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Abstract—This paper presents a new video compression frame-
work over H.264/AVC scheme that integrates our proposed
structured priority belief propagation (BP)-based inpainting
prediction (IP) to exploit the intrinsic nonlocal and geometric
regularity in video samples. Unlike the existing edge-based
inpainting adopted in lossy image coding, the optimal predictor
could maintain the pixel-wise fidelity and the robust error
resilience without any assistant information. Beyond the local
prediction limitation of traditional intra and inter-modes, the
priority BP with regularized structure priors of a spatio-temporal
Markov random field is imposed on the predictor in an adaptive
and more convergent sense. Specifically, the structured sparsity
of the predicted macroblock region is inferred by tensor voting
projected from the co-located decoded regions. In turn, the
priority and visiting order of nodes are assigned according to
the sets of updated beliefs as the propagation of messages.
Through relatively few iterations of forward and backward
process, the sparse inference of priority BP would ensure a
stable marginal belief distribution on the structure and texture
through updating local messages and beliefs. Within the optimal
mode selection on rate-distortion optimization (RDO), the IP-
mode with structured priority BP outperforms the existing vision-
based approaches, and specially achieves a better objective rate-
distortion performance besides visual quality. The IP-mode with
structured priority BP can be applied to both I and P frames to
generate low entropy residue, e.g., homogeneous visual patterns,
and the computation complexity is also competitive with one
iteration of sparse inference. Moreover, it behaves more resilient
with an intrinsic probabilistic inference than the intra and inter-
modes.

Index Terms—Belief propagation, H.264/AVC, inpainting,
mode selection, tensor voting.
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I. Introduction

THE state-of-the-art video compression schemes such as
H.264/AVC have recently achieved a vital efficiency.

These mainstream signal processing approaches focus on
exploring statistical redundancy among pixels through intra
and inter prediction [1]. To achieve a better performance,
more intra prediction methods, e.g., template matching [2]
and texture prediction [3], have been noticed. In 2005, high-
performance video coding has been initialized for further in-
vestigation where various modes are advocated to suit regions
of different properties. In the corresponding key technology
area software [4], a bidirectional intra prediction and separable
directional transforms are absorbed [5]. Besides improving
traditional coding technique such as predictive coding and
transform coding, there is another major research effort under
way to improve coding efficiency through exploiting visual
redundancy. In a perceptual rate-distortion (R-D) sense, a
reconstruction (interpolation) from incomplete data has ever
been proposed with a statistical correlation between a sparsely
sampled low-resolution version and high frequency contents
through learning-based approaches [6]. With the evolution into
high efficiency video coding (HEVC) joint project in 2010, the
requirements are expected to attain bit-rate reduction of 50%
at the same subjective image quality comparing to H.264/AVC.

Parallel with the traditional prediction track, several com-
puter vision and graphics technologies have been proposed
to synthesize and hallucinate missing image contents with
good perceptual quality. A remarkable image inpainting is
first introduced by Bertalmio et al. [7] by using a third-order
partial difference equation to smoothly propagate information
to the damaged image area from the surrounding areas in
isophote directions. Recently, this kind of texture synthesis
methods [8], [9] has been playing a leading effort to exploit
visual redundancy for restoring missing areas with inferable
information. Those can be treated in a unified manner under
the framework of Markov random field (MRF) [10], and op-
timization algorithms, e.g., belief propagation (BP) [11], [12],
are concerned as an iterative solution. These approaches solve
a wide class of problems in image processing and computer
vision, but are space and time consuming till convergence
[13]. In this situation, the assistant information, e.g., edges,
is recognized significant to guide restoration process. The
work of [14] combined “texture synthesis” and “inpainting”
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to prioritize the completion order using the local image
structure. Pixels in the hole maintain a confidence value
which influences their filling priority together with image
isophotes. The structure propagation has ever been advanced
as a global optimization problem [15], which preserves im-
portant structure on condition that sharp curves are outlined
by the user. Mathematically, this process can be interpreted
as an iterated projection of the damaged image from prior
knowledge including the undamaged content and constraints,
e.g., regularity or sparsity.

Inspired by the insight, various image and video compres-
sion schemes have been revisited. An image-based compres-
sion framework has been designed where some smooth and
flat blocks are removed from the source image [16]–[18]. At
the decoder side, inpainting will be implemented to recover
the lost content with the delivered assistant information. Ap-
plying similar idea to block-based video coding, some intuitive
attempts involve in removing some macroblocks (MBs) in the
prediction frame and restoring them based on various assistant
side information, e.g., edge [16], sprite background image
[19], and assistant parameters [18]. A related approach using
texture analysis-synthesis scheme is proposed in [20], which
reduces the entropy of source information by clustering the
homogeneous area into a small patch that contains the epitome
content of all associated regions. Furthermore, only the spatial
consistency was inferred and enabled in intra frames. To
maintain a temporal consistency, a space–time completion has
recently been referred in a global optimization sense [21], [22].
Considering a semantic prior to some extent, a priority-based
ordering in [23] was proposed to incrementally fill the specific
missing texture by separating foreground and background
layers with optical flow. Those schemes commonly need an
explicit classification and segmentation criterion to extract a
certain type of texture or object from a general natural video
scene. Despite those schemes claim a bit-rate saving at similar
visual quality levels compared with the traditional video codec,
they fail to ensure a pixel-wise fidelity and sheer away from the
quantitative validation. The coding burden from the assistant
information is also a critical issue for generic video coding.

