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Abstract—View synthesis is dedicated to generating arbitrary
views of the same scene from given inputs. As an alterna-
tive to depth-image-based rendering (DIBR), image warping
based view synthesis approaches could automatically generate
visually plausible virtual views in real-time. Recognizing that
existing techniques would lead to temporal incoherence and
shape distortions in synthesized videos, this paper proposes
a novel video warping algorithm which motion saliency map
and global motion from reference views are incorporated into
motion-aware constraints to maintain temporal coherence in
virtual views. Furthermore, a salient curve based disparity
constraint is imposed to prevent shape deformations and avoid
possible artifacts. Extensive experiments are validated by visual
comparison, which demonstrates that the proposed algorithm
outperforms existing warping-based methods.

Index Terms—View synthesis, image warping, spatio-temporal
coherence, motion saliency map, salient curve detection

I. Introduction

Three-dimensional video (3DV) provides the viewers with
a realistic 3D impression of the scene, and is considered the
next step in the evolution of motion picture formats. With
the development of display equipments (e.g. multi-view au-
tostereoscopic displays), glasses-free 3D sensation and motion
parallax viewing are enabled in a living room environment.
To support the advanced 3DV system, research communities
[1] and standardization bodies [2] advocated multi-view video
plus depth (MVD) as generic format for 3DV. Such video
format consists of a subset M (e.g. 2 or 3) of the N views
and corresponding per-sample dense depth for transmission,
and additional intermediate views are interpolated using depth-
image-based rendering (DIBR) technique [3] at the receiver.
Therefore, robustness and quality of virtual views have become
decisive factors for viewing experience.

Theoretically, the DIBR algorithm can be utilized to syn-
thesize any virtual perspective views with high accuracy and
efficiency. However, the estimated depth maps are usually of
insufficient accuracy to enable high quality synthesis, or can’t
be generated in an automatic and real-time manner. To avoid
the restriction imposed by depth estimation, image warping
plays as a powerful solution where all positions in one image
plane are transformed to positions in a second plane, e.g. video
retargeting [4] and video stabilization [5]. Stefanoski et al.
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[6] developed an image domain warping (IDW) technique as
an alternative to depth-based view synthesis, which does not
rely on dense depth estimation, but deforms reference view
content directly in image space. The reference image with
resolution of W × H, is represented as a uniform grid mesh
G = (V,E,Q) with vertex positions V, edges E and quads Q.
To obtain warped positions w(vi) for each vertex in the grid,
a quadratic energy function E(w) is formulated according to
the predefined properties in the synthesized image

E(w) B λdEd(w) + λsEs(w) + λtEt(w) (1)

It consists of three energy terms: a sparse disparity term
Ed, a spatial smoothness term Es, and a temporal coherence
term Et. The disparity term constrains extracted features
retaining appropriate disparities after warping, and the spatial
smoothness term serves to direct deformations to less salient
regions. The temporal coherence term is utilized to preserve
smooth and consistent motion in synthesized videos. The warp
w can be derived by minimizing E(w) to synthesize the virtual
views according to

Isynth[i, j] B Ψ(I,w)[i, j] B I(w−1[i, j]) (2)

In comparison to DIBR, the warping-based approaches
can execute fully automatically and in real-time, without the
requirement for dense depth estimation or other error prone
processing. Furthermore, the warps are continuous so no holes
would occur in the synthesized views, and disoccluded regions
are implicitly inpainted by stretching unsalient texture from
the neighborhood into the region. This kind of inpainting
provides good synthesis results in practice. Nevertheless, the
synthesized views would easily suffer flickering artifacts and
shape deformations, especially when significant camera or
object motions are involved. In addition, the object contours
often exhibit double ghost artifacts once sufficient disparity
information is not provided for warping process.

To address these problems, this paper proposes a novel view
synthesis approach with two contributions, as shown in Fig. 1.
As a first contribution, we introduce motion-aware constraints
to guide the warp for temporal coherence in synthesized
videos. Specifically, the corresponding points in consecutive
frames are detected using the global camera motion, and
encourage them to undergo the same warp. For the region
with moving objects, this constraint could be relaxed by the
motion saliency map to avoid possible distortions. As a second
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Fig. 1. Overview of the proposed warping-based 3-D view synthesis
framework.

contribution, we incorporate a disparity constraint based on
salient curve instead of feature points, which can enforce the
salient curves to warp into appropriate positions, and reduce
the relative artifacts like edge bending.

