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ABSTRACT

This paper studies network performance optimization to max-
imize the overall user utility for scalable multi-view video
(SMVYV) streaming over wireless networks. We utilize a hy-
brid temporal-spatial content rate-distortion metric to mea-
sure the temporal and spatial quality of each view received
at the user and define the corresponding user utility. The
flow allocation problem is formulated as an utility maximiza-
tion model for efficient SMVV streaming, then a distributed
and layered solution based on Lagrangian dual decomposi-
tion is proposed, in which the rate allocation in each video
layer can be solved by the shortest path algorithm and the
sub-gradient algorithm. Finally, the performance of the pro-
posed algorithm is verified by the simulation results.
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1. INTRODUCTION

With the rapid deployment of three-dimensional (3-D)
techniques, 3-D video is likely to be introduced to home and
mobile platforms via broadcast or on-demand in the near
future. As one popular 3-D video format, multi-view video
(MVV) technique has attracted considerable attention re-
cently. MVYV is implemented by simultaneously capturing
the same scene from different viewpoints. As MVV con-
tains a large amount of inter-view dependencies, multi-view
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video coding (MVC) [1] is proposed to provide high com-
pression efficiency by exploiting both temporal and inter-
view redundancies. However, MVC requires to transmit the
entire multi-view sequence to the users, which not only is
infeasible when the view number is very large, but is un-
necessary for the sake that, relying on the head position,
the user in a period might be interested in a subset of views.
Interactive MVV streaming is designed to provide MVV ser-
vice efficiently and flexibly by only transmitting the views
demanded by the users.

Interactive multi-view video streaming systems are stud-
ied in [2]-[5]. The MVV in [2] is encoded with simulcast cod-
ing method, in which each view is encoded and transmitted
independently. Therefore, each client can select the num-
ber of views required according to the available bandwidth.
The authors in [3] proposed a successive view motion model,
which discriminates all frames into potential frames and re-
dundant frames in terms of user’s motion, and then those
potential frames are encoded and transmitted to the user.
Shi etc. in [4] presented a client-driven selective streaming
system for multi-view video transmission. For minimizing
the total video distortion of all clients, they proposed an op-
timal rate allocation algorithm in which the views are deliv-
ered based on client selections as well as network conditions.

As an annex of the advanced video coding standard, scal-
able video coding (SVC) [6] provides various operating points
in spatial resolution, temporal frame rate, and video recon-
struction quality. The incorporation of SVC into MVV cod-
ing produces a promising scalable 3-D video, where each
view is encoded independently with simulcast coding using
the SVC standard. The authors in [5] presented a client-
driven selective streaming for multi-view video, in which
SVC is combined with MVC to improve compression effi-
ciency and provide adaptive bandwidth allocation to the se-
lected views. However, they only discuss the case with two
views and do not consider how to distribute the selected
views. Zou etc. in [7] studied flow optimization for SVC
streaming over multicast networks, where multi-path video
streaming, network coding based routing, and network flow
control are jointly optimized to maximize the network util-
ity. The flow optimization solution in [7] is nevertheless
specifically designed for single-view view transmission.

This paper is motivated to study network performance op-
timization to maximize the overall user utility for scalable
multi-view video (SMVV) streaming over wireless networks.
We utilize a hybrid temporal-spatial content rate-distortion
metric [8] to measure the temporal and spatial quality of
each view received at the user and define the corresponding



user utility. The flow allocation problem is formulated as
an utility maximization model for efficient SMVV stream-
ing, then a distributed and layered solution based on La-
grangian dual decomposition is proposed, in which the rate
allocation in each video layer can be solved by the short-
est path algorithm and the sub-gradient algorithm. Finally,
the performance of the proposed algorithm is verified by the
simulation results.

The remainder of this paper is organized as follows: Sec. 2
presents the system model and the basic assumptions. Sec. 3
describes the flow optimization model, and the distributed
solution to allocate rate for SMVV multicast. Simulation
results are discussed in Sec. 4. Finally, Sec. 5 concludes the

paper.