This paper proposes a structured priority BP-based inpaint-
ing prediction (IP) algorithm under the spatio-temporal MRF.
The spatio-temporal consistency in video is translated into an
optimization problem by minimizing the energy of the MRF
model. Unlike the existing edge-based inpainting adopted in
lossy image coding, the optimal predictor could maintain
the pixel-wise fidelity and the robust error resilience without
assistant information. Beyond the local prediction limitation
and the ordered BP inference, the priority BP with regularized
structure priors is imposed on the predictor in a nonlocal sense.
It targets to achieve the reconstructed patch assignment of
the largest expected probability and generate lower entropy
residue. To be concrete, the structured sparsity of the predicted
MB region is inferred by tensor voting projected from the
co-located decoded regions, which is imposed on tuning the
priority of message scheduling in BP with an adaptive and
more convergent manner. The visiting order and the mes-
sage scheduling policy of nodes in the spatio-temporal MRF
are guided by the belief with structured sparsity. Through

relatively few iterations of forward and backward process
(typically, one iteration), the sparse inference of priority BP
would ensure a stable marginal belief distribution on the
structure and texture through updating local messages and
beliefs.

We further propose a new video compression framework
based on the H.264/AVC scheme, which adds the structured
priority BP-based MB IP-mode for the optimal mode selection
on rate-distortion optimization (RDO). The prediction mode
can exploit the intrinsic nonlocal and geometric regularity in
video samples. Through regularizing a global spatio-temporal
consistency between the predicted region and the co-located
known texture, the coded MBs with IP-mode is predicted
to generate less residual, e.g., homogeneous visual patterns.
The IP-mode with structured priority BP can be applied to
both I and P frames, where only the MB header and residual
data are included in the syntax element of the compressed
bit-stream without any side information. Essentially, the IP-
mode with structured priority BP at the encoder side of
H.264/AVC outperforms the existing vision-based approaches
at the decoder side, and specially achieves a better objective
R-D performance besides visual quality. The computation
complexity is also competitive with one iteration of sparse
inference. Moreover, it behaves more resilient with an intrinsic
probabilistic inference than the intra and inter-modes.

The rest of this paper is organized as follows. In Section II,
we introduce the proposed IP-mode with structured priority
BP (hereafter, IP-mode for short) in a generic video coding
framework and discuss the motivated formulation on a reg-
ularized BP. In Section III, the structured sparsity on tensor
voting is addressed. The priority BP is proposed in Section
IV to clarify the prediction process. Extensive experimental
results are validated in Section V on both objective and visual
quality. In Section VI, we conclude this paper and discuss the
future work.

II. Proposed Framework

A. Proposed Codec

The generic video coding framework with the proposed
IP-mode is depicted in Fig. 1. Parallel with the existing
intra and inter-modes, each MB would select the optimal
mode in a R-D sense of Lagrange minimization [24]. The
optimization formulation in the H.264/AVC standard is based
on the assumption that the distortion D and incurred rate R

of multiple MBs are independent of each other. If Bn is a MB
in the current frame n, and B̂n−r is the reconstructed blocks
in the previously coded frame n − r (r = 0 denotes an intra-
frame), then, the Lagrangian cost JMB of the predicted MB
Bn could be

JMB(Bn, B̂n−r, mode|Qp, λmode) =

D(Bn, B̂n−r, mode|Qp) +

λmode · R(Bn, B̂n−r, mode|Qp) (1)

where Qp is the MB quantization value and λmode is the
Lagrange parameter associated with Qp. The Lagrange co-
efficient λmode is empirically set λmode = 0.85 × 2(Qp−12)/3.
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Fig. 1. Proposed codec with the structured priority BP-based IP.

By adding the IP-mode with structured priority BP to the
existing intra and inter-modes in H.264/AVC, the respective
possibilities of modes are

modeintra ∈ {I4MB, I16MB, IP}
modeinter ∈ {SKIP, I4MB, I16MB, INTER, IP}. (2)

From the definition of (2), the IP-mode can be turned on in I,
P, and B frames. Similar to intra and inter-modes, the predictor
of IP-mode is subtracted from the current MB to generate a
residue which is transformed, quantized, and entropy encoded
to form the compressed bit-stream in a network abstraction
layer. There is no assistant side information to be included
in the bit-stream, so that the IP-mode’s R only contains the
MB header (IP-mode flag) and the corresponding discrete
cosine transform residual blocks. The D in (1) is a measure
to quantify the difference between Bn and B̂n which is the
predictor of the IP-mode from the reconstructed blocks B̂n−r

as follows:

DIP (Bn, B̂n|Qp) =
∑

x

∑
y

|Bn(x, y) − B̂n(x, y|Qp)|2. (3)

By minimizing the Lagrangian cost JMB in (1) among all the
candidate modes, the optimal mode can be selected for each
MB.

In traditional inpainting scenarios, the restoration of the
missing region is an ill-posed problem. However, the missing
region might keep similar statistical, geometric, and surface
reflectivity regularities as those in the surroundings, which
makes the ill-posed problem possible to be solved. For the MB
inpainting-based prediction problem, it could be formulated
as follows by a weighted sum of both color distortion and
gradient deformation terms as follows:

min
∑

x

(|f (x) − f̂ (x)|2 + β|∇f (x) − ∇f̂ (x)|2) (4)

Fig. 2. (a) Obtained candidate patches from the reconstructed region in both
the current and previous frames. (b) Nodes and edges of MRF.

where x is the position in the region to be predicted, f (x) is the
original pixel value, and f̂ (x) is the inpainting result of f (x).
∇ represents the gradients, and β is the weighted parameter.
Generally, the gradients of the pixels can be represented by
the structure in the region which is of prominent importance
in inpainting process to preserve geometric and photometric
regularities.

B. Basic Model

In the IP-mode, the prediction result is obtained by selecting
and copying suitable candidate patches from the reconstructed
regions. The target region to be inpainted is the current MB M,
and the candidate patches are obtained from the reconstructed
region in both the current and previous frames S = Rc ∪ Rp,
as depicted in Fig. 2(a). The candidates dictionary C consists
of all w × w patches from the source region S.

