very
sensitive to the initial estimate and is easily been trapped in
a local minimum. Since the MMSE estimator can play as a
good initial estimate of the WZ frame [8], it helps to find a
solution close to the global minimum while preserving the low
complexity advantage.

3) Accelerate the Optimization Process: To accelerate the
convergence speed and reduce the computational complex-
ity, the structured sparsity of natural images can be used.
Specifically, with the decoded bit-planes, we can analyze the
reliability of side-information in different regions of the WZ-
frame by verifying the distance between side-information and
corresponding quantization bin. With this reliability informa-
tion, we can change the message passing order for TRW-
S or the searching order for ICM to use reliable message
first.
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IV. Implementation Details

In the defined energy function, there are three parameters
that need to be determined: target gradient ∇n,k,i, weighting
parameter wn,k,i, and regularization factor η. The target gradi-
ent ∇n,k,i reflects the spatial correlations between neighboring
nodes. However, it is unavailable at the DVC decoder side
since the original WZ frame is inaccessible. Therefore, we
resort to the temporal consistency property of video sequences
by compensating the relative motion between successive
frames. Considering that the derived motion field maybe not
very accurate and/or occlusion may exist, the reliability of the
derived ∇n,k,i is measured by the weighting parameter wn,k,i.
The relative ratio η between the data term and the GR term
should be adjusted for different quantization steps to prevent
over-smoothing. In what follows, we will discuss the spatio-
temporal consistency for different DVC scenarios, and analyze
the impact of parameter η on the reconstruction performance.

A. Spatio-Temporal Consistency: Target Gradient ∇n,k,i

1) Temporal Consistency Analysis: To find the target
gradient ∇n,k,i, the relative displacement between successive
video frames should be derived and compensated. During the
estimation of the motion field, the following constraints are
taken into account.

a) Gray value constancy. In optical flow estimation, it
is assumed that the gray value of pixel is consistent
with small variation along the displacement, i.e., xn,i �

xn−1,u(i), where u(i) is the displacement vector between
frame Xn and frame Xn−1.

b) Gradient constancy. The gray value constancy assump-
tion is sensitive to slight changes in brightness, and it
is useful to determine the displacement vector by the
gradient constancy assumption [41], ∇n,k,i = ∇n−1,k,u(i).

c) Motion smoothness. Considering that the motion of a
homogeneous contour is locally ambiguous (aperture
problem), a smoothness assumption of the flow field is
introduced.

d) Multiscale. To prevent being trapped in a local mini-
mum, it is useful in a multiscale sense: from a coarse,
downsampled version to the refined version of the prob-
lem.

Accordingly, it is reasonable to define a cost function
that penalizes deviations from these conditions. The global
deviations from both the gray value constancy and the gradient
constancy conditions are measured by the cost

DD(u) =
∫

i∈B
�(|xn,i − xn−1,u(i)|2 +

γ|∇n,k,i − ∇n−1,k,u(i)|2)dx (10)

where γ is a weight between the two conditions, �(s2) =√
s2 + ε2 is an increasing concave function which would result

in an L1 norm minimization and is used to limit the influence
of outliers under quadratic distortion metric, ε is a fixed
small positive constant to offer advantages in the minimization
process, and is set to 0.001 in experiments [41].

In addition, a smoothness term is used to penalize the
motion smoothness condition. It penalizes the total variation

Fig. 8. Examples of the warping results for PD-DVC (the second frame
of Foreman sequence with Qs = 64). (a) Original WZ frame. (b) MMSE
reconstruction. (c) Warping result from the previous frame. (d) Warping result
from the next frame.

of the flow field

DS(u) =
∫

i∈B
�(|∇s,h|2 + |∇s,v|2)dx (11)

where spatial gradient ∇s,v and ∇s,h indicate the spatial gradi-
ent in vertical and horizontal directions.

