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Structured Set Intra Prediction With Discriminative
Learning in a Max-Margin Markov Network for

High Efficiency Video Coding
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Abstract—This paper proposes a novel model on intra coding
for High Efficiency Video Coding (HEVC), which simultaneously
predicts blocks of pixels with optimal rate distortion. It utilizes
the spatial statistical correlation for the optimal prediction
based on 2-D contexts, in addition to formulating the data-
driven structural interdependences to make the prediction error
coherent with the probability distribution, which is desirable for
successful transform and coding. The structured set prediction
model incorporates a max-margin Markov network (M3N) to
regulate and optimize multiple block predictions. The model
parameters are learned by discriminating the actual pixel value
from other possible estimates to maximize the margin (i.e.,
decision boundary bandwidth). Compared to existing methods
that focus on minimizing prediction error, the M3N-based model
adaptively maintains the coherence for a set of predictions.
Specifically, the proposed model concurrently optimizes a set
of predictions by associating the loss for individual blocks to
the joint distribution of succeeding discrete cosine transform
coefficients. When the sample size grows, the prediction error
is asymptotically upper bounded by the training error under the
decomposable loss function. As an internal step, we optimize
the underlying Markov network structure to find states that
achieve the maximal energy using expectation propagation. For
validation, we integrate the proposed model into HEVC for
optimal mode selection on rate-distortion optimization. The
proposed prediction model obtains up to 2.85% bit rate reduction
and achieves better visual quality in comparison to the HEVC
intra coding.

Index Terms—Discriminative learning, expectation propaga-
tion (EP), intra coding, max-margin Markov network, structured
set prediction.
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I. Introduction

THE STATE-of-the-art video coding schemes developed
jointly by ITU-T and ISO/IEC, e.g., H.264/AVC [1]

and the new High Efficiency Video Coding (HEVC) standard
[2], have achieved a vital efficiency by exploring statistical
redundancy among pixels through intra and inter prediction.
Over the past decade, more prediction methods have been
suggested to achieve better performance [3], [4]. Within the
development of HEVC, the macroblock up to 64 × 64 was
modeled as the hierarchical partition tree. Besides bidirec-
tional intraprediction and separable directional transforms [5],
the angular prediction with up to 34 prediction modes [6]
and mode-dependent directional transforms [7] have been
advanced to exploit the remaining significant directional resid-
ual energy beyond existing intraprediction modes. Recently,
the combined intra prediction (CIP) [8] was proposed to
exploit the spatial redundancies with both open-loop prediction
and the closed-loop prediction. Taking into consideration the
prediction residual that is transformed within the region of
correlated pixels, this paper is devoted to investigating the
set prediction for coherence with the underlying probability
distribution for transform rather than minimizing individual
prediction error. It is worth mentioning that the proposed set
prediction for a correlated region of pixels can approximate
the optimal performance with an upper bound under the
joint constraints for mutual structural interdependences in
max-margin Markov networks. Max-margin Markov networks
[26] leverage Markov networks to combine support vector
machines structurally in order to make max-margin estimation
for a set of pixels. Based on the obtained contexts, multiclass
support vector machines [40] are trained to distinguish the
actual value from other possible estimations. Consequently,
conditional prediction is made to find the most probable
estimation based on the training results. Because Markov
networks can represent structural interdependences among a
set of pixels, the max-margin Markov networks can enforce
local coherence.

Revisiting the traditional video coding trajectory, direction-
ality in discrete cosine transform (DCT) has been considered
to catch textures, lines, and edges. Zeng and Fu [9] pro-
posed a block-independent directional DCT from the shape-
adaptive DCT. Furthermore, Xu et al. [10] suggested primary
directional operations for lifting-based DCT to exploit the
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interblock correlations. Later, Chang et al. developed the
direction-adaptive partitioned block transform by incorporat-
ing directional DCT into H.264 intra coding [11]. Recently,
the discrete filtering transform was proposed to exploit corre-
lations among pixels in H.264/AVC intra coding [12]. Unfor-
tunately, existing improvements over the transform depend on
the prediction residual from the traditional prediction modes
and they do not use all the available information. Other efforts
have also been made to improve the intra coding under the tra-
ditional prediction by reducing the bit rate of coding unit (CU)
syntax elements or enhancing the efficiency of intraprediction
algorithm. A typical mode decision strategy for intra prediction
is to estimate the most probable prediction mode by extracting
the directional features [13]. Laroche et al. [14] improved
the intra coding by reducing the bit rate of the intrapredictor
indexes along with the distance-based metrics in the DCT
domain. Commonly, neighboring spatial information is utilized
in a block-based progressive manner [15]–[17]. However, such
methods only consider spatial statistical correlation for the
context-based prediction, where each prediction is isolated
without considering the coherence in a local region.

To further improve prediction performance, texture synthe-
sis and hallucination (for upsampling-based reconstruction)
with good perceptual quality have been proposed. A related
approach [18] using the texture analysis-synthesis scheme was
developed, which reduces the entropy of source information
by clustering the homogeneous area into a small patch that
contains the epitome content of associated regions. Those
patches, which are close to uniform, can be handled under
the framework of Markov random fields (MRFs), and its
optimization algorithms, e.g., belief propagation (BP), have
been developed to solve it. Various attempts to restore the
missing information have involved in various side information,
e.g., edge [19] and auxiliary parameters [4]. To maintain a
temporal consistency of video, a space–time completion has
been proposed in a global optimization framework [20], [21]. It
has been recognized that those methods fail to ensure pixelwise
fidelity.

Recently, learning-based methods for intraframe prediction
have drawn more attention. Assuming the weights for pixels
with same coordinates in the block for predicting are fixed
[44], least-square-based methods for calculating prediction
weights were proposed in [45]. They aim to achieve the
optimal prediction under the Gaussian assumption. However,
they do not consider the local coherences in the blocks for
predicting. Xiong et al. [3] proposed the structured priority
BP-based inpainting prediction model to exploit the intrinsic
nonlocal and geometric regularity in H.264/AVC. The geomet-
ric regularity in block-based prediction was also considered
in [22], which explores interdependences among blocks with
the BP approach to estimate probability mass function for
existing nine intraprediction modes of H.264/AVC and obtain
a reduced set of intraprediction modes for low complexity.
It has been shown to commit bit rate increment and peak
signal-to-noise ratio (PSNR) loss in comparison to existing
H.264/AVC intra coding. BP is a message passing algorithm
to make inference on graphical models [41]. It calculates the
marginal distribution for each unobserved node conditioned

on observed nodes in the tree-like graphical model. For graphs
containing cycles or loops, BP was extended to loopy BP [42],
which finds the maximum a posteriori (MAP) inference by
iteratively solving a finite set of equations till convergence.
However, the precise condition for the convergence in BP
is not yet available. Expectation propagation (EP) unifies
and extends the Kalman filter and loopy BP to make MAP
inference with a simpler distribution [43]. The divergence
measure function of the messages in EP is close in terms of
Kullback–Leibler (KL) divergence. To fit a wider scope of
messages, EP measures the difference between messages with
the expectation, e.g., means and variances, rather than exact
values. However, such learning-based methods are recognized
as generative learning models, which might not produce the
best discrimination for the actual distribution when only partial
knowledge of observations is available in prediction of video
data [23].