We model the inpainting problem by the spatio-temporal
MRF. As shown in Fig. 2(b), the nodes of the MRF are
de-sampled from the pixels in M, and the edges ε of the
MRF make up a four-neighborhood system. The nodes consist
of boundary nodes, whose neighborhood intersect the source
region S, and the inner nodes. Under this model, the unknown
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Fig. 3. (a) MRF model in one dimension for the video inpainting problem.
Black circles are nodes in MRF, white circles are observed points in the
reconstructed region, and squares are hidden variables referring to the patch
overlapping the current MB region. (b) Factor graph represents the distribution
of MRF, and local messages pass in the network. White circles are variables
in MRF, white squares are factors between the neighboring nodes, and black
squares are factors from the observed regions.

parameter, denoted by �, is the pixel values in the current MB
to be predicted, and � = {ip|p ∈ M}. The known pixels around
the MB are the observed variables Y = {ip ∈ Rp∪Rc\M}. The
windows {Wn}N1 are defined as small w × w spatial patches
overlapping with the region M, and N is the total number.
The patches X = {Xn}N1 are hidden variables corresponding to
Wn, as depicted in Fig. 3(a) in one dimension. Each patch Wn

is associated with one hidden variable Xn, which is connected
to all the pixel locations it covers, {ip|p ∈ Wn}. The possible
assignments for each Xn are chosen from the candidate patches
in dictionary C. We assume that each Xn can have any
assignment with a probability. As a consequence, the joint
probability of the observed data and the hidden variables given
the parameters � is as follows:

P(Y, X; �) =
1

Z

N∏
n=1

∏
p∈Wn

φ(ip, Xn)

=
1

Z

N∏
n=1

exp[−F (Xn, Wn)] (5)

where p denotes a pixel, either unknown or reconstructed, and
Z is a normalizing constant. φ(ip, Xn) is the joint potential
function and F (Xn, Wn) is the matching cost function of
patches Xn and Wn.

Within the spatio-temporal MRF, we assume that the prob-
ability distribution of the values for a pixel is only related
to the values of its neighboring pixels, and independent of
the rest of the frame. As depicted in Fig. 2(b), we construct

a four-neighborhood Markov network, and convert it into a
factor graph, as Fig. 3(b). For a node xi ∈ M, the factor fi(xi)
represents the probability of Xn on condition of the observed
data Y , and the pairwise factor fij(xi, xj) denotes the potential
of neighboring nodes xi and xj as follows:

fi(xi) =
1

Z
exp[−F (Xi, Wi)] (6)

fij(xi, xj) =
1

Z
exp[−F (Xi, Xj)]. (7)

Based on the joint probability definition in (5), to find the max-
imum a posteriori (MAP) solution, we carry out a message
passing process by propagating messages between the variable
nodes and the factor nodes. By using the logarithm of the joint
distribution, the max-product term is converted to max-sum.
The messages transferred between the nodes are represented
as follows:

μfi→xi
(X) = max

X1,X2,...,XN

ln f (X, X1, X2, . . . , XN )

+
∑

m∈ε(fi)\xi

μxm→f (Xm) (8)

μxi→fi
(X) =

∑
l∈ε(xi)\fi

μfl→xi
(X). (9)

Thus, we have two distinct kinds of messages: those go from
variable nodes to factor nodes, denoted μx→f (X), and those go
from factor nodes to variable nodes, denoted μf→x(X). In this
case, the messages passed along a link are always a function
of the variable associated with the variable node which the
link is connected to. As shown in (8), the messages sent by a
factor node to a variable node along the link is composed by
the sum of incoming messages along all other links coming
into the factor node, and then marginalizes over all of the
variables associated with the incoming messages. To evaluate
the messages sent by a variable node to an adjacent factor
node along the connecting link, we simply take the sum of the
incoming messages along all of the other links, as displayed
in (9).

We expect to find the marginal for every variable node in
the graph, and the marginal is given by the product of the
incoming messages along all of the links arriving at that node,
which is converted to sum by logarithm. Each of the messages
can be computed recursively in terms of other messages. For
a specific node xi, we can view it as the root of the factor
graph and the messages passing process begins at the leaf
nodes. Each node sends messages toward the root once it
has received messages from all of its other neighbors. By
propagating messages recursively till messages have been sent
along every link, and the root node has received messages
from all its neighbors, the marginal of the root is computed
as follows:

p(xi) =
∑

l∈ε(xi)

μfl→xi
(X). (10)
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Fig. 4. Computed data cost and smoothness cost.

Thus, the most probable value of the root can be searched as
follows:

Xmax
i = arg max

X

⎡
⎣ ∑

l∈ε(xi)

μfl→xi
(X)

⎤
⎦ . (11)

As we aim to find the marginal distribution for all the
variable nodes in the spatio-temporal MRF, the problem could
be solved by viewing each node as the root of the graph
and repeating the algorithm, which is a huge waste of time
and resource. As a result, we consider an efficient procedure
by decomposing the overall message propagation course into
forward and backward processes. Arbitrarily pick a node as the
root, and propagate messages from leaves to the root, which is
formulated as a forward process. When the root has received
messages from all of its neighbors, it then sends out messages
to the neighbors, i.e., the messages pass outwards from the
root to the leaves, which is called a backward process. In this
way, messages are passed in both directions across every link
in the graph, and all the nodes can receive messages from all
their neighbors. The set of values that jointly have the largest
probability, or the vector Xmax maximizes the joint distribution
p(X) is as follows:

X
max = arg max

X

p(X) (12)

s.t. p(Xmax) = max
X

p(X). (13)

By bringing factor nodes into the network and propagating
messages around the graph, the maximum of the joint distri-
bution is achieved.