The total cost is the weighted sum between DD(u) and
DS(u)

D(u) = DD(u) + αDS(u) (12)

where α > 0 is a regularization parameter.
The detailed numerical approximation algorithm for (12)

could refer to [28] and [41].
2) Target Gradient ∇n,k,i:

a) PD-DVC with feedback channel. With the derived optical
flow field between the MMSE reconstruction of the WZ
frame and the reference frame, parameter ∇n,k,i of pixel
xn,i in direction k can be approximated by the gradient
of corresponding pixel xn−1,u(i) in direction k in the
reference frame Xn−1, that is

∇n,k,i = ∇n−1,k,u(i) (13)

where u(i) is the index of the matching pixel of xn,i in
frame Xn−1. The examples of the motion compensation
based warping results for the PD-DVC scheme are
shown in Fig. 8.

b) TD-DVC with feedback channel. As for the TD-DVC
scheme, the pixel domain target gradient ∇PD

n,k,i and
optical flow field are initially generated. For the trans-
form domain optimization, a node is a coefficient in
the corresponding coefficient band, and the neighboring
nodes are neighboring coefficients in that band. For
example, neighboring nodes in the DC coefficient band
are DC coefficients of adjacent 4×4 blocks in a specific
direction. The target gradient ∇TD

n,b,k,i for the transform
domain optimization is predicted by the gradient of
corresponding coefficient band of warping results. Fig.
9 shows the warping results for TD-DVC with Qs = 64
(QPW = 40) and Qs = 32 (QPW = 34). It can be seen
that the warping results are acceptable even with a coarse
MMSE estimate as the target frame, i.e., QPW = 40.

c) TD-DVC with side-information refinement. In TD-DVC
scheme with SIR, the reconstruction process is imple-
mented after each bit-plane has been decoded. The quan-
tization bin [BL, BU] is progressively halved along with
the bit-plane decoding. With the specific quantization bin
[BL, BU] for a bit-plane, the target gradient ∇PD

n,k,i and
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Fig. 9. Examples of the warping results for TD-DVC (the second frame of
Foreman sequence). (a) MMSE reconstruction (Qs = 64). (b) Warping result
from the previous frame (Qs = 64). (c) Warping result from the next frame
(Qs = 64). (d) MMSE reconstruction (Qs = 32). (e) Warping result from the
previous frame (Qs = 32). (f) Warping result from the next frame (Qs = 32).

∇TD
n,b,k,i can be calculated as that in TD-DVC scheme

with feedback channel.
d) TD-DVC without feedback channel. In DVC approaches

without feedback channel, bit-plane decoding failure
may occur [21], [23]. Once bit-planes decoding fail-
ure exists in the WZ frame, there are two kinds of
treatment.

i) Discard all subsequent less significant bit-planes
of the coefficient band if one bit-plane decoding
failure is detected, and only correctly decoded bit-
planes are used for reconstruction. The decoding
failure can be detected by verifying the parity-
check constraint for LDPCA approaches. Cyclic
redundancy check (CRC) can be used to detect
decoding failure if Turbo codes are adopted as the
SW codec. In this case, the target gradient ∇n,k,i

can be computed as that in TD-DVC with feedback
channel.

ii) Use all bit-planes in the reconstruction process.
In this case, bit errors in significant bit-planes
will induce outlier blocks, as shown in Fig. 10.
Therefore, outlier blocks might be detected with
a spatial variant at the boundary of blocks, and
replaced by the side-information. The modified
reconstruction frame is used to acquire the optical
flow field as in the conventional TD-DVC scheme
with feedback channel.

B. Reliability of Target Gradient: wn,k,i

Since the derived optical flow field is imperfect, the derived
target can be unreliable in some regions. We introduce a
parameter wn,k,i to measure the reliability of target gradient
∇n,k,i to prevent inappropriate penalizing.

1) Pixel Domain DVC (PD-DVC): Within the PD-DVC
scheme, the pixel value xn−1,u(i) in the warping result is
checked by the quantization bin [BL, BU]: wn,k,i is set to 1
if xn−1,u(i) ∈ [BL, BU] and xn−1,u(k(i)) ∈ [BL, BU]; otherwise it
is set to 0. Finally, wn,k,i is normalized for pixel xn,i among all

Fig. 10. MMSE reconstruction results with bit-error in TD-DVC approaches
without feedback channel. (a) 8th frame and (b) 48th frame of Foreman
sequence.