We propose a novel model for intra coding in HEVC, which
can simultaneously predict a set of pixels with optimal rate-
distortion performance. The structured set prediction model
can take into account both the context-based prediction (i.e.,
with respect to the probabilistic distribution of transform) and
the data-driven structural interdependences (i.e., in a local
region). Unlike traditional prediction models, a discriminative
learning approach is adopted to exploit the inherent statistical
correlation, which is directly conditioned on the 2-D contexts
of correlated regions. The obtained prediction residual is in
conformity with the underlying probabilistic distribution for
succeeding transform, i.e., the transformed coefficients from
the proposed model tend to concentrate on low-frequency
domain in the correlated region. Specifically, the max-margin
Markov network models structural dependences, where pixels
are correlated with their neighbors, to regulate predictions
with joint constraints. It optimizes the predictions in a cor-
related region so that the prediction error fits the proba-
bility distribution for transform-based coding. In the max-
margin estimation, model parameters are learned to jointly
consider local features that characterize varying statistics to
discriminate the actual pixel values from the other possible
estimates to satisfy the maximal margin criteria. The loss
function is designed to fit the probability distribution of DCT
coefficients to reduce the coding rate. Therefore, coefficients
derived from the loss-augmented inference are optimal for the
coding engine. Furthermore, the prediction error from both the
trained model parameter and the decomposable loss function
is asymptotically upper bounded by the training error with suf-
ficient samples. Finally, the structured set prediction (i.e., find
the states achieving the maximal probability without explicit
posterior distribution) can be solved by the EP algorithm.

To validate the efficacy of the proposed model, we integrate
it with the unified directional intra prediction in the HM
reference software of HEVC for the optimal mode selection
on rate-distortion optimization (RDO). In the training process,
the loss function is iteratively optimized and the model param-
eters (such as weighting vector) are learned from randomly
selected training data. During prediction, the model param-
eters are utilized to combine the class of feature functions,
and the discriminative learning model can make the joint
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Fig. 1. Proposed codec with structured set prediction model based on HM. The structured set prediction model is blended with the original angular intra
prediction to serve as an alternative prediction mode. The proposed model is selected according to the rate-distortion cost.

max-margin prediction directly conditioned on the predicted
data. To suppress the approximation errors due to overfitting,
an online update is used in intraframe prediction. It is worth
mentioning that the proposed predictor is causal so that both
encoding and decoding can simultaneously operate on the
learned parameters in one pass.

The rest of this paper is organized as follows. In
Section II, we describe the overall intracoding framework and
the structured set prediction model. In Section III, we design
the Laplacian loss function and develop the upper bound of the
prediction error for the proposed model. Section IV provides
the solution to the structured set prediction model with the EP
algorithm. Experimental results are evaluated in Section V on
both objective and visual performance. Finally, we conclude
this paper and discuss the future work in Section VI.

II. Proposed Framework

A. Proposed Codec

The generic video coding framework with the proposed
structured set prediction model is depicted in Fig. 1. In addi-
tion to the existing intra and inter modes, each CU is designed
to choose the optimal mode to minimize rate-distortion cost.
As marked in Fig. 1, the proposed structured prediction model
is blended with the traditional angular intra prediction to serve
as an alternative mode. Therefore, the value MODE STRUCT

is added to syntax element PRED MODE

PRED MODE ∈ {MODE SKIP, MODE INTER,

MODE INTRA, MODE STRUCT}.

The STRUCT MODE is initiated in intra(I) frame. The CU
is iteratively predicted from the maximal possible size to
the minimal one for the decision of prediction unit (PU)
in intra prediction. After calculating the Lagrangian rate-
distortion cost for all the possible intraprediction modes, the
PUs achieving the least overall cost is selected for the intra
prediction of current CU. For each PU with its PRED MODE
as either MODE INTRA or MODE STRUCT, the syntax
elements INTRA PRED MODE and PU SIZE for intra
coding are

INTRA PRED MODE ∈ {0, . . . , 34}
PU SIZE ∈ {PU 4 × 4, PU 8 × 8, PU 16 × 16,

PU 32 × 32, PU 64 × 64}.

If Pn is the current PU and P (r)
n is the reconstructed

PUs in the current CU, the Lagrangian cost JPn

of the predicted PU with parameter set PARAM =
{PRED MODE, PU SIZE, INTRA PRED MODE}
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Fig. 2. Diagram of the structured set prediction model, where the training data S = {xi, yi} for intra coding are conducted with the class of feature functions
{fi}. The max-margin Markov network is generated over the training data by combining the class of feature functions {fi} with the corresponding normal
vector {wi}.

is

JPn

(
Pn, PARAM|P (r)

n , Qp, λ
)

=

D
(
Pn, PARAM|P (r)

n , Qp
)

+ λ · R
(
Pn, PARAM|P (r)

n , Qp
)
(1)

where Qp is the quantization parameter and λ is the Lagrange
parameter associated with Qp. The Lagrange parameter λ

is empirically set: λ = 0.85 · 2(Qp−12)/3. Similar to in-
tramodes and intermodes, the predictor of STRUCT MODE
is subtracted from the current PU to generate the residual,
which is subsequently transformed, quantized, and encoded
to obtain the compressed bitstream. There is no additional
side information to be required in the compressed bitstream.
Therefore, the proposed mode’s bit rate R only involves
the header information (e.g., STRUCT MODE flag) and the
corresponding DCT residual blocks. A detailed description
of the proposed intraprediction process can be found in
Algorithm 3 in Section V-A, which considers iterative rate
distortion cost for the structured set prediction model. The
derivation process of intra prediction with the proposed struc-
tured set prediction model is formulated in Sections II-B and
II-C. Through (3), the weights are trained in the structured
set prediction model. In training, the PU for prediction can
be obtained and the observed contexts are reconstructed video
signals to ensure the synchronism between encoder and de-
coder. The candidate mode for INTRA PRED MODE is
derived analogously to the default HEVC intra coding. The
prediction based on the specified weights is to find the block
of most probable prediction simultaneously, which is described
in (2). Therefore, the EP-based message passing algorithm is
proposed for the prediction. Both the encoder and decoder
start from the weights trained offline and update such weights
according to the derived INTRA PRED MODE. Section IV
describes a detailed solution process, including the derivation

of prime-dual formulation, the generation of junction tree, and
subsequent message passing and max-margin prediction.

B. Structured Set Prediction Model

In this section, we describe the proposed structured set pre-
diction model. The state-of-the-art adaptive prediction methods
commonly adopt the sequential prediction on each individual
pixel using adaptive rules for varying spatial dependences.
Remarkably, the proposed model takes into consideration the
correlation among the pixels for predicting, such that the
prediction errors can be customized for various contexts. Con-
sequently, the structured set prediction model makes context-
based inference and derive constraints over sets of pixels for
predicting, as shown in Fig. 2.

Fig. 2 illustrates the training process with the class of feature
functions in the proposed model. In the model, concurrent
training and prediction are performed for blocks of pixels with
the fixed size. When obtaining the training data S = {xi, yi}Ni=1,
the class of feature functions

{
fj

}K

j=1 serves as the enforced
constraints indicating the structural interdependences. In the
proposed model, fi describes the conditional distribution based
on the ith context x(i) and the pixels for predicting y. To
be consistent in representation, we denote y(i) = y. The
conditional discriminative learning model is established for
training of model parameters. X and Y indicate the set of
samples {xi} and {yi}. To be concrete, the spatial statistics
are characterized by the linear combination of the class of
feature functions F = {fi (x, y)} which establish the conditional
probabilistic model for prediction over the various contexts
with the structural interdependences

fi (x, y) = P (y|x) .

Fig. 3(a) presents a graphical model of the proposed model.
Denoting y the set of pixels to be predicted, given the
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Fig. 3. Graphical model for the structured set prediction model, where
{

y(i)
}

is the set of pixels being predicted and
{

x(i)
}

is the set of observed pixels
serving as contexts.

reconstructed pixels x as contexts, their prediction ŷ is derived
in a concurrent form

ŷ = arg max
y

wT f (x, y) (2)

where f is the collection of feature functions indicating the
probability distribution conditioned on the various spatial
structural interdependences and w is the trained weighting
vector of the linear model that combines the class of feature
functions. The training process of the weighting vector w
is modeled as an optimization problem that simultaneously
considers context-based spatial correlation and the interdepen-
dences among pixels for predicting.

C. Intra Prediction As Optimized Problem

The predictive performance is based on the training of the
weighting vector w. Denote S = {xi, yi}Ni=1 the collected set
of training data, where yi is the ith labeled block of pixels
for predicting and xi is the ith observed contexts for yi.
Consequently, the training of weighting vector w is treated as
an optimization problem over the training set S. The min–max
formulation of the max-margin Markov network is formulated
for the training process with constraints representing the
structural interdependences among the pixels being predicted.