C. Video Inpainting as a Discrete Optimization Problem

The prediction of the current MB is to copy suitable
candidate patches over the position of nodes. It is critical
that the most suitable candidate should match both the known
region and the neighborhood. As a result, it is necessary to
define the matching cost or the distance of two patches A and
B. With regard to the minimized distortion objective in (4), it
is formulated as follows:

D(A, B) = ‖A(xA) −B(xB)‖2 + β‖∇A(xA) −∇B(xB)‖2. (14)

According to the formulation in Section II-B, we define a
discrete optimization problem of minimizing the energy of a

spatio-temporal MRF. By the matching cost in (14), we define
the potential Vs(cs) and the pairwise potential Vmn(cm, cn) of
single node as in Fig. 4. The potential Vs(cs) or data cost
for putting the patch cs over the node s, presents how well
the patch agrees with the source region around the node s as
follows:

Vs(cs) = D(cs, Rc) + γD(cs, Rp) (15)

where D(cs, Rc) is the matching cost between the candidate
patch cs and the known region around the node s in the current
frame, which is depicted as Rc, and D(cs, Rp) corresponds
to the matching cost between the candidate patch and the
previous reconstructed reference frame, which is represented
as Rp. γ is the coefficient for motion change between the
current and the preceding frames. If the current frame is intra
frame and there is no a previous reference frame, the second
term is zero. In a similar context, the smoothness potential
Vmn(cm, cn), measures how well patches cm and cn over the
neighbor nodes m and n agree at the overlapping region as
follows:

Vmn(cm, cn) = D(cm, cn) =
∑

x∈Rm∩Rn

{|cm(x) − cn(x)|2

+ β|∇cm(x) − ∇cn(x)|2}. (16)

Generally, the overlapping region of the patches assigned on
two neighboring nodes is half the area of the patch to obtain a
smooth result and make the best use of dependency between
the neighbors.

Based on the data cost and the smoothness cost, our goal is
to minimize the energy of spatio-temporal MRF by assigning
a suitable patch ĉm ∈ C to each node m as follows:

min E(ĉ) =
∑
m∈M

Vm(ĉm) +
∑

m,n∈M
(m,n)∈ε

Vmn(ĉm, ĉn). (17)

Intuitively, an algorithm to optimize the energy attempts
to assemble a huge jigsaw puzzle, where the source patches
correspond to the puzzle pieces and the region M represents
the puzzle itself.

III. Structured Sparsity

As a typical inpainting process is usually an ill-posed
problem, a variety of regularization algorithms have been
developed to solve it. Hereafter, the completion problem in
(17) is formulated into the energy minimization in spatio-
temporal MRF, and the energy is composed of pixel and
gradient distortion which can be interpreted into what the pixel
and its direction are. It is well known that the gradient and
direction of the pixels can be represented by the structured
sparsity. For an efficient compression, the structured sparsity
is inferred through the clues from the reconstructed regions.

For a non-iterative solution, a tensor voting algorithm is
adopted for the edge prior of the decoded regions to cast
votes on nodes in the current MB. Tensor is used for token
representation, while voting for communication among tokens
[25]. By postulating smooth connections among tokens, the
voting field is a dense tensor field combining tensor and voting.
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Fig. 5. (a) Structure information and the token representation. (b) Illustrative
design of a fundamental 2-D voting field.

Fig. 6. Structured sparsity of nodes in MRF, and the whiter nodes have
higher structured sparsity. (a) Foreman. (b) Highway.

In this section, we address the stick tensor field with structured
sparsity.

A. Token Representation

To infer the structured sparsity in the unknown regions, we
extract the edge prior in the neighboring known region. The
Canny edge detector [26] is used because it could define a
series of detection and localization criteria in a mathematical
form, e.g., low error rate ensuring that edges should not be
missed and there be no responses to non-edges, well localized
edge points at a minimum distance between the edge pixels
from the detector and the actual edge, and single response
criterion.

Once the edge information of the decoded region is detected
and extracted, we translate the pixels in the decoded region
into the inputs of token. As depicted in Fig. 5(a), if the point
is on a curve, the tensor can be described by its associated
tangent or normal, e.g., node p1 has normal (nx, ny)T , and
it can be expressed by a second-order tensor as follows:(

n2
x nxny

nynx n2
y

)
. If the node is not on a curve (e.g., node p2), or

a intersection (e.g., node p3), we can translate it into

(
1 0
0 1

)
.

B. Token Communication

The tensor voting algorithm identifies local feature descrip-
tions by spreading the information associated with shape-
related input within a field while enforcing a smoothness
constraint. Each data point communicates its information in a
region of field through a voting process. The more information
that is received at each data point, the stronger likelihood of

a geometric feature being present at a certain location. This
likelihood could be expressed through a confidence measure,
saliency, which is often used in feature extraction.

There are two elements in tensor voting algorithm: data
representation which is described in Section III-A, and to-
ken communication through linear voting which is a process
similar to linear convolution. In the underlying problem, the
points in the reconstructed region play as inputs, and each
node in MRF receives votes from inputs within their voting
field which is decided by voting size. For example, the vote
casted by an input O to node P is illustrated in Fig. 5(b).
We claim that the osculating circle connecting O and P is the
most likely connection since it keeps the curvature constant
along the hypothesized circular arc. The most likely normal �v
at P is given by the normal to the circular arc at P , and its
inner product with normal �n at O is nonnegative. The length
of this normal represents the strength of the vote, which is
inversely proportional to the arc length and the curvature of
the underlying circular arc as follows:

|�v(r, ϕ, σ)| = e
−( r2+cϕ2

σ2 ) (18)

where r is the length of arc OP , ϕ is the curvature, and c is a
constant controlling the decay with high curvature. σ controls
the smoothness and determines the effective voting size.

Each node in spatio-temporal MRF receives votes from
inputs within its corresponding voting field, and the second-
order tensor sums all the votes and collects into a covariance
matrix as follows:

Vsum =

[ ∑
v2

x

∑
vxvy∑

vyvx

∑
v2

y

]
. (19)

The corresponding eigensystem consists of two eigenvalues
λ1 ≥ λ2 ≥ 0 and two corresponding eigenvectors e1 and e2.
Therefore, Vsum can be rewritten as follows:

Vsum = (λ1 − λ2)e1e
T
1 + λ2(e1e

T
1 + e2e

T
2 ) (20)

where e1e
T
1 is a 2-D stick tensor with e1 indicating curve

normal direction, and e1e
T
1 + e2e

T
2 is a 2-D ball tensor. As

a result, the curve saliency Sm of node m is represented by
λ1 − λ2 as follows:

Sm = |λ1 − λ2|. (21)

The structured sparsity of nodes in the unknown region could
denote the possibility that the node is on a curve, and we are
implied to pay more attention to nodes with higher structured
sparsity. Intuitively, Fig. 6 shows two examples of structured
sparsity. In the block rounded by red lines, the gray levels
represent the structured saliency of nodes, and whiter nodes
own higher structured sparsity.