Fig. 11. Reliability mask for the second frame of Foreman sequence. The
black dots denote unreliable pixels. (a) Warping result from the previous frame
(Qs = 64). (b) Warping result from the next frame (Qs = 64). (c) Warping
result from the previous frame (Qs = 32). (d) Warping result from the next
frame (Qs = 32).

directions k, that is, to impose an even weight on each edge of
the MRF. Fig. 11 presents an example of the derived reliability
mask of Foreman sequence, where black dots denote unreliable
pixels in the corresponding warping results. It can be seen that,
the unreliable pixels mainly be located at either the object
edges where the occlusion could exist or the regions where
significant artifacts appear from the MMSE reconstruction,
e.g., the chin of Foreman.

2) Transform Domain DVC (TD-DVC): Because the MRF-
based reconstruction for TD-DVC would be alternately im-
plemented in the pixel domain and the transform domain,
we calculate the weighting parameter wn,k,i in the pixel
domain and the transform domain, respectively. It is worth
mentioning that the quantization bin [BL, BU] of TD-DVC
is only available in the transform domain. For neighboring
node pair where an unreliable coefficient is involved, the
weighting parameter wTD

n,b,k,i is set to 0 to prevent inappropriate
penalizing, and set to 1 if both of the neighboring coefficients
are reliable. Finally, wTD

n,b,k,i is normalized for the coefficient
fn,b,i in direction k. Fig. 12 shows examples of the derived
unreliable mask. Since [BL, BU] is undefined in the pixel
domain, we always set weighting parameter wPD

n,k,i for the
pixel domain to 1 and normalize them over all directions of a
pixel.

3) TD-DVC With Side-Information Refinement (SIR): In
TD-DVC scheme with SIR, the reconstruction process is
implemented after each bit-plane has been decoded. The
quantization bin [BL, BU] is progressively halved along with
the bit-plane decoding. With the specific quantization bin
[BL, BU] for a bit-plane, the target gradient ∇PD

n,k,i and ∇TD
n,b,k,i

can be calculated as in the TD-DVC scheme with feedback
channel.

4) TD-DVC Without Feedback Channel: In DVC ap-
proaches without feedback channel, the size of quantization
bin [BL, BU] varies for different coefficient bands because
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Fig. 12. Unreliable mask of the second frame of Foreman sequence for TD-DVC. (a) Mask for the warping results from the previous frame (Qs = 64).
(b) Mask for the warping results from the next frame (Qs = 64). (c) Mask for the warping results from the previous frame (Qs = 32). (d) Mask for the
warping results from the next frame (Qs = 32).

bit-plane decoding failure may appear [21], [23]. Because
LDPC codes can detect decoding failure and CRC bits
can be used for Turbo codes to detect the decoding fail-
ure [12], the bit-plane decoding failure can be detected at
the decoder side. To verify the reliability of derived target
gradient ∇n,b,k,i, the quantization bin [BL, BU] is counted
with only correctly decoded significant bit-planes. If one bit-
plane fails to be decoded, all subsequent bit-planes for this
coefficient band will be discarded. The weighting parameter
wTD

n,b,k,i is set to 1 if the warping results fn,b,i ∈ [BL, BU],
otherwise it is set to 0. Likewise, for optimization, the
weighting parameter wPD

n,k,i in the pixel domain is always
set to 1. Finally, the weighting parameters wPD

n,k,i and wTD
n,b,k,i

are normalized over all directions, i.e.,
∑

k wPD
n,k,i = 1 and∑

k wTD
n,b,k,i = 1.

C. Analysis of Regularization Parameter η

The parameter η is introduced to adjust the relative ratio
between the data term and the GR term. Fig. 13 presents
the performance gain of the proposed “MRF-ICM” algorithm
over the MMSE reconstruction along with the increase of η

for the PD-DVC and TD-DVC schemes, where the first 100
frames of each sequence are tested. It can be seen that: in
case of large quantization step, the performance gain of the
proposed algorithm would be enhanced with the increase of
η; when quantization step is small, large η may degrade the
final reconstruction performance because of over-smoothing.
To prevent generating the over-penalized effect, η should be
reduced in accordance with the decrease of the quantization
step, and could be set to 0 for small quantization step size,
e.g., the number of bit-planes (BPN) > 5 for PD-DVC or
QPW < 28 for TD-DVC.