Since the pixels being predicted are naturally correlated
in local regions, the min–max formulation is constructed
according to the graphical model in Fig. 3(b). Assuming that
the block of M pixels for predicting y =

{
y(j)

}M

j=1 is correlated,
an edge clique of the 2-D Markov network represents two
neighboring pixels. As a result, the max-margin estimation for
each pixel can be obtained by jointly optimizing all pixels.
The margin of the actual value ŷ over the other possible
estimation y is 1

‖w‖wT
[
fi (ŷ) − fi (y)

]
. In training, the lower

bound of such margin is maximized so that the actual value
can be discriminated from the other possible estimations.
Constraining wT fi (x, ŷ) − wT fi (x, y) ≥ L (y, ŷ), the training
process is formulated as⎧⎪⎨

⎪⎩
min

1

2
‖w‖2 + C

∑
i

ξi

s.t. wT fi (yi) + ξi ≥ max
y

(
wT fi (y) + L (yi, y)

) ∀i.
(3)

In (3), the weighting vector w is the normal vector perpendicu-
lar to the hyperplane spanned by the class of feature functions

{fi} and {ξi} is the slack vector that allows violations to the
constraints at a cost proportional to {ξi}. C is a constant related
to the learning rate in the training-based model. A large C

will lead to the fine adjustment of parameters w but with a
slow convergence rate. In training, the collection of training
data S = {xi, yi}Ni=1 is available, such that it is feasible to deal
with the training data from 1 to N. Since a practical coding is
based on the probabilistic estimation of errors with the alleged
distribution, the loss function L (yi, y) is defined to reflect the
actual code length under such distribution. In consequence, the
optimization problem is conducted under the class of feature
functions F = {fi (x, y)} and the loss function L (yi, y) that
measures the actual code length.

III. Formulation of Structured Set

Prediction Model

A. Loss Function

Since there exists strong connection between the loss-scaled
margin and the expected risk of the learned model, we study
the loss function for the loss-augmented inference. Given the
M-ary estimated output ŷ, the approximation error is measured
by the loss function L (ŷ, y).

In structured set prediction model, the loss function is
proposed to consider the Laplacian errors derived for each
node potential and the state transition of neighboring nodes for
each edge potential. Denoting ne (i) the set of nodes linking
the node i with an edge in the graphical model in Fig. 3(b), the
loss function L (ŷ, y) is formulated on cliques of the generated
graphical model

L (ŷ, y) =
∑

i �i

(
ŷ(i) − y(i)

)
+

∑
i

∑
j∈ne(i) I

(
ŷ(i), y(i)

)
I
(
ŷ(j), y(j)

)
(4)

where �i (·) is the Laplacian loss function for the ith node
component based on the disparity between the ith label y(i)

and its estimation ŷ(i). In (4), we denote εi = ŷ(i) − y(i) the ith
prediction error in set prediction and σ2 the variance derived
by the all M errors {εi}Mi=1 in the predictive region.

Contrary to the 0/1 loss function, squared error loss
function, and the deduced Hamming distance function, the
proposed loss function is designed to indicate the disparities
of the actual pixel values from the predicted ones and satisfy
the 2-D DCT transform for a concentrated dc energy. The
Laplacian loss function is adopted to meet the practical DCT
transform-based coding [24], [39] with least empirical entropy

�i(εi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

log2

(
1 − e

− 1√
2σ

)
εi = 0

log2

(
1
2

(
e
− |εi |−0.5

σ/
√

2 − e
− |εi |+0.5

σ/
√

2

))
0 < |εi| < 255

log2

(
1
2e

− |εi |−0.5

σ/
√

2

)
|εi| = 255

(5)
where e is the base of the natural logarithm. The solution to
the loss-augmented optimization problem will minimize the
practical code length as measured by the loss function L (ŷ, y).
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B. Upper Bound for the Prediction Errors

In this section, we show that the upper bound for prediction
error is asymptotically consistent with the training error. Such
upper bound allows us to relate the error on training data to the
prediction error. Hopefully, the prediction error is assured to
converge by such consistency between training and prediction
as long as the weighting vector w is well tuned to fit the
training data.

As mentioned previously, the proposed model aims to
minimize the cumulative code length of a correlated region
in terms of Laplacian measurement. Analogical to [25], we
define the average error L (w · f, y) for the blocks of M pixels

L (w · f, y) =
1

M
L

(
y, arg max

y′
w · f

(
x, y′)) .

To relate the prediction error to the margin of the predictors,
we consider the tight upper bound L (w · f, y) for the average
error

L (w · f, y) = max
y′:wT f(y)≤wT f(y′)

1

M
L

(
y, y′).

This upper bound is tight since L (w · f, y) = L (w · f, y) holds
only when y = arg maxy′

[
w · f + L

(
y, y′)]. The upper bound

picks from all proper y′ (satisfies wT f (x, y) ≤ wT f
(
x, y′))

that maximize the log-Gaussian measure from y. Extending
the upper bound with the γ-margin hypersphere, we define a
γ-margin per-label loss

Lγ (w · f, y) = sup
y′:‖w·f(y)−w·f(y′)‖≤γL(y,y′)

1

M
L

(
y, y′) . (6)

The γ-margin per-label loss Lγ (w · f, y) similarly picks y′ in
a γL

(
y, y′) wider hypersphere, which is closed to the loss in

the previous max-margin formulation.
We can show that the prediction error asymptotically equals

the training error, which is upper bounded by its empirical
γ-margin per-label loss (with the exception of an inversely
growing additional term in (13) of Appendix A). In the follow-
ing proposition, we prove that the prediction and training are
asymptotically consistent, which means that the upper bound
for prediction error will converge to the training error with
sufficient sampling.

Proposition 1: For the trained normal vector w and arbitrary
constant η > 0, the prediction error asymptotically equals to
the one obtained over the training data with probability at least
1 − e−η.

Proof: Refer to Appendix A.
The prediction error is upper bounded by two additional

terms. The first term bounds the training error based on w.
The low training error ESLγ (w · f, y) is achieved with the
well-tuned weighting vector w such that the performance
of the prediction model can be assured with the low error
ESLγ (w · f, y) and high margin γ . The second term is the
excess loss corresponding to the complexity of the predictor.
The excess loss is shown to vanish with the growth of
sample size N. Thus, the expected predictive per-label error
asymptotically approaches the γ-margin per-label error.

Proposition III-B ensures the predictive performance by
relating the theoretical upper bound for prediction to the

Algorithm 1 Implementation with SMO
1: obj old = 0
2: repeat
3: obj new = obj old
4: for all i do
5: Initialize {vi(·)}, {αi(·)} and violation=0
6: Find violation y′ and y′′ with KKT conditions
7: if violation>0 then
8: a = vi(y′) − vi(y′′)
9: b = C‖fi(y′) − fi(y′′)‖2

10: c = −αi(y′) d = αi(y′′)
11: δ = max (c, min (d, a/b))
12: obj new = obj new − 1

2 a · δ
13: update w and αi with δ
14: end if
15: end for
16: until ‖1 − obj new/obj old‖ < 0.5

tunable one for training. Actually, since the loss derived by
the Laplacian loss function meets the empirical distribution
of DCT coefficients [24], the average individual loss reflects
the practical coding of prediction residual. We note that the
code length led by the structured set prediction asymptotically
approaches the training results, as the excess loss between the
prediction and training vanishes with the growth of the sample
size. With sufficient sampling, the obtained residual based on
the max-margin Markov network can minimize the coding cost
to the well-tuned loss over the training data. As a result, it
ensures the consistency between training and prediction and
shows the excess bit cost vanishes for infinite length coding.