IV. Belief Propagation

A. Message Propagation

BP is an iterative algorithm to find a MAP estimator by
iteratively solving a finite set of equations till convergence.
Through continuously propagating local messages within the
nodes of the spatio-temporal MRF, beliefs of every node
are updated and an optimal output would be achieved when
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Fig. 7. (a) If a node m needs to send messages to its neighbors n, it must
make use of the messages msgr1m, msgr2m, and msgr3m from all the other
neighbors. (b) If a node m needs to calculate belief bm(cm), it should collect
the message coming from all the neighbors.

all the messages have been stabilized. Within the graphical
model in Section II-B, since each factor node has no more
than two neighboring variable nodes, the messages can be
converted into the opinions between the neighboring variable
nodes. That is, the messages reflect the node’s opinion to its
neighbors, and each message is a vector whose dimensions
is given by the number of candidates. Generally, the set of
messages sent from node m to its neighbor n is denoted
as {msgmn(cn)cn∈C}, and implies the opinion of m about
assigning label cn ∈ C to node n as follows:

msgmn(cn) = min
cm∈C

{Vmn(cm, cn) + Vm(cm)

+
∑
r 
=n

(r,m)∈ε

msgrm(cm)} (22)

where cm and cn are the candidate patches in the patch
dictionary C, and Vmn(cm, cn), Vm(cm) are the smoothness
cost and the data cost of the neighboring nodes m and n.

From the above equation, we can find that if one node m ex-
pects to send messages to its neighboring node n, it must first
traverse each one of its own candidates cm and decide which
one of them could provide the greatest support for assigning
the candidate cn to the node n. The support of the candidate cn

to the node n is determined by the compatibility between can-
didates cm and cn [smoothness cost Vmn(cm, cn)], and the like-
lihood of assigning the candidate cm to the node m [data cost
Vm(cm)], as well as the opinion of its other neighbors about the
candidate cm [sum of messages

∑
r 
=n,(r,m)∈ε msgrm(cm)]. As a

result, the node m must first collect messages from all its other
neighbors, and then add its own opinion into the messages sent
to the node n [see also Fig. 7(a)].

As we discussed in Section II-B, BP in spatio-temporal
MRF can be decomposed into forward and backward pro-
cesses, and the arrangement of the root and leaves of the
network is the prominent factor to affect the speed of conver-
gence. In other words, the organization of the message flow
is of paramount importance. In the proposed inpainting-based
MB prediction, we adopt the message scheduling principle
that the nodes who are more confident about their candidates
should transmit outgoing messages to their neighbors earlier,
i.e., the nodes are located at the bottom leaf nodes. On
the contrary, the nodes who are less confident and do not
own enough idea about the candidates to select should send

messages later, which are positioned near the root. It can be
reasoned in two aspects. On the one hand, the more confident
a node is, the more informative its messages are going to be,
meaning that these messages can help the neighbors to increase
their own confidence. On the other hand, by first propagating
the most informative messages around the graphical model, it
can help BP converge much faster and reduce the computation
complexity to prune a large amount of useless messages.

Based on the message scheduling principle, BP is completed
by a few iterations and each iteration includes forward and
backward processes. Nodes are arranged in a special sequence
and visited from head to tail in the forward process, and
inversely in the backward process. Once a node is accessed,
it sends messages to the neighbors and updates their beliefs.
A set of beliefs {bm(cm)}cm∈C for each node expresses the
probability of assigning patch cm to node m as follows:

bm(cm) = −Vm(cm) −
∑

r:(r,m)∈ε

msgrm(cm). (23)

The set of beliefs is related to the node’s data cost and the
messages from all its neighbors [see Fig. 7(b)]. Actually, as de-
noted in (10), each belief bm(cm) approximates the maximum
conditional probability given the fact that node m has been as-
signed the patch cm, and it is the evidence to select candidates.

After a number of iterations, when the messages are asymp-
totically stable, the candidate of maximum belief is assigned
for each node as follows:

ĉm = arg max
cm∈C

bm(cm). (24)

B. Ordered BP
As discussed in Section IV-A, the message scheduling

principle would ensure the nodes with higher confidence to
propagate messages earlier. Thus, we can arrange all the nodes
in a order according to their confidence and correspondingly
visit each node in sequence. The following problem becomes
how to evaluate the confidence of nodes and in what order the
nodes should be arranged to effectively reduce the computation
complexity and speed up the convergence. In the context, it
is obvious that boundary nodes with more priors from the
surrounding known regions are most confident to determine
which kind of patches are suitable, while the inner nodes only
rely on the opinions from their neighbors to select the assigned
patches. Moreover, it is also recognized that the nodes which
have a larger intersection area with known regions are more
confident. For example, the node in the top left corner is the
most confident one in the MB region. In this way, nodes would
be arranged into a fixed list of decreasing confidence. As
depicted in Fig. 8, in the forward process, we scan the nodes
from the top left to the bottom right along the boundary, and
from the outside layer to the inside, like peeling an onion. The
ordered list is stored in an array. In the backward process, the
nodes are visited in the reverse order from tail to head through
the order list, which is from inner to outside in MRF.

Fig. 9 gives a set of examples applying a fixed order BP
to predict MBs, where both structure and texture regions are
evaluated. Through a number of iterations along the ordered
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Fig. 8. In the ordered BP with forward process and backward process, nodes
are visited in order from boundary layer to inner side. (a) Ordered BP.
(b) Forward and backward process.

Fig. 9. IP results with an ordered BP for both structure and texture regions.
(a) Structure region. (b) Texture region.

list, the sum of squared differences between the predicted
result and the original signal is decreasing. It is obvious that
structure regions will require a larger number of iterations
than texture region to achieve acceptable results because the
orientation of the structure may not be so consistent with the
direction of the messages propagation.