D. Summary of the Proposed Algorithm

In the PD-DVC scheme, the proposed reconstruction algo-
rithm initially derives an initial estimate of the WZ frame
by the MMSE algorithm, which could accelerate the energy
minimization process and achieve a satisfying output even with
a deterministic greedy strategy, e.g., the ICM algorithm. As
for the TD-DVC scheme, the GR constraint would be enabled
in both the DCT domain and the pixel domain. The pixel
domain optimization aims to eliminate the blocking artifacts,
while the DCT domain optimization imposes the quantiza-
tion bin constraint on the output to prevent inappropriate
penalizing.

The major steps of the proposed MRF-based reconstruction
algorithm are summarized as follows.

Input: Quantization bin [BL, BU ],
side-information Yn,
previously decoded key frames Xn−1 and Xn+1,
statistical correlation between Yn and WZ frame Xn.

Output: reconstruction result X̂n

Important intermediate variables:
X̃Warp: warping result,

Algorithm begin
/* Initiation */

x̂MMSE
i = E[xi|xi ∈ [BL, BU ], yi] =

∑BU

x=BL
xip(xi|yi)∑BU

xi=BL
p(xi|yi)

;

/* Estimate target gradient ∇*/
u = arg min Dm (12)
/*Warping*/
x̃

Warp,n−1
i = xn−1,u(i)

x̃
Warp,n+1
i = xn+1,u′(i)

if PD-DVC
∇n−1,k,i = x̃

Warp,n−1
i − x̃

Warp,n−1
k(i) ,

∇n+1,k,i = x̃
Warp,n+1
i − x̃

Warp,n+1
k(i)

else
∇PD

n−1,k,i
= x̃

Warp,n−1
i − x̃

Warp,n−1
k(i) ,

∇PD
n+1,k,i

= x̃
Warp,n+1
i − x̃

Warp,n+1
k(i) ;

F̃Warp = DCT (X̃Warp),
∇TD

n−1,b,k,i
= fn−1,b,u(i) − fn−1,b,k(u(i)),

∇TD
n+1,b,k,i

= fn+1,b,u(i) − fn+1,b,k(u′(i));
end if
/*Analyze reliability of the warping results X̃Warp*/
wn,k,i = 1 if x̃i ∈ [BL, BU ] and x̃k,i ∈ [BL, BU ]
Normalize wn,k,i =

wn,k,i∑
k
wn,k,i

Implement energy minimization
Algorithm end

Energy minimization for PD-DVC
Input: quantization bin [BL, BU ],

statistical correlation between Yn and WZ frame Xn,
target gradient ∇n−1,k,i and ∇n+1,k,i

weighting parameter wn−1,k,i and wn+1,k,i.
Output: reconstruction result X̂MRF

Algorithm begin
/* Initialization */
X̂MRF = X̂MMSE

/*Perform optimization*/
repeat
Calculate cost of energy function, E(X̂MRF )
Optimization
Calculate cost of energy function, E(X̂

′MRF )
X̂MRF = X̂

′MRF

until |E(X̂MRF ) − E(X̂
′MRF )| < σthreshold or Iteration > MaxIteration

Algorithm end
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Fig. 13. Reconstruction performance gain over the MMSE reconstruction along with the increase of η. The y-axis indicates the performance gain of the
proposed “MRF-ICM” algorithm over the MMSE reconstruction algorithm, and the x-axis denotes the regularization parameter η. (a) Results for PD-DVC
with 2 ∼ 5 bit-planes (BPN). (b) Results for TD-DVC from QPW = 22 to QPW = 40.

Energy minimization for TD-DVC
Input: quantization bin [BL, BU ],

statistical correlation between Yn and WZ frame Xn,
pixel domain target gradient ∇PD

n−1,k,i
and ∇PD

n+1,k,i

transform domain target gradient ∇TD
n−1,b,k,i

and ∇TD
n+1,b,k,i

weighting parameter wTD
n−1,k,i

and wTD
n+1,k,i

.