The remainder of this paper is organized as follows. The
motion-aware temporal coherence and salient curve based
disparity are presented in Sec. 2 and Sec. 3 respectively.
The experimental results are provided in Sec. 4, and Sec. V
concludes the work.

II. Motion-aware Temporal Coherence

In essence, the choice of warp is dependent on a trade-off

between smooth distortion and good matches [7]. To preserve
the temporal coherence in synthesized videos, the energy term
in [6] constrains temporally adjacent pixels to warp coherently.
Unfortunately, it often fails to guarantee temporal coherence
because it assumes that features always remain in the same
spatial locations between consecutive frames. Fig. 2 demon-
strates an example of shape deformation caused by camera
motion. At frame t − 1, the virtual view is generated from
the reference view through an appropriate warping function.
Considering the zoomed region in the warping process, the
background content (in sky-blue) on left side of the purple
balloon has been stretched to fill the disocclusion. This “pull-
over” effect would be propagated to the corresponding area in
the following frames.
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Fig. 2. An example for shape deformation caused by camera motion.
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Fig. 3. The motion-aware temporal coherence in the proposed approach.

As illustrated in Fig. 3, a motion-aware constraint is taken
into consideration to maintain temporal coherence in synthe-
sized views. For one vertex vt

i in the mesh grids at frame t,
its corresponding position pt−1

i in frame t − 1 is attained by
global motion compensation. Here, we demonstrate the camera
motion by a homography model, and estimate it through
a SIFT-feature based descriptor [8]. In turn, we can obtain
position pt−1

i based on the relationship: pt−1
i = Ht→t−1·vt

i, where
Hk→l represents the inter-frame transformation from frame k to
frame l. It is reasonable to assume that the virtual view shares
the same camera motion as the reference one, and the warping
positions of vt

i and pt−1
i should be constrained to maintain the

relationship, i.e., by minimizing ‖wt(vt
i)−Ht−1→t ·wt−1(pt−1

i )‖2.
Since pt−1

i might not be a grid vertex, the constraint cannot
be applied to pt−1

i straightforward. To solve it, we represent
pt−1

i as a bilinear interpolation of the four vertices that enclose
it as follows:

pt−1
i =

∑
vt−1

k ∈V(qt−1
i )

αk · vt−1
k (3)

where qt−1
i is the corresponding quad that contains the spatial

location of pt−1
i , V(q) represents the vertex set of quad q, and

αk denotes the relative bilinear interpolation coefficients. Thus,
the warping position wt−1(pt−1

i ) can be achieved as follows:

wt−1(pt−1
i ) =

∑
vt−1

k ∈V(qt−1
i )

αk · wt−1(vt−1
k ) (4)

Note that the global motion constraint is based on the
assumption that the corresponding positions across frames,
vt

i and pt−1
i , represent the same 3-D point in the scene. It

works well for static objects or backgrounds. However, the
mismatch usually occurs between the corresponding points
from dynamic foreground, e.g. vt

j and pt−1
j in Fig. 3, as fore-

ground objects have their own motion independent of camera
motion. For the region with moving objects, we propose to
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relax the temporal constraint and assign more freedom to
the relative warping by introducing the motion saliency map.
As [9], we obtain the motion saliency map as the difference
between the local optical flow [10] and the global background
motion. Fig. 3 shows an illustration of the motion saliency map
Mt with respect to frame t, where hue indicates orientation
and saturation indicates magnitude. Here, the weight mt(vt

i) is
utilized to adaptively tune the temporal constraint according
to the corresponding saliency value:

mt(vt
i) = min{

N∑
pt

k∈N(vt
i)

Mt(pt
k)
, 10} (5)

where N(v) represents the square window of 7 × 7 pixels
centering at vertex v, Mt(p) corresponds to the magnitude
value of motion saliency at position p, and N is the number
of pixels in N(v). Thus, the vertices with local motion (e.g.
vt

j) would be assigned to smaller temporal coherence weight
than static vertices (e.g. vt

i), and get relaxed from temporal
constraint to avoid possible distortions.

We utilize both global and local motion to obtain the
following temporal constraint:

Et(wt) =
∑
vt

i∈Vt

mt(vt
i)‖w

t(vt
i) − Ht−1→t · wt−1(pt−1

i )‖2 (6)

III. Salient Curve Based Disparity

For image warping based approaches, the sparse disparities,
which are estimated from the Data Extractor in Fig. 1, are
critical for 3-D perception of viewers. The traditional SIFT
features and vertical edges for disparity estimation can not
represent salient curves with flexible shape, and artifacts would
obviously occur around object contours, as shown in Fig. 4.
To solve the problem, an disparity based on salient curves is
imposed on the disparity constraint.