IV. Solving Structured Set Prediction Model

Standard quadratic programming (QP) is an effective solu-
tion to the original optimization problem. However, it suffers
a high computational cost, which makes it impractical for the
problems with a large state space. As an alternative, the dual
of (3) is obtained as⎧⎪⎪⎨
⎪⎪⎩

max
∑
i,y

αi (y)L (yi, y) − 1

2
‖
∑
i,y

αi (y) (fi (yi) − fi (y)) ‖2

s.t.
∑

y

αi (y) = C, αi (y) ≥ 0, ∀i.

(7)
Equation (7) can be solved by sequential minimal optimization
(SMO) [28], which breaks the dual problem into a series of
small QP problems and takes an ascent step to update a least
number of variables{

max
[
vi

(
y′) − vi

(
y′′)] δ − 1

2
C‖fi

(
y′) − fi

(
y′′) ‖2δ2

s.t. αi (y) + δ ≥ 0, αi

(
y′′) − δ ≥ 0

(8)

where vi (y) = w·fi (y)+L (yi, y) and fi (y) =
{∑K

k=1 βjx(j)
ik

}M

j=1
.

Like Algorithm 1, the minimization process chooses the
SMO pairs with respect to the Karush–Kuhn–Tucker (KKT)
conditions [29]. The KKT conditions are the sufficient and
necessary criteria for optimality of the dual solution. These
conditions allow certain locality with respect to each example
for repeatedly searching the optimal solution.
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Fig. 4. Junction tree for the generated MRF. (a) (Up left) Triangulation of the graphical model by adding some dashed edges. (b) (Up right) Intermediate
result of construction of junction tree. (c) (Bottom) Two possible junction trees derived from the graphical model.

A. Junction Tree

The key to solve the optimization problem with SMO is
the selection of SMO pairs. To maintain the spatial structures
in intraframe prediction, we generate the max-margin Markov
network for the αi and vi in each 4×4 block. The SMO pairs
are decided by calculating the conditional margin for each state
over the generated graphical model. Since the grid-like Markov
network is not a chordal graph, it should be triangulated into
a tree-like structure for exact state inference. In triangulation,
the junction tree is constructed over cliques by eliminating
circles in the graphical model. As shown in Fig. 4, due to the
order of elimination, the junction tree tends to be nonunique
for a given graphical model. For the clarity and simplicity in
training and inference, we choose the chain-like junction tree.

We denote {Ji} the nodes in the junction tree and obtain its
potential ψ (Ji) by accumulating potentials of all its cliques

ψ (Ji) =
∏
C∈Ji

ψC (xC, yC) (9)

where ψC (xC, yC) is the potential for the clique C. The
selection of an SMO pair over the original graphical model is
transferred to the clique-based junction tree. The SMO pair is
chosen by finding the pairs of the series of states that maximize
the margin.

B. EP

Once the junction is determined, the next step is to apply
the inference algorithm to find states achieving the maximal
probability. It involves two choices: 1) the divergence measure
and 2) the message-passing scheme. In this section, we develop
the EP-based method to find the most probable states. EP is an

extension of BP, which can solve the problems without explicit
posterior distribution over a single variable (because it sends
only expectations of features in message passing).

Initially, the behavior of message-passing algorithms de-
pends directly on the behavior of divergence measures. The
basic divergence measure for the distributions is the KL
divergence

KL (p‖q) =
∫

x

p (x) log
p (x)

q (x)
dx +

∫
(q (x) − p (x)) dx

where q (x) is to approximate the complex probability distribu-
tion p (x) in divergence measure. The formula is applicable to
unnormalized distributions since it includes a correction factor.
Power EP [30] could minimize the α-divergence in the context
of fractional BP [31] and the α-divergence is a generalization
of KL divergence

Dα (p‖q) =

∫
x
αp (x) + (1 − α) q (x) − p (x)α q (x)1−α dx

α (1 − α)
.

This is actually a family of divergences, indexed by α ∈
(−∞, +∞). Given the distribution p and the functional family
F , EP estimates the distribution q that is closest to p in F in
the predefined divergence measure.

For the generated Markov network G, the probabilistic
distribution is factorized by

p (G) =
∏
C∈G

ψC (xC, yC) =
∏
J∈G

ψ (J) .

The projection function P of the distributions p on functional
space F can be represented by the KL divergence

P
[
p
]

= arg min
q∈F

KL (p‖q). (10)
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Algorithm 2 Message passing with EP

1: Initialize ψ̃C (x) for all cliques and make q (x) their product
2: repeat
3: for all C do
4: q\ψC (x) = q (x) /ψ̃C (x)
5: q′ (x) = P

[
ψC (x) q\ψC (x)

]

6: ψ̃C (x)new = ψ̃C (x)1−γ
(

q′(x)
q\ψC (x)

)γ

= ψ̃C (x)
(

q′(x)
q(x)

)γ

7: q (x)new = q (x)
(

ψ̃C (x)new

ψ̃C (x)

)nC

= q (x)
(

q′(x)
q(x)

)γnC

8: end for
9: until Convergence

EP approximates the distributions of the grid-like graphical
model in (9) by approximating the factors one by one. For
each clique C, the marginal probability obtained by excluding
itself is

q\C (x) = q (x) \ ψ̃C (x)1/nC ψ̃C (x)new

= P
[
ψC (x) q\ψC (x)

]
/q\ψC(x).

Also, the potential of the clique C is updated by

ψC (xC, yC) = ψ̃C (xC, yC) =

∏
(j,k)∈G ψ̃C

(
x(j), x(k)

)
∏

s∈S ψ̃C

(
x(s)

) .

Algorithm 2 shows how messages passed in and out of the
clique C, where the estimation and update of the probabilistic
distribution are propagated over the junction tree. Since it is
prohibitive to traverse the whole state space of all junction
trees, the local propagation in each junction is used in practice.
The message-passing algorithm in EP is to seek the min–max
formulation over the generated junction tree

min
p̂i

max
q

∑
i

ni

∫
x

p̂i (x) log
p̂i (x)

fi (x)
+

(
1−

∑
i

ni

)∫
x

q (x) log q (x)

such that
∫

x
gj (x) p̂i (x) dx =

∫
x
gj (x) q (x) dx for normalized

distributions p̂i (x) and q (x). For the unnormalized distribu-
tions p and q, they are scaled by the normalization term Z

Z =
∫

x

q′ (x) dx =

(∫
x

q (x) dx

) ∏
a

sa.

Proposition 2: The EP for the MRF with Laplacian loss
function is upper bounded.

Proof: Refer to Appendix B.

C. Discussion on the Structured Set Prediction Model

In this section, the mechanism of the structured set pre-
diction model is analyzed with relevant factors. In Fig. 5,
each pixel in a block is predicted with linear combination
of the feature functions based on observed contexts and the
constraints with each other. The potential for a clique ψj is
obtained by

ψj =
∑

i

w(i)
j P

(
y(j)|x(i)

)

where the selection of weights w(i)
j depends on the syntax

element INTRA PRED MODE and the values of observed
contexts. In the encoder side, the rate-distortion cost w.r.t.

Fig. 5. Analytic sample of the structured set prediction model. (a) Test
4 × 4 block in Foreman sequence. (b) Diagram for training in the max-
margin Markov network. (c) Graphical model constructed for the 4×4 block.
(d) Weighting vectors for all cliques over the observed contexts.

Fig. 6. Prediction performance of visual quality and PSNR with training
iterations 1, 5, 10, and 50. (a) Iteration = 1 PSNR = 32.17. (b) Iteration = 5
PSNR = 32.31. (c) Iteration = 10 PSNR = 32.41. (d) Iteration = 50 PSNR =
32.48.

each intradirectional mode is calculated to select a corre-
sponding set of weights. Like angular intra prediction, the
value of INTRA PRED MODE indicates the directional
mode and the selected set of weights. In this example,
INTRA PRED MODE is 6, which means the predictive
direction is diagonal. The weighting vector is isotropically
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Fig. 7. Prediction performance (BD-rate reduction in %.) under training process with various iterations 1, 2, 5, 10, 25, 50, 75, and 100.