C. Priority BP

The ordered BP has achieved a decent reconstruction in
inpainting, while there is much space to promote the per-
formance and reduce the computation complexity, i.e., the

Fig. 10. Visiting order in the first forward process according to the belief
and priority of nodes. The darker a node is, the earlier it will be visited in
the forward process. (a) Texture region, according to the belief and priority.
(b) Structure region, according to the tuned belief and priority in (26).

convergent number of iterations. As the message propagates,
beliefs of nodes are updated to reflect the dynamic confidence
of nodes as the process goes along. In view of the basic
message scheduling principle in Section IV-A, we tune the
priority of nodes to quantify their confidence which is tightly
related to the set of beliefs. With the change of beliefs, the
priorities of nodes are dynamically updated throughout the
process.

Based on the definition of beliefs in (23), the confidence of
node m depends only on the current set of beliefs {bm(cm)}cm∈C

that has been estimated by BP. One simple way to measure
the confidence is to count the number of suitable candidate
patches, i.e., the candidates whose belief exceed a control
threshold bthred : Pm = |{cm ∈ C : bm(cm) ≥ bthred}|.

By computing the priority Pm of each node m, it is possible
to select the node of a maximum priority as the next node to
visit

m̂ = max
m

Pm. (25)

For texture regions, the visiting order of the nodes in the
first forward process is shown in Fig. 10(a). The darker a patch
is, the earlier the corresponding node is visited. It implies
that the nodes near the known region would be visited earlier.
Fig. 11(a) displays the predictor after one iteration, which is
better than that after a few iterations from a ordered BP in
Fig. 9(a) in both visual and objective measurement.

For structure regions, it might be more intractable.
Fig. 11(b) displays the predictor by the priority BP where
message flow is assigned along the structure direction. We
take tensor voting to infer the structure prior of the unknown
regions, and include the structured sparsity into the definition
of beliefs in (23) to adjust the priority and visiting order of
nodes as follows:

bm(cm) = −Vm(cm) −
∑

r:(r,m)∈ε

msgrm(cm) + αSm. (26)
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From the equation, the beliefs not only are related to the
node’s data cost and messages from neighbors, but also depend
on the node’s structured sparsity Sm which is weighted by
a parameter α. As a consequence, the nodes with higher
structured sparsity get larger beliefs than others on average.
It would efficiently approximate the stable marginal belief
distribution by message propagation. Fig. 10(b) displays the
visiting order of the priority BP after belief adjustment of
(26). The darker nodes indicate an earlier visit, and the nodes
with high structured sparsity are arranged forth in the visiting
sequence. In Fig. 11(b), the predictor after only one iteration
is displayed, which is close to the result after three iterations
without the structure prior.

For either texture or structure regions, the message arrange-
ment and visiting sequence of nodes are dynamic. The next
node to send messages is always the node with the highest
confidence currently. A whole message propagation course
consists of a forward process and backward process, and
behaves as one iteration through an appropriate definition of
belief and priority. We also need an array to store the index
list of nodes to be visited, which is defined as order. Noted
that the list is not fixed in each iteration or settled before
the propagation. At the beginning, the list order is empty, all
the messages are initialized to zero, and the data cost and

Fig. 11. Prediction results by the priority BP in the texture and structure
regions. (a) For the texture regions, the predictor after one iteration. (b) For
the structure regions, the predicting comparison of beliefs with and without
structure consideration.

the structured sparsity of nodes are calculated. In the forward
process, as the nodes are visited and messages are propagated,
beliefs of all nodes are updated. It is worth mentioning that for
nodes which do not have data cost (e.g., inner nodes in MRF)
and receive any messages from their neighbors currently, their
beliefs are not counted and considered in the current selection
of nodes to visit. When we select the next node to send
messages, in other words, only the nodes who have either
data cost (information from the neighboring known region) or
the received messages from neighbors are considered. Once
the node of the largest priority is decided, it sends messages
to all the neighbors who have not been visited, and the
index of the node is pushed into list order as well as the
node is tagged as “visited.” The beliefs of nodes would be
updated and the selection of the next target begins, till all
the nodes are accessed. In the backward process, nodes are
visited from tail to head in sequence through the list order,
so that all nodes received feedbacks from their less confident
neighbors. The detailed procedure could be referred to as
follows.

Input: nodes in MRF, X = {xi, i = 1, 2, . . . , N}
candidates dictionary, C = {cj, j = 1, 2, . . . , L}

Output: patches assignment X(ĉ) = {xi(ĉi), ĉi ∈ C, i =
1, 2, . . . , N}

Important intermediate variables:
order: an array to store the nodes
vflag: an array to label whether the node has been visited
bflag: an array to label whether the node has beliefs

currently.

D. Composition of Final Patches

After the final patches have been selected for each MRF
node, we need to compose them to generate the final result.
As there are some overlapping regions between the patches of
the neighboring nodes, every pixel in the MB region is covered
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Fig. 12. R-D performance comparison of the test sequence. (a) Fore-
man cif . (b) Highway cif . (c) Container cif . (d) Waterfall cif .

Fig. 13. R-D performance comparison of the test sequence. (a) Blowing-
Bubbles 416 × 240. (b) BQMall 832 × 480. (c) ParkScene 1920 × 1080.
(d) ParkJoy 2560 × 1600.

by several patches centered in its surrounding nodes. Since the
corresponding gray level of candidates for each pixel is quite
similar and the usual graph-cut algorithm is complex, the most
likely color of the pixel should satisfy an overlapped block
motion compensation in a posterior probability of similarity-
based confidence [22]. Here, the final result of the pixel is
composed by blending the patches with weights related to the
node confidence as follows:

I(x) =
∑
i:x∈Ri

wiĉi(x)

s.t. wi ∝ 1

i
,

∑
i

wi = 1. (27)

For each pixel x in the current MB, the weights of the
candidate patch for each node whose corresponding patch
region covers the pixel are in inverse proportion to the position
i of the node in order. That is, the candidate patch with the
node positioned in the forth of order would get a larger weight
to generate the final result. In this way, the predicted result is
obtained smoothly and the block effect is avoided.