Vertical Edge

SIFT Features

Fig. 4. An example for double ghosting artifacts due to lack of disparity
information around the purple balloon.

A. Curve representation

We adopt the model in [11] for salient curves representation.
The basic elements of curves are depicted as 16 oriented
segments S = {S 1, S 2, . . . , S 16}, as shown in Fig. 5 (a). Each
segment connects two adjacent points in a curve, and only
depends on their relative positions. Thus, a curve can be
represented as a sequence of points c = (x1, x2, . . . , xn), where
xi denotes the coordinate of the i-th point in the curve. Equiv-
alently, in a segment-based form: c = (s1, s2, . . . , sn−1), where
si is one of the oriented segments calculated by si = xi+1 − xi.
Fig. 5 (b) illustrates the two representations of one curve for
n = 5.

(a) oriented segments (b) curve representation

Fig. 5. An example of curve representation.

B. Curve detection

As human visual system is sensitive to high frequency
components, salient curves are connected paths that exhibit
intense grayscale variations in an image. In addition, the curves
with smooth shape and sufficient length would attract more
attention. Hence, the quality of a curve could be evaluated as:

w(c) = F(c) + λT (c) + γL(c) (7)

The intensity term

F(c) =
1
n

n∑
i=1

√
Ix(xi) + Iy(xi) (8)

measures the boundary response of the points in curve c, where
Ix(xi) and Iy(xi) are the gradient of the image with respect to
x and y. The smoothness term T (c) indicates the orientation
consistency of curve c by measuring the difference between
two adjacent oriented segments as:

T (c) =
1

n − 2

n−1∑
i=2

exp(−|si − si−1|) (9)

The length term L(c) = log(n) ensures salient curves with
sufficient length.

Salient curves with large weights and sufficient length are
extracted by maximizing Eq. (7). In turn, the disparities of
detected curves are estimated by the Lucas-Kanade algorithm,
and incorporated into the disparity constraints Ed. Fig. 6 (a)
shows the disparities based on salient curves, where one can
observe that sufficient disparities around the purple balloon are
provided for warping process. Fig. 6 (b) shows the synthesized
frame, where salient shape distortions (e.g. double ghosting
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or edge bending artifacts in Fig. 4) are eliminated due to the
availability of the disparities.

(a) disparities based on salient curve

(b) synthesized view

Fig. 6. The disparity based on salient curves and its synthesized effect.

IV. Experimental Results

The proposed algorithm has been compared with the state-
of-the-art view synthesis approach [6]. To evaluate the perfor-
mance of spatial and temporal coherence, the Balloons and
Kendo test sequences (both with the resolution of 1024×768)
from Nagoya University are chosen for their fast motion and
flexible shapes. Without loss of generality, the middle view 3
is synthesized from view 1 and view 5. We solve the warp with
a mesh resolution of 180 × 100 following the same setting in
[6] for stereoscopic high-definition sequences. The synthesized
effect is provided in Fig. 7, along with original frames.

179th frame 187th frame 193th frame

(a) The Balloons sequence and ghosting artifacts

100th frame 109th frame 116th frame

(b) The Kendo sequence and edge bending artifacts

Fig. 7. Comparison of different view synthesis schemes. The first row is
the original frames, the second row from [6], the last row from the proposed
approach.

From Fig. 7, it can be seen that the proposed scheme
exhibits a high quality of rendered views and eliminates the
artifacts in [6]. Specifically, Fig. 7 (a) shows the ghosting
artifact (second row) caused by global camera motion, and
the balloons always appear flickering effect when playing
the synthesized video. From the last row in Fig. 7 (a) we
can see, our proposed algorithm removes these artifacts using
the motion-aware temporal coherence, and the video is more
fluent and comfortable for viewing. In Fig. 7 (b), no disparity
information is extracted with respect to the “Shinai” and thus
severe edge bending artifact is present in synthesized view
(second row). With the salient curve based disparity constraints
in our proposed scheme, sufficient disparities are provided and
the “Shinai” is preserved much better as shown in the last row.

V. Conclusion

In this paper, we propose a novel view synthesis approach
with the motion-aware temporal coherence and salient curves
based disparities. In contrast to conventional approaches, it
is capable of reducing shape deformations and preserving
temporal consistency in the videos with fast motion. It can
enforce the salient curves to warp into appropriate positions,
and reduce the relative artifacts like edge bending. Experimen-
tal results show that the synthesized views of the proposed
algorithm provide high quality and less artifacts.
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