Output: reconstruction result X̂MRF

Important intermediate variables:
X′: intermediate output of pixel domain optimization
F ′: intermediate output of transform domain optimization

Algorithm begin
/* Initialize */
F̂MRF = F̂MMSE

X̂MRF = X̃Warp

/*Optimization*/
repeat
Calculate cost of energy function, E(X̂MRF )
Pixel domain optimization
Calculate cost of energy function, E(X̂

′MRF )
F̂MRF = DCT (X̂

′MRF )
DCT domain optimization
X̂MRF = IDCT (F̂

′MRF )
until |E(X̂MRF ) − E(X̂

′MRF )| < σthreshold or Iteration > MaxIteration

Algorithm end

V. Experimental Results

In this section, we conduct experiments to evaluate the
performance of the proposed reconstruction algorithm for
DVC applications. In experiments, four different reconstruc-
tion approaches are evaluated: maximum probability (Max.
Prob.) reconstruction, MMSE reconstruction, and the proposed
spatio-temporal MRF-based reconstruction with the TRW-S
and the ICM algorithms. Four CIF (352 × 288 at 15 Hz)
video sequences (Bus, Crew, Football, and Foreman) and two
720×480 video sequences (Driving and WhaleShow) are tested
in the encoding structure “I-WZ-I-WZ-I-.” The bidirectional
motion compensation with search window size 8 × 8 and the
search range 16 are adopted to generate the side-information

[26]. The SW codec adopts the LDPCA approach with a
block length of 6336 bits and the degree distribution [24],
[25] is shown in (14). It can produce a set of coding rates
2
66 , 3

66 , 4
66 , · · · , 66

66

λ(x) = 0.316x1 + 0.415x2 + 0.128x6 + 0.069x7 +

0.020x18 + 0.052x20. (14)

The LDPCA decoding stops when the parity-check node
constraints are satisfied or the maximum iteration (200 itera-
tions in experiments) is reached. If the check-node constraints
(i.e., the syndrome) are still not satisfied after the LDPCA
decoding stopped for TD-DVC without feedback channel, this
bit-plane would be regarded as a decoding failure. Although
the decoded bit-planes may still contain errors even the check-
node constraint is satisfied, it only appears with a very small
probability and induces slightly performance decrease. In
experiments, these undetected errors are regarded as correct
bits for reconstruction. In energy minimization algorithms for
reconstruction, iteration operation would terminate when the
energy of two successive iterations is identical or the iteration
limit (herein the maximum iteration number is set to 5) is
reached. The experiments are implemented on Intel Xeon CPU
E5520@2.27 GHz with 6.0 GB RAM.

A. Rate-Distortion Performance

Figs. 14 and 15, respectively, show the RD performance
of the different reconstruction algorithms for PD-DVC and
TD-DVC. It can be seen that the proposed MRF-based re-
construction algorithm either with the TRW-S or the ICM
method would significantly outperform the MMSE and the
maximum probability reconstruction algorithm. In addition, it
is also observed: the “MRF-TRW-S” and the “MRF-ICM” al-
gorithms achieve similar RD performance because the MMSE
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Fig. 14. Rate-distortion performance for the PD-DVC scheme.

Fig. 15. Rate-distortion performance for the TD-DVC scheme.

reconstruction provides a good initial estimate for the ICM
strategy.

To evaluate the proposed reconstruction algorithm more
precisely, the Bjøntegaard (BD) delta values are also evaluated
based on rate-distortion curve fitting [42]. Table I shows the
BD-PSNR and BD-bitrate comparison values of the proposed
“MRF-ICM” algorithm against the MMSE algorithm. The BD-
PSNR indicates the average PSNR difference in dB over the
whole range of bit-rate, which is calculated as follows:


PSNR = (
∫ rH

rL

(D2(r) − D1(r)) dr)/ (rH − rL) (15)

where D1(r) and D2(r) are two R-D curves which, respec-
tively, represent the reconstructed distortions in PSNR of
the MMSE and the “MRF-ICM” reconstruction algorithm
approximated by a third order polynomial as

DPSNR = D(r) = a0r
3 + a1r

2 + a2r + a3 (16)

and r = log R represents the logarithm of the bitrate, so that rH

and rL in (15) are the logarithmic forms of RH and RL which
bound the bitrate range of coding results of two fitted R-D
curves, a0, · · · , a3 are the parameters of fitting polynomial R-
D curves. An inverse process which fits the interpolation to
find bitrate as a function of PSNR as Dbitrate = D(PSNR) =
a0PSNR3 + a1PSNR2 + a2PSNR + a3 can be employed to find
BD-bitrate. BD-bitrate indicates the average bitrate difference
in % over the whole range of PSNR. The results in Table
I show that the proposed algorithm achieves up to 1.309 dB
PSNR improvement and 17.489% bit-rate saving for PD-DVC
scheme, and up to 0.954 dB PSNR improvement and 20.017%
bit-rate saving for TD-DVC scheme.