TABLE I

BD-PSNR (dB) Performance in Comparison to HEVC With CIP

initiated to a zero vector, and it is trained in an iterative
manner. Corresponding to Fig. 5(c), Fig. 5(d) shows the trained
weighting vector for each clique and observed contexts after
100 iterations. As noticed, the weighting vector shows the
predictive tendency in an diagonal form. However, it is not the
same with the angular intra prediction, since the interdepen-
dences of pixels for predicting are considered and the weights
are adjusted accordingly to minimize the loss function (4) in
the training. Fig. 5(b) indicates the selection of SMO pairs
with red and blue arrow lines. The feature function P

(
y(j)|x(i)

)
implies the spatial distribution over the observed contexts

P
(
y(j)|x(i)

)
= I

(
y(j), x(i)

)
. (11)

By traversing all possible values of pixel
{

y(j)
}

, the one
achieving the minimum loss for the linear combination is
chosen as the most probable estimate.

Further, we study the relationship between training
and prediction of the proposed model. As proven in
Proposition III-B, the prediction will be asymptotically con-
sistent with the training. Fig. 6 shows the visual and PSNR
performance of the predictive results by the weighting vector w
trained under 1, 5, 10, and 50 iterations. The edge structure in
the selected block becomes clear with more iterations, which
provides additional evidence that the weighting vector tends
to represent the anisotropic local statistics. Fig. 7 depicts the

BD-rate reduction in % from predictive results by the weight-
ing vector w trained with 1, 5, 10, 25, 50, 75, and 100 itera-
tions. The iterative process forms the anisotropic distribution
for the weighting vector w with the step w = 0.0625. It
shows that BD-rate reduction increases with the growth of
iteration number and tends to approach an upper bound, which
is also consistent with Proposition III-B.

V. Experimental Results

A. Implementation

Through integrating the proposed model (STRUCT mode)
into the intra coding with hierarchical tree-structured intrapre-
diction block sizes ranging from 64×64 to 4×4, the structured
set intraprediction scheme is implemented on the HEVC test
model HM 7.0 [32]. The STRUCT mode is enabled in I slices,
and is compared with the hierarchical tree-structured modes
for mode selection in a RDO. The proposed intraprediction
model is initiated for luma samples, which can be referred
to Algorithm 3. Algorithm 3 describes the detailed procedure
of the proposed intra prediction, including integration of the
proposed model, RDO, and derivation of intraprediction mode.
The maximum CU size is 64 and the maximum partition depth
is 4, such that the size of PU can range from 64 × 64 to
4 × 4. In the experiments, we evaluate the performance over
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TABLE II

BD-Rate (%) Change in Comparison to HEVC With CIP

Algorithm 3 Procedure of the proposed intra prediction in HEVC
1: Input: luma location (xB,yB) of current coding block and the size

of current luma coding block
2: Output: Residual block after subtracting prediction
3: if IntraSplitFlag = 0 then
4: Derive optimal intraprediction mode for angular intra predic-

tion and obtain BestPUCost.
5: for All possible IntraPredMode[xB][yB] in luma location

(xB,yB) do
6: Derivation process with the proposed prediction model

(Referring to Section IV)
7: Calculating R-D cost PUCost with (1)
8: if PUCost < BestPUCost then
9: Set PRED MODE to MODE STRUCT, luma in-

traprediction mode IntraPredMode[xB][yB], luma lo-
cation (xB,yB) and luma block size PU SIZE

10: BestPUCost = PUCost
11: end if
12: end for
13: Obtain the residual block by subtracting the prediction of

intraluma block
14: else
15: for blkIdx = 0 . . . 3 do
16: Derive optimal angular intraprediction mode and obtain

BestSubPUCost(blkIdx).
17: xBS = xB + ((1 << log2CUSize) >> 1) ∗ (blkIdx%2).
18: yBS = yB + ((1 << log2CUSize) >> 1) ∗ (blkIdx/2).
19: for All possible IntraPredMode[xB][yB] in luma location

(xB,yB) do
20: Derivation process with the proposed prediction model

(referring to Section IV)
21: Calculating R-D cost SubPUCost(blkIdx) in luma

location (xBS,yBS) with (1)
22: if SubPUCost(blkIdx) < BestSubPUCost(blkIdx) then
23: Set PRED MODE to MODE STRUCT, luma

intraprediction mode IntraPredMode[xBs][yBs],
luma location (xBs,yBs), and luma block size
PU SIZE >> 1

24: SubBestPUCost(blkIdx) = SubPUCost(blkIdx)
25: end if
26: end for
27: end for
28: PUCost =

∑
blkIdx=0···3 SubBestPUCost(blkIdx)

29: if PUCost < BestPUCost then
30: Obtain the residual block by subtracting the prediction of

intraluma block
31: end if
32: end if

test sequences with the YUV 4:2:0 format, various resolution
including CIF (352 × 288), WQVGA (416 × 240), standard
definition (832 × 480), 576p (720 × 576), and high-definition
(1920 × 1080). Without loss of generality, those are coded
with the same quantization parameters and conditions [36]. In
the proposed model, the block size is set to 4 × 4, namely,
M = 16 pixels are predicted simultaneously. The weighting
vector is designed for 17 sets associated with the number of
INTRA PRED MODE. In the training process, the learning
rate C is set to 0.05 to fine tune the weighting vector.

B. Rate-Distortion Performance

Using both extended CU size and traditional CU size, the
proposed scheme is compared with the CIP with HEVC and
the HEVC intra prediction (angular intra prediction). As shown
in Figs. 8 and 9 for test sequences of various resolutions, the
rate-distortion points are obtained at various QP levels (30, 32,
34, 36, 38, 40). To be concrete, five QP levels (30–38 or 32–
40) are chosen to set the bit rates within a moderate region.
Remarkably, the PSNR gain of the proposed model is up to
0.4 dB over the HEVC intraprediction (angular intraprediction,
AIP). The coding gain is more obvious in video sequences with
rich texture characterized by regular features.

For a complete validation, the BD-PSNR and BD-rate
reduction [33] evaluations are also provided based on
rate-distortion curve fitting. They can describe the average
PSNR difference in dB over the entire range of bit rates and
average bit rate difference in % over the whole spectrum of
PSNR (between two RD plots under difference conditions).
Tables I and II, respectively, show the BD PSNR and BD
rate of the selected test video sequences. The four R-D
points are obtained with QP levels set to 22, 27, 32, and 37
to reflect the curve in a wide range of rates or distortion.
Table II shows that the proposed model obtains up to 2.85%
bit rate reduction in intraluma prediction in comparison with
the HEVC intracoding. Moreover, the BD-rate reduction over
HEVC intracoding with full R-D optimization is provided.
Since INTRA PRED MODE for the proposed model is still
based on candidate modes for R-D optimization, the BD-rate
reduction on luma samples decreases slightly by 0.06%.

As in Table III, adaptive hierarchical tree-structured mode
decision degrades the performance of the proposed model. The
degradation will deteriorate when the depth of the mode deci-
sion tree increases, e.g., an average 3.16% bit rate reduction in
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Fig. 8. Rate-distortion curve for performance comparison of CIF sequences. The proposed model is compared with the CIP with HEVC, default HEVC
intraprediction (angular intraprediction, AIP) with extended CU size (MAX CU SIZE=64), and traditional CU size (MAX CU SIZE=16), respectively.
(a) Performance comparison of sequence Foreman (352)×(288). (b) Performance comparison of sequence Football (352)×(288). (c) Performance comparison
of sequence Mobile (352) × (288). (d) Performance comparison of sequence Bus (352) × (288).

TABLE III

BD-Rate (%) Change With Various Maximum CU Size

intraluma coding in comparison to HEVC with the traditional
macroblock size (H.264/AVC).

C. Visual Quality

Fig. 10 shows the reconstructed video frames with various
resolutions by the proposed model, HEVC with CIP, and
HEVC with AIP. Overall, the proposed scheme achieves best
visual quality in regions with regular features. In Fig. 10(e), it
can be seen that the contour of the person’s face and the region
of nose reconstructed by the proposed model are clearer and
more natural.