Fig. 14. R-D performance comparison with the frame structure of
“IBBPBBP.” (a) Foreman cif. (b) Highway cif. (c) Cactus 1280×720.
(d) BlueSky 1920×1080.

V. Experimental Results

A. Implementation

The proposed IP-mode with structured priority BP has been
implemented in the Joint Model 15.1 of H.264/AVC [27]. In
the experiments, all test sequences are with the YUV 4:2:0
format, 30 Hz frame rate. The IP-mode is enabled in both I,
P, and B slices, and is compared with a hierarchical tree-
structured intra and inter-prediction modes: I4×4, I16×16,
P16×16, P16×8, P8×16, P8×8, P8×4, P4×8, and P4×4
modes. Various types of test sequences including the com-
mon intermediate format (CIF) resolution videos (352×288),
Foreman, Highway, Container, Waterfall, and a WQVGA
resolution BlowingBubbles (416×240), a standard definition
BQMall (832×480), a 720p definition Cactus (1280×720),
the high-definition ParkScene and BlueSky (1920×1080), and
a ultrahigh-definition ParkJoy (2560×1600), are evaluated.

Both an ordered BP and a priority BP are imposed on
CIF sequences, and structured sparsity is enabled on Foreman
and Highway with significant geometric regions. The proposed
prediction algorithm would involve with an ordered BP and a
priority BP in the inpainting process, and the iteration number
is set to 8 in the ordered BP and 1 in the priority BP.

B. Validated Results

Fig. 12 shows the coding performance of the proposed
scheme with the ordered BP and the priority BP in comparison
to the traditional H.264/AVC with the “IPPP· · ·” structure and
the group of pictures (GoP) size 10 for the CIF sequences.
For the medium and high spatial resolution sequences, Fig. 13
gives the comparison of the proposed scheme with the priority
BP. When applying the IP-prediction mode in B frames with
the frame structure of “IBBPBBPBBP· · ·” and the GoP size 15
over both the CIF sequences and higher resolution sequences,
Fig. 14 shows the R-D performance comparison. It can be seen
that the proposed inpainting-based prediction with structured
priority BP can increase up to 0.8 dB peak signal-to-noise
ratio (PSNR) at the same bit-rate (bit per pixel, b/p) versus
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TABLE I

Computing Complexity Comparison Between Ordered BP and Priority BP

Bit-Rate Ordered BP (Eight Iterations) Priority BP (One Iteration)
Sequences (b/p) Selection Ratio (%) Complexity (pixels/s) Selection Ratio (%) Complexity (pixels/s)
Foreman 0.04 47.0 314.32 46.5 1156.53
BQMall 0.05 44.9 45.48 43.1 140.59
Stockholm 0.05 37.2 265.29 35.7 1119.91
Cactus 0.06 56.9 132.41 56.4 668.12
Bluesky 0.05 47.8 72.32 45.1 591.09
ChristmasTree 0.05 32.0 385.36 32.9 1206.64

TABLE II

Error Resilient Capability of the Proposed Scheme with the IP-Mode

Package Losing Rate 10% 15%
Sequences H.264/AVC (dB) Proposed Scheme (dB) H.264/AVC (dB) Proposed Scheme (dB)
Foreman 32.45 32.64 32.13 32.61
Highway 33.65 33.80 33.64 33.80
Container 31.59 31.62 31.57 31.61
Waterfall 30.08 30.10 30.05 30.10

TABLE III

R-D Performance Comparison Between the Block-Skip and Edge-Based Inpainting Algorithm [16] and the Proposed Algorithm

Edge-Based Inpainting in [16] Proposed Scheme
Sequences b/p PSNR (dB) Skip Rate (%) b/p PSNR (dB) IP-Mode Rate (%)
Foreman 0.47 26.83 44.7 0.45 36.19 3.78
Container 0.65 24.92 48.6 0.64 35.21 3.03
Highway 0.39 16.85 41.8 0.36 37.42 2.53
Waterfall 0.95 26.48 37.6 0.91 33.55 0.51

Fig. 15. Reconstructed performance comparison of sequence Foreman cif , Highway cif , Container cif , and Waterfall cif . (a) Block-skip and edge-based
inpainting algorithm in [16]. (b) Proposed inpainting-based prediction scheme with IP-mode.
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TABLE IV

Proposed IP-Mode Ratio Under Different QP Levels

IP-Mode Ratio (%) Size QP = 30 QP = 32 QP = 36 QP = 40 QP = 42
Foreman 352 × 288 10.8 12.9 18.8 26.8 32.2
Highway 352 × 288 25.0 29.9 40.3 45.1 45.7
Container 352 × 288 35.7 36.0 36.9 34.8 36.2
Waterfall 352 × 288 15.4 19.1 31.7 50.2 57.3
BlowingBubbles 416 × 240 12.5 18.4 25.9 32.3 40.4
BQMall 832 × 480 20.4 26.8 35.2 50.8 61.6
ParkScene 1920 × 1080 14.2 19.3 24.1 28.9 32.4
ParkJoy 2560 × 1600 20.2 23.6 27.6 35.6 40.8

H.264/AVC, and the coding gain is more obvious in low
bit-rate region. With structured sparsity regularization and
priority arrangement, the computation complexity of the IP-
mode is hugely reduced to an acceptable level from the
ordered BP inference. That is, only one iteration of forward
and backward process could obtain little residue and would
be promising in the future HEVC project. In fact, pruning-
based scheduling with multidimensional feature tensors could
be further explored to speed up the convergence. Table I
shows the complexity comparison between the ordered BP
and the priority BP, while the complexity is evaluated by the
decoding pixels per second. To be more reliable, the ratios of
the selected IP-mode and the bit-rate in both the ordered BP
and the priority BP are set to be very close. By extracting the
structure information and adjusting the message propagation
direction, the prediction result can be fine enough for the
priority BP with only one iteration. Obviously, the priority
BP with only one iteration achieves much lighter complexity
compared to the ordered BP with eight iterations, so that
it largely reduces the computing complexity and speeds up
convergence.