For the TD-DVC scheme without feedback channel in
Section II-D, Fig. 16 shows the RD performance of the “MRF-
ICM” and the MMSE reconstruction algorithms under “bit-
plane (BP) error” and “bit error” conditions, where the packet
loss ratio is set to 8% and the target bit-plane decoding failure
probability is 0.1. The quantization bin [BL, BU] is determined
by only correctly decoded bit-planes, and in turn varies for
different coefficient bands. Under the “BP error” condition, all
subsequent bit-planes are discarded once a bit-plane decoding

TABLE I

Average BD Deltas of the Proposed ‘‘MRF-ICM’’

Reconstruction Algorithm Against the MMSE Reconstruction

Algorithm for PD-DVC and TD-DVC Schemes

PD-DVC TD-DVC
Sequences 
PSNR (dB) 
Rate (%) 
PSNR (dB) 
Rate (%)
Bus 0.636 −8.001 0.271 −5.481
Crew 0.880 −17.135 0.588 −15.804
Football 1.309 −17.489 0.645 −10.359
Foreman 0.816 −16.006 0.530 −16.483
Driving 0.640 0.249 0.954 −20.017
Whale 0.344 −2.175 0.215 −2.886

Fig. 16. RD performance comparison with different reconstruction algo-
rithms for the TD-DVC scheme without feedback channel (FBC), where he
packet loss ratio is 8% and the bit-plane decoding failure probability is 0.05.

failure is detected. Under the “bit error” condition, all the de-
coded bit-planes are used for reconstruction. Compared to TD-
DVC (with feedback channel condition) shown in Fig. 15, the
performance gain of the proposed MRF-based reconstruction
over the MMSE reconstruction is slightly better because only
correct regions in the previous frames are used to generate the
local gradient to prevent inappropriate penalizing.

For the DVC scheme with SIR [12] in Section II-C, Fig.
17 shows the RD performance of WZ frames with different
reconstruction algorithms. It can be seen that the proposed
MRF-based approach achieves superior performance than the
existing MMSE reconstruction results.

B. PSNR of Each WZ Frame

Figs. 18 and 19, respectively, present the PSNR of the
reconstructed WZ frames among all reconstruction algorithms
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Fig. 17. RD performance comparison with different reconstruction algo-
rithms for the TD-DVC scheme with side-information refinement (SIR).

Fig. 18. PSNR comparison of the reconstructed WZ frames for the PD-DVC
scheme.

Fig. 19. PSNR comparison of the reconstructed WZ frames for the TD-DVC
scheme.

for the PD-DVC and TD-DVC schemes. It can be seen
that the proposed reconstruction would achieve a significant
performance gain over the existing MMSE and maximum
probability reconstruction, and especially in favor of the
frames with relative low side-information quality. Based on
the good initial MMSE estimator, the proposed “MRF-TRW-
S” and the “MRF-ICM” approaches are observed to achieve
very close objective performance.

C. Subjective Quality Comparison

Fig. 20 presents the subjective quality comparison on the
sampled frames from different reconstruction algorithms for
the TD-DVC scheme. Since the “MRF-TRW-S” and “MRF-
ICM” algorithms have similar performance, only results with
“MRF-ICM” reconstruction algorithm are presented and com-
pared to that of the “MMSE” reconstruction algorithm. It can
be seen that the proposed MRF-based algorithm would achieve
better subjective performance without the blocking artifact
which obviously appears in the MMSE reconstruction.

D. Computational Complexity

In this section, we will give the computational complexity of
the proposed reconstruction algorithm and compare it to that
of the MMSE and the maximum probability reconstruction
algorithm, and also compare it to that of other modules
in the decoding process to demonstrate the ratio that the
proposed reconstruction algorithm accounts for in the whole
WZ decoding process.