The corresponding prediction residuals from the proposed
model are shown in Fig. 11. Compared to HEVC test model

and HEVC with CIP, the proposed model obviously reduces
the prediction residuals in edge regions and oscillatory regions.
Furthermore, first-order entropies of the prediction residuals
are provided to evaluate the distributions of prediction errors.
As shown in Fig. 11, prediction residuals from the proposed
model achieve the least first-order entropies, which implies the
distribution of the prediction errors is most concentrated.

D. Computational Complexity

Although the training process iterates over the collection of
sample data, the complexity of the proposed prediction scheme
is equivalent to the max-sum algorithm. For the proposed
lattice-based graphical model of the Mx × My block, there
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Fig. 9. Rate-distortion curve for performance comparison of sequences with extensive resolutions. The proposed model is compared with the CIP with HEVC,
default HEVC intra prediction (angular intraprediction, AIP) with extended CU size (MAX CU SIZE=64), and traditional CU size (MAX CU SIZE=16),
respectively. (a) Performance comparison of sequence BlowingBubbles 416 × 240. (b) Performance comparison of sequence BQMall 832 × 480.
(c) Performance comparison of sequence Cactus 1920 × 1080. (d) Performance comparison of sequence ParkScene 1920 × 1080.

TABLE IV

Computational Complexity Comparison in Terms of Decoding Speed (s/frame) for the Proposed Model, HEVC With CIP, and HEVC

With AIP, and Run-Time Ratio (%) Compared With HEVC With AIP

are L = (Mx − 1) My + Mx

(
My − 1

)
cliques in total. Given L

cliques with alphabet size ‖y‖ of prediction, the computational
complexity of predicting each block is O

(
L‖y‖2

)
, which

means that the complexity is linear with the number of cliques.
In practice, both the encoders and decoders operate on a

PC with a 3.2-GHz Intel Core i7 processor and are compiled
with VC++ 9.0 under the same configuration (DEBUG mode).
The evaluation is tested on encoder intra main configuration
when QP equals 24 and 36. Since the proposed model is
initiated with 4 × 4 PU, L is set to 24 and ‖y‖ is 256 for
the 8 bits internal bit depth. In the encoder side, the total
complexity of the proposed scheme is also affected by the
number of INTRA PRED MODE for the sake of RDO.
The R-D cost of the structured set prediction model with

all 34 intraprediction modes should be counted. In detail,
the encoding speed is approximately 118 pixels per second.
Table IV shows the decoding speed of the proposed scheme,
HEVC with CIP, and HEVC with AIP. Depending on the
selection ratio of the proposed STRUCT mode, it ranges from
1700 to 6500 and 4000 to 14 000 pixels per second when
QP equals 24 and 36, respectively. Because the prediction is
noniterative, the decoding cost can be reduced by optimizing
the solution process. Moreover, the run-time ratios for the
proposed model over HEVC with AIP are also provided in
Table IV for evaluation. Table IV shows that the run-time ratios
of the proposed model are 60–178 times the ones of HEVC
with AIP. When compared with the default HEVC with AIP,
the proposed method is obviously more complex.
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TABLE V

Proposed STRUCT Mode Selection Ratio (%) Under Various QP Levels

Fig. 10. Visual results of reconstructed sequences. From left to right and
from top to bottom, there are the reconstructed frames of Foreman, Blow-
ingBubbles, BQMall, and Cactus by the proposed model, CIP with HEVC,
and HEVC intraprediction, respectively. (a) Visual performance of Foreman
sequence. From left to right, PSNR of the reconstructed frames are 33.82,
33.58, and 33.53 dB, respectively. (b) Visual performance of BlowingBubbles
sequence. From left to right, PSNR of the reconstructed frames are 30.98,
30.80, and 30.77 dB, respectively. (c) Visual performance of BQmall sequence.
From left to right, PSNR of the reconstructed frames are 32.59, 32.48, and
32.40 dB, respectively. (d) Visual performance of Cactus sequence. From left
to right, PSNR of the reconstructed frames are 32.81, 32.68, and 33.61 dB,
respectively.

The additional complexity of the proposed model is derived
from two aspects: one is that the proposed model shall make
the full R-D optimization for all the candidate modes in the
proposed intracoding scheme, as in Algorithm 3; the other is
that all the possible estimates of block of pixels are traversed
in order to find the optimal solution, as in Algorithm 1. It
could be improved by two approaches under consideration.
An attempt is to adopt parallelism techniques because the
optimization problem is decomposable over the max-margin

Fig. 11. Prediction residuals obtained by subtracting reconstructed se-
quences from original sequences. From left to right and from top to bottom:
prediction residuals of Foreman, BlowingBubbles, BQMall, and Cactus by the
proposed model, CIP with HEVC, and HEVC intra prediction, respectively.
(a) Prediction residuals of Foreman sequence. From left to right: first-order
entropies of the prediction residuals are 4.2764, 4.2944, and 4.2842 b/p,
respectively. (b) Prediction residuals of BlowingBubbles sequence. From left to
right: first-order entropies of the prediction residuals are 4.8571, 4.8742, and
4.8647 b/p, respectively. (c) Prediction residuals of BQMall sequence. From
left to right, first-order entropies of the prediction residuals are 4.4722, 4.5220,
and 4.5150 b/p, respectively. (d) Prediction residuals of Cactus sequence.
From left to right, first-order entropies of the prediction residuals are 4.3653,
4.3744, and 4.3709 b/p, respectively.

Markov network. It is possible to deal with all junctions
in parallel and combine their results. The other solution is
to introduce the stochastic gradient decent algorithm [46]
to speed up the optimization process, which is an efficient
and simple procedure with a decomposable and differentiable
loss function. Its numeric implementation can converge very
quickly.

E. Selection Ratio

To make a study on the selection ratio of the proposed model
under various QP levels and training iterations, Table V shows
the average STRUCT mode selection ratio. The selection ratio
increases with the lower QP levels, whereas the replacement
ratio of the proposed mode over angular intra prediction
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TABLE VI

Proposed STRUCT Mode Selection Ratio (%) Under Various Training Iterations When QP Level Is 32

Fig. 12. Block partition for video sequences by the proposed model. The
proportions of the blocks predicted with the structured set prediction model
are 11.3% and 7.6%, respectively. (a) Block partition for Cactus sequence.
(b) Zoomed partition for Cactus sequence. (c) Block partition for Foreman
sequence.

decreases. The distribution map of STRUCT mode is displayed
in Fig. 12, where the selected blocks are labeled by red rims.
As shown in Fig. 12(b), it can be observed that the STRUCT
mode tends to be initiated in the regions with regular features.
As a result, the STRUCT mode can save bits of repeat-
able visual patterns beyond traditional intraprediction modes.
Table VI shows that the selection ratio varies with the growth
of iterations in training. With more consistency between train-
ing and prediction, the performance of the proposed model is
expected to grow and the selection ratio of STRUCT mode
will increase.

VI. Conclusion

This paper proposed a learning-based structured set pre-
diction model on intracoding, which simultaneously predicts
a correlated region of pixels by considering the inherent
statistical correlation (i.e., 2-D context) and the coherence
of set prediction (i.e., structural dependences). The prediction
was optimized in alignment with two goals: 1) context-based
prediction and 2) structure-based prediction in a global (set)

manner. The training and prediction were formulated using
the max-margin Markov network, where the optimization was
achieved under the well-defined loss function conditioned on
the obtained local observations. With the growing sample
size, the loss-augmented inference was demonstrated to be
asymptotically consistent with the fine-tuned training results.
In turn, the distribution of DCT coefficients derived from
the prediction residual was more concentrated. Since the
proposed Laplacian loss function can be fully factorized, the
proposed min–max formulation can be solved by combining
optimized results of all individual cliques using EP with lower
dimensional state spaces. In practice, the proposed model was
integrated in the latest HEVC reference software to serve as
an optional mode in RDO.