2. SYSTEM MODELS

2.1 Network Model and Assumptions

A wireless network can be modeled as a directed graph
G = (V, E), where V is the set of network nodes and F is the
set of directed wireless links between nodes. The set V can
be further divided into three disjoint subsets S, N and R,
representing source nodes, relay nodes and receiver nodes,
respectively. All the nodes have a maximum transmission
range dmax. A directed link (i, 7) € E exists between node &
and node j if their distance satisfies di; < dmax.

We consider a SMVV sequence with M views, where each
view is independently encoded using the SVC standard. For
each view, the video encoder provides vmax spatial scalable
levels and nmax temporal scalable levels for users with differ-
ent display resolutions and available bandwidths. Assume
that each scalable layer | € L, L = vmax + Jmax — 1, of each
view m € M is distributed over a multicast group at a maxi-
mum transmission rate R,, ;. Also, assume that there exists
multiple alternative paths P(r) from the source to receiver
r. We use a matrix Z" to reflect the relationship between
its paths and related links. The (j,€) entry of Z" is defined
as

J.¢ T

g 0, if link e is included in path j;
1, otherwise.

2.2 Hybrid Temporal-Spatial Utility

We adopt temporal-spatial content rate-distortion metric
[8] to measure the video temporal and spatial quality of each
view. For each spatial level v, the rate and distortion in
temporal domain are given by:

Rnyw(n) = é > o (fi)
i€(Vo—Apv) (1)
Dyo(m) =g > d(fi, f)

i€Vy

where G is the GOP size, with a GOP containing V =
{fi,-++, fa} frames, A, , is the dropped frame set in tem-
poral level n, d (fs, fi°) is the distortion between two frames’
summary, 7, (f;) is the rate of frame f; in spatial level v.
Note that the content information is represented by the
video summary, and detailed information can be found in
[9].

For each temporal level ), the rate and distortion in spatial

domain are given by:

Ryw(v) = é > oy (fi)

i€Y%n,0 (2)
Dyu(®) =& ¥ [d() =G G ar)]
1€Yn,v
where ¥, o = {f1, - , f&} represents the playback frames in

spatial level v and temporal level 7, and d(-) is computed as
the principle component analysis distance. When the user
received just the frames in spatial level v, the reconstructed
video will be stretched from received frame size in term of
height f; and with f,, to original size f;, and f,.

Let (n™7,v™") represent the received maximum tempo-
ral and spatial level of view m at user r, and all the depen-
dent levels in {(4,7)]7 € [1,n™"],7 € [1,v™"]} are supposed
to be successfully received by user r. Then, the utility of
view m achieved at user 7 is:

Up, =6 [Dgpas — Dy s (™))
4 B (Do — Dy s (0]

Where a and 8 are the respective influence parameters from
temporal and spatial domains.

2.3 Wireless Channel Capacity Model

In wireless networks, the capacity of a wireless link is in-
terrelated with other adjacent wireless links. Suppose any
link originating from node k will interfere with link (z,7) if
di; < (14 A)dy; or di; < (1 + A)d;;. Here, A > 0 speci-
fies the interference range. Also define ¥ (i, j) for each link
(4,7) € E as the cluster of links that cannot transmit as long
as link (4, j) is active, then the wireless network channel in-
terference constraint can be defined as [10]:

Z Zfﬁl,z‘f' Z Z Z ffn/,l <C (4)

meM leL meM IEL e’ €T (e)

3)

where fy,; is the transmission rate of view m’s layer [ over
link e, and C represents the maximum rate supported by
the wireless shared-medium.