Fig. 20. Subjective performance comparison of different reconstruction al-
gorithms for the TD-DVC scheme. (a), (c) MMSE algorithm. (b), (d) Proposed
“MRF-ICM” algorithm.

TABLE II

Average Complexity for One Wyner-Ziv Decoding for the

PD-DVC Scheme

Reconstruction Running Time of Different Sequences (S)
Methods Bus Crew Football Foreman
Maximum probability 0.0014 0.0013 0.0011 0.0013
MMSE 0.230 0.231 0.245 0.251
MRF-ICM 12.475 13.704 13.598 13.776
MRF-TRW-S 1287.331 1117.353 1321.326 1290.408
Optical flow analysis 5.671 5.581 5.641 5.356
LDPCA decoding 292.130 225.833 310.578 311.673

Table II presents the computational complexity (the average
time for one WZ frame) of different reconstruction algorithms
for the PD-DVC scheme, where four bit-planes are transmitted.
It shows that the MRF-ICM algorithm is much faster than
the MRF-TRW-S algorithm and only accounts for a small
amount of the overall decoding time, typically about 6% of
the Slepian–Wolf decoding.

Likewise, Table III presents the computational complexity
(the average time for one WZ frame) of different recon-
struction algorithms for the TD-DVC scheme, where the
quantization parameter for the WZ coding is set to QPW = 28.
The MRF-ICM algorithm only accounts for a small amount
of the overall decoding time, typically about 20% ∼ 30% of
the SW decoding.

E. Convergence Analysis

In Figs. 21 and 22, we present the convergence property
of the proposed “MRF-ICM” reconstruction algorithm for the
PD-DVC and TD-DVC schemes. It shows that the blocking
artifact is gradually alleviated with the number of iterations.
It is worth mentioning that the over-smoothing in the pixel
domain optimization of the TD-DVC scheme would be made
a tradeoff with the iterations, because it is not strictly restricted
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TABLE III

Average Complexity for One Wyner-Ziv Decoding for the

TD-DVC Scheme

Reconstruction Running Time of Different Sequences (S)
Methods Bus Crew Football Foreman
Maximum probability 0.0905 0.0944 0.0910 0.0923
MMSE 0.332 0.338 0.319 0.318
MRF-ICM 25.069 26.356 24.344 25.836
MRF-TRW-S 1171.484 1203.500 1236.355 1231.663
Optical flow analysis 5.671 5.581 5.641 5.356
LDPCA decoding 131.707 80.656 102.080 110.241

Fig. 21. Convergence analysis of the proposed “MRF-ICM” reconstruction
algorithm for the PD-DVC scheme. Top: 3 WZ bit-planes. Bottom: 4 WZ
bit-planes.

Fig. 22. Convergence analysis of the proposed “MRF-ICM” reconstruction
algorithm for the TD-DVC scheme. Top: QPW = 34. Bottom: QPW = 28.

by the quantization bin like the PD-DVC scheme. Certainly,
the blocking artifacts are steadily alleviated with the iterations.

VI. Conclusion

In this paper, we proposed an MRF-based reconstruction
algorithm for a generic DVC architecture which exploits the
spatio-temporal consistency of video sequences as well as
the statistical correlation between the WZ frame and the
corresponding side-information to achieve an optimized recon-
struction performance. The WZ frame is modeled as an MRF
which reflects interactions among neighboring nodes on a 2-D
lattice for natural video, and its MAP estimate is solved for the
desired reconstruction to achieve better subjective and objec-
tive performance than the i.i.d. model of the existing maximum
probability and the MMSE algorithms. The energy function
consists of two terms: a data term measuring the statistical
correlation, and a GR term enforcing local spatio-temporal
consistency. The data term is measured by the MSE metric in
accord with the PSNR objective quality measurement, and the

GR term is calculated from a weighted summation of gradient
deformation which is measured by the difference between the
gradient of the desired output and that of the reference frames.
With the derived energy function, the energy minimization for
the MRF-based MAP estimate of the WZ frames is solved
by global optimization (the TRW-S algorithm) and greedy
strategies (the ICM algorithm) with the MMSE reconstruction
as the initial estimate. The implementation of the proposed
reconstruction algorithm is discussed with regard to the critical
parameters under a wide variety of DVC scenarios.
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