Appendix A

Proof of Proposition 1

At first, we use the corresponding γ-margin loss to serve as
an empirical upper bound of the average loss

Lγ (w · f, y) = sup
y′:‖w·f(y)−w·f(y′)‖≤2γ

1

M
L

(
y, y′) .

It equals to L (w · f, y) when y = arg maxy′
[
w · f + L

(
y, y′)].

According to (4), the M-label loss function is decomposable
over the cliques of labels. Given the decreasing sequence {γi}
and the positive sequence {pi} that satisfies

∑
i pi = 1, [26]

shows that for every constant η > 0 and at the probability
1 − e−η, the mean for loss function on the sample space X is
bounded by

EXL (w · f, y) ≤ ESLγ (w · f, y)

+

√
32

N

(
ln 4N∞ (L, γi,S) + ln

1

piη

)
(12)

where S is the sets of N pairs {xi, yi} sampled from X . When
‖x‖ ≤ b, ‖w‖ ≤ a and 1/p + 1/q = 1, [27] shows the numeric
upper bound for N∞ (L, ε, n) is

log2 N∞ (L, ε, N) ≤ 36 (p − 1)
a2b2

ε2
log2 (2�4ab/ε�N + 1).

As a result, we can draw the conclusion that the excess term
in (12) decays to 0 with the growth of N√

32

n

(
ln 4N∞ (L, γi,S) + ln

1

piη

)
∼ o

(
log N

N

)
→ 0.

(13)
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Finally, the prediction errors for the optimal combination of
the basis function are asymptotically equivalent to the results
gained from the training data.

Appendix B

Proof of Proposition 2

As we have described, the proposed loss function is to
regularize the distribution of the predictive errors to a Laplace
distribution p. The integral of Laplacian distribution for pre-
dictive error εi is

�i(εi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − e

− 1√
2σ

)
εi = 0(

1
2

(
e
− |εi |−0.5

σ/
√

2 − e
− |εi |+0.5

σ/
√

2

))
0 < |εi| < 255(

1
2e

− |εi |−0.5

σ/
√

2

)
|εi| = 255.

Here, the actual distribution for the residual is approximated
by the exponential family F with the Laplace exponent.
Hence, we take a glance at Dα (p‖q) where the stationary point
q0 of the divergence is equivalent to the stationary point of the
projection P

[
p (x)1−α q (x)α

]
when considering the derivative

of the α-divergence with respect to its parameter θ

dDα (p‖q)

dθ
=

1

α

(∫
x

dq (x)

θ
dx −

∫
x

q′ (x)

q (x)

dq (x)

dθ
dx

)

where q′ (x) = p (x)α q (x)1−α. In consequence, the stationary
point θ0 that achieves the optimality satisfies∫

x

(
1 −

[
p (x)

q (x)

]α)
dq (x)

dθ
dx = 0. (14)

From (14), it could be drawn that the ratio p (x) /q (x) is
bounded.

On the other hand, it holds q = P (p). Since the undirected
graphical model generated from the MRF is fully factorized,
the Laplacian loss function is decomposable. Thus, the projec-
tion onto the fully factorized distribution equals the matching
of the two margins

q = P (p) ⇔
∫

x\xi

q (x) dx =
∫

x\xi

p (x) dx ∀i (15)

Since (15) holds for arbitrary i, it implies that the integrals of
the two distribution are almost equivalent. In conclusion, the
approximation of distribution p with q is upper bounded.

References

[1] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[2] K. Ugur, K. Andersson, A. Fuldseth, G. Bjontegaard, L. P. Endresen, J.
Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin,
C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, “High
performance, low complexity video coding and the emerging HEVC
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12,
pp. 1688–1697, Dec. 2010.

[3] H. Xiong, Y. Xu, Y.-F. Zheng, and C. Chen, “Priority belief propagation
based inpainting prediction with tensor voting projected structure in
video compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 21,
no. 8, pp. 1115–1129, Aug. 2011.

[4] Z. Xiong, X. Sun, and F. Wu, “Block-based image compression with
parameter-assistant inpainting,” IEEE Trans. Image Process., vol. 19,
no. 6, pp. 1651–1657, Jun. 2010.

[5] Y. Ye and M. Karczewicz, “Improved H.264 intracoding based on bi-
directional intraprediction, directional transform, and adaptive coefficient
scanning,” in Proc. IEEE Int. Conf. Image Process., Oct. 2008, pp.
2116–2119.

[6] F. Bossen, V. Drugeon, E. Francois, J. Jung, S. Kanumuri, M. Nar-
roschke, H. Sasai, J. Sole, Y. Suzuki, T. K. Tan, T. Wedi, S. Wittmann, P.
Yin, and Y. Zheng, “Video coding using a simplified block structure and
advanced coding techniques,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 20, no. 12, pp. 1667–1675, Dec. 2010.

[7] C. Yeo, Y. H. Tan, Z. Li, and S. Rahardja, “Mode-dependent
transforms for coding directional intraprediction residuals,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 4, pp. 545–554,
Apr. 2012.

[8] A. Gabriellini, D. Flynn, M. Mrak, and T. Davies, “Combined intrapre-
diction for high-efficiency video coding,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 7, pp. 1282–1289, Nov. 2011.

[9] B. Zeng and J. J. Fu, “Directional discrete cosine transforms—a new
framework for image coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 17, no. 3, pp. 305–313, Mar. 2008.

[10] H. Xu, J. Xu, and F. Wu, “Lifting-based directinal DCT-like transform
for image coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 17,
no. 10, pp. 1325–1335, Oct. 2007.

[11] C. L. Chang, M. Makar, S. S. Tsai, and B. Girod, “Direction-adaptive
partitioned block transform for color image coding,” IEEE Trans. Image
Process., vol. 19, no. 7, pp. 1740–1755, Jul. 2010.

[12] X. Peng, J. Xu, and F. Wu, “Directional filtering transform for im-
age/intraframe compression,” IEEE Trans. Image Process., vol. 19, no.
11, pp. 2935–2946, Nov. 2010.

[13] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu,
“Fast mode decision alogirthm for intraprediction in H.264/AVC video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 7, pp.
813–822, Jul. 2005.

[14] G. Laroche, J. Jung, and B. P.-P. Popescu, “Intracoding with prediction
mode information inference,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 20, no. 12, pp. 1786–1796, Dec. 2010.

[15] D.-Y. Kim, K.-H. Han, and Y.-L. Lee, “Adaptive single-multiple pre-
diction for H.264/AVC intracoding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 4, pp. 610–615, Apr. 2010.

[16] Y. Piao and H. Park, “Adaptive interpolation-based divide-and-predict
intracoding for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 20, no. 12, pp. 1915–1921, Dec. 2010.

[17] P. Tao, W. Wu, C. Wang, M. Xiao, and J. Wen, “Horizontal spatial
prediction for high dimension intra coding,” in Proc. IEEE Data
Compression Conf., Mar. 2010, p. 552.

[18] A. Dumitras and B. G. Haskell, “An encoder-decoder texture replace-
ment method with application to content-based movie coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 14, no. 6, pp. 825–840, Jun.
2004.

[19] D. Liu, X. Sun, F. Wu, and Y.-Q. Zhang, “Edge-oriented uniform intra
prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10,
pp. 1827–1836, Oct. 2008.

[20] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp.
463–476, Mar. 2007.

[21] Z. Yuan, H. Xiong, and Y. F. Zheng, “A generic video coding framework
based on anisotropic diffusion and spatio-temporal completion,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Mar. 2010, pp.
926–929.

[22] S. Milani, “Fast H.264/AVC FRExt intra coding using belief propaga-
tion,” IEEE Trans. Image Process., vol. 20, no. 1, pp. 121–131, Jan.
2011.

[23] S.-C. Zhu, “Statistical modeling and conceptualization of visual pat-
terns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 1–22,
Jun. 2003.

[24] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT
coefficient distributions for images,” IEEE Trans. Image Process., vol.
9, no. 10, pp. 1661–1666, Oct. 2000.