3. OPTIMIZATION PROBLEM FORMULA-
TION

3.1 Optimization Problem

In this paper, we seek optimal flow allocation for SMVV
streaming over wireless multicast networks for maximizing
the overall user utility in terms of the received spatial and
temporal quality. Mathematically, it can be formulated as:

PO: Z Z ZU:”’Z (5)

reRmeM leL

s. t.
1) Z zr:n]l > Rm, V€ RRme M,l € L.
JEP(r)
2) Z z;ex;jl < fmi, Vre Rme M,leLeeE.
JEP(r)

3) SNt Y3 S <0, VeeE.

meM IEL mEM IEL ¢/ €d(e)



U, in the objective function represents the distortion
reduction at user r when receiving view m’s layer [, either
temporal level or spatial level. Constraint 1) guarantees that
the actual transmission rate of layer [ of view m achieved by
each user r is no less than the maximum flow rate of that
layer. Constraint 2) represents the relationship between in-
formation flow rate and physical flow rate on each link. Here,
ZjEP(r) 2jeT m]l denotes the total bandwidth allocated on
link e for view m’s layer [ to user r, and fy,, represents
the physical flow rate of that layer over link e. By using
network coding, different users would not compete for link
bandwidth within the same video layer.

3.2 Distributed Solution

In pursuit of low computational complexity and decen-
tralized implementation, we propose a distributed solution
for problem PO. For each view, it sequentially allocates the
bandwidth for each layer from low to high in a distributed
manner, until there are no enough bandwidth left for the
next layer. When constructing the data distribution meshes
for each layer, its objective is to minimize the total band-
width consumed at the current layer, so as to reserve more
available bandwidth for the following higher layers. The flow
optimization model for layer [ of view m can be defined as:

> (6)

e€E
s. t.
ST @l > Ry, VreR.
JjEP(r)
Z Z;ef”:n]l < fmi1s Vr € Re € E.
JEP(r)
3) ffn,,l"!_ Z f;,l Screm Ve € F.

e'ed(e)

where Cles is the capacity of the residual network, or the
surplus capacity after finishing the data distribution meshes
for previous | — 1 layers.

In the achieved | — 1 sequential distribution meshes for
each view m, assume that there are n™ temporal scalable
levels and v™ = [ — 1 — n™ spatial scalable levels. Then,
the goal of problem P1 is to find an appropriate scalable
level between (n™ +1,v™) and (n™,v™ 4 1), and the corre-
sponding flow allocation, such that the aggregate utility of
all the users achieved at layer [ is maximized, meanwhile, the
bandwidth is reserved as much as possible for higher layers.

P1 can be solved with Lagrangian relaxation and sub-
gradient algorithm. By relaxing constraint 2) with Lagrange
multiplier ug, we obtain the following Lagrangian dual as:

max L(u) (7)

u>0

where

w) =min ) _ fr

ecE

s s 7 e
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and polytope P is constraints 1) and 3) in problem P1.

It is observed that the Lagrangian problem in (9) can
be further decomposed into two sub-problems. One is |R)|
shortest path problems:

min Z Ug Z 2 - xrmjl (10)

e€E jeP(r)

st > x;’q{l > Rpm,i(n,v), Vr € R.
JjEP(r)
The other is a minimization problem:

min Z Frn <1 — Z uQ) (11)

eckE rER

Foat > fii < Cres, Ve € E.

e'ed(e)

The shortest path problems in Pla can be tackled with
the distributed Bellman-Ford algorithm. The minimization
problem in P1b can be solved as follows:

0 ift > wug <1,
e rER
= / 12
X Cres — > fou if Y ul>1. (12)
e’ €D (e) reR

In the k™ iteration of the sub-gradient algorithm, the La-
grangian multiplier is updated by:

ug k] = max (0, ug[k — 1]+

k) - Z Zje x:n]l —fmal),Vr € Re € E. (13)
JEP(T)

where 0 is a prescribed sequence of step sizes satisfying:

0[k] > 0, lim 6[k] =0, ;e[k} = 0

Since the primal values in the optimal solution of the La-
grangian dual are not necessarily optimal to the primal prob-
lem P1, the algorithm proposed by [11] is applied further to
recover the optimal values. For convenient description, we
let ¥ 2 > 2.7 (k). Then, at the k™ iteration, we

JEP(T)
aggregate a primal g% (k] via

k
Ino K= X (14)
h=1

where ZA’“ =land \f >0for h=1,---,k.