The error resilient capability of the proposed scheme with
IP-mode is shown in Table II. Using data partition in the
H.264/AVC standard [28], the bits in IP-mode which only
contain the MB header and residual coefficients, are classified
into data partitions A and C, respectively. To say it simply, the
residual data of the IP-mode occupies the least importance and
the most tendency to loss. It is compared with H.264/AVC
at the same packet loss ratio, e.g., 10% and 15%. With
an intrinsic probabilistic coherence, it can be seen that the
proposed scheme is of more error resilient because the IP-
mode is less dependent of the determinate reconstruction than
the existing modes in H.264/AVC.

Also, the proposed compression scheme is compared
with the block-skip and edge-based inpainting algorithm in
[16]. This anchor algorithm extracts edge information, skips
some blocks at the encoder side, and restores the regions
through edge-based inpainting at the decoder side. Considering
this method is originally used in image compression and
H.264/AVC intra-picture coding, we correspondingly enable
the I slices to cater for the spatial context of the block-skip
framework. The QP levels of the skip block framework and
the proposed inpainting-based prediction scheme are set to
28 and 31, respectively, in order to obtain a similar bit-rate.
Fig. 15 shows the perceptual (visual) quality of reconstructed
frames from both the proposed IP-mode prediction and the

Fig. 16. Distributions of the IP-mode MBs in test sequences. From left to
right, the sequences are Foreman, Highway, Container, and Waterfall. (a) I
frames. (b) P frames.

Fig. 17. Distribution ratio of the proposed IP-mode in each frame.
(a) Foreman. (b) Highway. (c) Waterfall. (d) Container.

edge-based inpainting algorithm in [16]. To meet the image
compression criterion, the bit-rate metric has been changed
from kbit/s to b/p. Corresponding to the visual quality, Table
III provides the average R-D result (b/p and PSNR) of the
two approaches. Although the block-skip method claims up
to 33% bit-savings compared with H.264/AVC intra coding,
the so-called “similar visual quality levels” are not clearly
given, and the objective results are poor. The advantage of
the proposed inpainting-based prediction scheme is obvious
because it is not required to contain edge information in the
bit-stream. It is achieved through inferring structured sparsity
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TABLE V

Ratio Between the Original Modes in H.264/AVC and the IP-Mode

Replacing Ratio (%) P16 × 16 P16 × 8 P8 × 16 P8 × 8 I4 × 4 I16 × 16
Container 89.8 3.14 2.88 0.59 0.78 2.81
Waterfall 97.1 1.12 1.27 0.00 0.32 0.16
Foreman 88.0 3.23 2.83 0.40 0.67 4.85
Highway 94.1 1.24 1.05 0.07 0.07 3.53

Fig. 18. IP-mode MBs distribution of the WQVGA resolution, standard
definition, and high definition sequences. (a) BlowingBubbles−416 × 240.
(b) BQMall−832 × 480. (c) ParkScene−1920 × 1080.

by tensor voting from the reconstructed regions, and the bits
are more effectively assigned to the residue.

C. Discussion

Table IV gives the average IP-mode ratio under different
quantization parameter (QP) levels for the testing sequences.
It can be observed that the ratio of IP-mode is increasing
with higher QP levels, and the IP-mode through inpainting
can save bits for homogeneous visual patterns (texture) than
original inter-modes with a more accurate predictor. To be
more concrete, Fig. 16 displays a set of distributions of the
IP-mode MBs in both I frames and P frames which are outlined
by red rims. It can be observed that the IP-mode can be
selected not only in homogeneous textural regions, e.g., the
cloud in Highway, the water in Container, and the leaves
in Waterfall, but also the salient structure regions, e.g., the
leaves in Foreman and the road in Highway. It infers that
the predictor by the regularized inpainting is more optimal
than intra prediction and motion-compensated prediction in
H.264/AVC. In Fig. 17, we also analyze the percentage of IP-
MBs for each frame along the time, where the QP level is set
to 32, the GoP size is ten frames, and the I frames are labeled
in red circles. It can be seen that the IP-mode ratio in P frames
is larger than I frames.

Fig. 19. IP-mode MBs distribution of the ultrahigh-definition sequence
ParkJoy−2560 × 1600.

Table V contrasts the IP-mode MBs to their original modes
in the traditional H.264/AVC scheme, where we can observe
that the P16×16 mode of P slices are mainly replaced with less
burden of side information and more accurate predictor. More
examples of IP-mode examples in P frames can be referred to
Figs. 18 and 19.

VI. Conclusion and Future Work

In this paper, we have proposed a video coding framework
with a structured priority BP-based MB IP-mode. Compared
to the local prediction of traditional intra and inter-modes,
the optimal predictor can generate lower entropy residue and
behave more resilient by exploiting the intrinsic nonlocal
and geometric regularity in video samples. Moreover, it can
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maintain a better pixel-wise fidelity and the robust error
resilience without any assistant information than the existing
edge-based inpainting in lossy image coding. Under a global
spatio-temporal MRF, the structured sparsity of the coded MBs
with IP-mode is inferred by tensor voting projected from the
co-located decoded regions, which is imposed on tuning the
priority and the visiting order of nodes with an adaptive and
more convergent manner. Through relatively few iterations of
forward and backward process, the sparse inference of priority
BP would ensure a stable marginal belief distribution on the
structure and texture through updating local messages and
beliefs. Within mode selection on RDO, the IP-mode with
structured priority BP could get the best patch arrangement
by a spatio-temporal correlation. The computation complexity
is shown competitive with one iteration of sparse inference.

In the future, more vision-based technologies are envisaged
to get into the video coding framework. We will continue
to investigate multidimensional feature tensors, e.g., structure,
texture, color, and others, which can be extracted and analyzed
for matching and completion, to achieve higher compression
ratio and better performance.
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