[25] B. Taskar. (2004, Dec.). Learning structured prediction mod-
els: A large margin approach, Ph.D. dissertation, Dept. Comp.
Sci., Stanford Univ., Stanford, CA, USA [Online]. Available:
http://robotics.stanford.edu/btaskar/pubs/thesis.pdf/

[26] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,”
in Advances in Neural Information Processing Systems. Cambridge, MA,
USA: MIT Press, Dec. 2003, pp. 25–32.



1956 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 11, NOVEMBER 2013

[27] T. Zhang, “Covering number bounds of certain regularized linear func-
tion classes,” J. Mach. Learn. Res., vol. 2, pp. 527–550, Mar. 2002.

[28] J. Platt, “Using analytic QP and sparseness to speed training of support
vector machine,” in Advances in Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, Nov. 1999, pp. 557–563.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[30] T. P. Minka. (2004). Power EP [Online]. Available:
http://research.microsoft.com/en-us/um/people/minka/papers/ep/

[31] W. Wiegerinck and T. Heskes, “Fractional belief propagation,” in Ad-
vances in Neural Information Processing Systems. Cambridge, MA,
USA: MIT Press, 2003, pp. 438–445.

[32] (2012, Jul.) High Efficiency Video Coding (HEVC) [Online]. Available:
http://hevc.hhi.fraunhofer.de/

[33] G. Bjontegaard, Calculation of Average PSNR Differences Between RD-
Curves, document VCEG-M33, ITU-T SG16/Q6, 13th VCEG Meeting,
Apr. 2001.

[34] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand, “High
efficiency video coding (HEVC) text specification draft 7,” JCTVC-
I1003, Geneva, Switzerland, Apr. 2012.

[35] A. Saxena and F. Fernandes, CE7: Mode-Dependent DCT/DST Without
4*4 Full Matrix Multiplication for Intra Prediction, JCTVC-E125,
Geneva, Switzerland, Jul. 2010.

[36] F. Bossen, Common HM Test Conditions and Software Reference Con-
figurations, JCTVC-I1100, Geneva, Switzerland, Apr. 2012.

[37] M. Karczewicz, Y. Ye, and I. Chong, Rate-Distortion Optimized
Quantization, document VCEG-AH21, VCEG, ITU-T Q6/16, Jan.
2008.

[38] M. Turkan and C. Guillemot, “Online dictionaries for image pre-
diction,” in Proc. IEEE Int. Conf. Image Process., Sep. 2011,
pp. 293–296.

[39] X. Wu, G. Zhai, X. Yang, and W. Zhang, “Adaptive sequential pre-
diction of multidimensional signals with applications to lossless image
coding,” IEEE Trans. Image Process., vol. 20, no. 1, pp. 36–42, Jan.
2011.

[40] J. Weston and C. Watkins, “Multiclass support vector machines,” Dept.
Comput. Sci., Royal Holloway, Univ. London, London, U.K., Tech. Rep.
CSD-TR-98-04, 1998.

[41] J. Pearl, “Reverend Bayes on inference engines: A distributed hierar-
chical approach,” in Proc. 2nd Nat. Conf. Artif. Intell., Aug. 1982, pp.
133–136.

[42] B. J. Frey and D. J. MacKay, “A revolution: Belief propagation in graphs
with cycles,” in Advances in Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, Nov. 1998, pp. 479–485.

[43] T. P. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” in Proc. 17th Conf. Uncertainty Artif. Intell., 2001, pp. 362–369.

[44] J. Chen and W.-J. Han, “Adaptive linear prediction for block-based lossy
image coding,” in Proc. 16th IEEE Int. Conf. Image Process., Sep. 2009,
pp. 2833–2836.

[45] Y. Zhang, L. Zhang, S. Ma, D. Zhao, and W. Gao, “Context-adaptive
pixel based prediction for intra frame encoding,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., Mar. 2010, pp. 898–901.

[46] T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” in Proc. 21st Int. Conf. Mach. Learn.,
2004, pp. 116–123.

Wenrui Dai received the B.S. and M.S. degrees
in electronic engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2005 and 2008, re-
spectively, where he is currently pursuing the Ph.D.
degree with the Department of Electronic Engineer-
ing.

His research interests include learning-based video
coding and signal processing.

Hongkai Xiong (M’01–SM’10) received the Ph.D.
degree in communication and information system
from Shanghai Jiao Tong University (SJTU), Shang-
hai, China, in 2003.

Since 2003, he has been with the Department of
Electronic Engineering, SJTU, where he is currently
a Professor. From December 2007 to December
2008, he was with the Department of Electrical and
Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA, as a Research Scholar. From
2011 to 2012, he was a Scientist with the Division

of Biomedical Informatics, University of California, San Diego. He has
published more than 100 refereed journal/conference papers. At SJTU, he
directs the Image, Video, and Multimedia Communications Laboratory and
the multimedia communication area in the Key Laboratory of Ministry of
Education of China—Intelligent Computing and Intelligent System, which is
also co-granted by Microsoft Research. His research interests include source
coding/network information theory, signal processing, computer vision and
graphics, and statistical machine learning.

Dr. Xiong received the Top 10% Paper Award for Super-Resolution Recon-
struction with Prior Manifold on Primitive Patches for Video Compression at
the 2011 IEEE International Workshop on Multimedia Signal Processing. In
2011, he received the First Prize of the Shanghai Technological Innovation
Award. In 2010, he received the SMC Excellent Young Faculty Award of
SJTU. In 2009, he received the New Century Excellent Talents in University
Award from the Ministry of Education of China. He is a technical program
committee member or session chair for a number of international conferences.

Xiaoqian Jiang received the Ph.D. degree from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2010.

He is a Post-Doctoral Scientist with the Division
of Biomedical Informatics, School of Medicine, Uni-
versity of California, San Diego, CA, USA. His
expertise is in data privacy and machine learning.
He has researched imbalanced data analysis, predic-
tive model calibration, and privacy-preserving data
mining. His research interests include developing
practical and scalable technologies for large data

analysis.
Dr. Jiang received a Distinguished Paper Award from the American Medical

Informatics Association Summits on transnational science in 2012 and served
as the Tutorial Chair for the 2nd IEEE Conference on Health Informatics,
Imaging, and System Biology.

Chang Wen Chen (F’04) received the B.S. degree
from the University of Science and Technology of
China, Hefei, China, in 1983, the M.S.E.E. de-
gree from the University of Southern California,
Los Angeles, CA, USA, in 1986, and the Ph.D.
degree from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 1992.

Since 2008, he has been a Professor of computer
science and engineering at the State University of
New York at Buffalo, Buffalo, NY, USA. From 2003
to 2007, he was the Allen S. Henry Distinguished

Professor with the Department of Electrical and Computer Engineering,
Florida Institute of Technology, Melbourne, FL, USA. He was with the Faculty
of Electrical and Computer Engineering, University of Missouri-Columbia,
Columbia, MO, USA, from 1996 to 2003 and at the University of Rochester,
New York, NY, USA, from 1992 to 1996. From 2000 to 2002, he was the
Head of the Interactive Media Group, David Sarnoff Research Laboratories,
Princeton, NJ, USA. He has also consulted with Kodak Research Laboratories;
Microsoft Research, Beijing, China; Mitsubishi Electric Research Laborato-
ries, Cambridge, MA, USA; NASA Goddard Space Flight Center, Greenbelt,
MD, USA; and the U.S. Air Force Rome Laboratories, Rome, NY, USA.

Dr. Chen was the Editor-in-Chief for the IEEE Transactions on Circuits

and Systems for Video Technology from 2006 to 2009. He has served
as an Editor of Proceedings of the IEEE, IEEE Transactions on

Multimedia, IEEE Journal on Selected Areas in Communications,
IEEE Multimedia, Journal of Wireless Communication and Mobile Com-
puting, EURASIP Journal of Signal Processing: Image Communications, and
Journal of Visual Communication and Image Representation. He has also
chaired and served on numerous technical program committees for the IEEE
and other international conferences. He became a fellow of the International
Society for Optical Engineers for his contributions in electronic imaging and
visual communications.