The proposed distributed optimization algorithm for layer
[ of view m is showed in Algorithm 1.



Algorithm 1 Distributed Optimization Algorithm for layer
l

1. Initialize Lagrangian multipliers ul [0],Vr € R, e € E, to
non-negative values.

2. Repeat the following iteration until sequence {u’ [k]} con-
verges to ul*, {y;fl [k}} converges to ¥°%,": Vr € R, e € E

(1) Compute ¥, % [k] by distributed Bellman-Ford algorithm;
(2) Compute Font [k] by Eqn. (12);

k
(3) Compute gj:nel k] = > iy;’:l [h] = % g:jl k—1]+

h=1
1,me .
E ym,l [k]’
(4) Update Lagrangian multiplier uf[k] = max(0,uy, [k —
0+0[k—1]- [y, k- 1] = fr [k —1]).
. e ®
3. Compute optimal rate f’fn,l* = I:leal)%( y;fl , Ve e E.

4. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the overall performance of the proposed optimization
algorithm. The simulation experiments are conducted on a
3-view “Racel” sequence. Each view is encoded using H.264
extended SVC to generate scalable video stream with 3 tem-
poral levels: 7.5, 15 and 30 fps and 3 spatial levels: QCIF,
CIF and D1 formats. The wireless network topology for the
simulation is showed in Fig. 1, where S is the source node,
R1 — Rs are relay nodes, U; — Us are user terminals, and
Amax=45m.

N Y (m)
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Figure 1: Simulation network topology

Fig. 2 shows the optimal layer structure for “Racel” se-
quence with hybrid temporal and spatial domain scalability
support. For each view, the color line represents its layer
structure achieved by the proposed flow optimization algo-
rithm. For example, the green line of view 1 tells that view
1 will be distributed in an order of QCIFQ7.5— CIFQ7.5—
D1@7.5—-D1@15—D1@30. Namely, the bandwidth will be
first allocated to the basic layer flow with QCIF resolution
and temporal level of 7.5 fps, then sequentially to the en-
hancement layer flow with CIF resolution, D1 resolution,
temporal level of 15 fps, and 30 fps.

Fig. 3 shows the allocated flow rate for each user at each

view

|
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Figure 2: The optimal layer structure for “Racel”
sequence
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Figure 4: Comparison of the achievable multi-view
video quality.

layer. It can be seen that all flow rates reach the optimal
value after 300 iterations. In practice, the convergence speed
can be controlled by the step size. A large step size leads to
a fast convergence, while a small step size yields to a smooth
video quality.

Fig. 4 compares the achievable multi-view video quality at
each user with the layer structure achieved by the proposed
algorithm and a random layer structure. Within the two
layers, although three users can receive the data of all three
views under these two layer structures, the total quality of
the layers received by three users with the proposed layer
structure is clearly better than the random layer structure.

S. CONCLUSION

In this paper, we proposed a framework of scalable multi-
view video multicasting over wireless networks. We jointly
considered the video quality scalability and channel capac-
ity to maximize an aggregate utility function over heteroge-
nous users. Also, a hybrid temporal-spatial layer structure
and rate allocation optimization model was established. For
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Figure 3: Allocated rate for user 1. (a) For view 1. (b) For view 2. (c¢) For view 3.

low computational complexity and decentralized implemen-
tation, the proposed model is decomposed into a set of sub-
models with each corresponds to a separate video layer dis-
tribution problem. Experimental results demonstrated that
the proposed algorithm has a fast convergence speed and
provides better video quality with heterogeneous users.
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