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Abstract

LS-based adaptation cannot fully exploit high-dimensional correlations in image signals,
as linear prediction model in the input space of supports is undesirable to capture higher
order statistics. This paper proposes Gaussian process regression for prediction in lossless
image coding. Incorporating kernel functions, the prediction support is projected into a
high-dimensional feature space to fit the anisotropic and nonlinear image statistics. Instead
of directly conditioned on the support, Gaussian process regression is leveraged to make
prediction in the feature space. The model parameters are optimized by measuring the
similarities based on the training set, which is evaluated by combined kernel function in
the sense of translation and rotation invariance among supports mapped in the feature
space. Experimental results show that the proposed predictor outperforms most benchmark
predictors reported.

1 Introduction

Linear prediction is prevailing in predictive coding of natural images under the as-
sumption of stationary Gaussian random process. Among which, least-square (L-
S) autoregression based predictors significantly improve the predictive performance,
which adapt themselves on a pixel-by-pixel basis to fit the varying local statistics.
Traced back to [1], LS-based adaptation optimized coefficients for prediction under
the piecewise autoregressive (PAR) assumption for image signals. Moreover, edge-
directed prediction (EDP) in [2] figured out the edge-directed property of LS-based
adaptation which inspired the LS optimization exactly in the edge areas [3, 4]. For
further improvement, two-pass prediction schemes [5, 6] enabled mixture distribution
and global image analysis to improve prediction from LS-based adaptation.

Under the assumption of spatial dependencies among neighboring pixels, the pre-
diction support of LS-based adaptation is a fixed-size rectangular causal region cen-
tered at the current pixel. However, it ignores varying 2-D spatial statistics of the
anisotropic image signals, especially in edge and texture regions. Establishing isotrop-
ic Gaussian random field for image signals, [7] analyzed the influence of the pixel scan
order on the support to find the optimal order in prediction. However, the isotropic
formulation is still restrictive. As an alternative, [8] and [9] utilized weighted least
squares (WLS) based on the relative amount of information in the support to adjust
the eigenvalues of covariance matrix. [10] optimized pixel ordering for context tree
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modeling in arithmetic coding of color map images. To adapt supports to the varying
statistics, [11] selected the size of square support according to local image statistic-
s. While [12] suggested an elliptical support and aligned its principal axis with the
direction of local edge. Furthermore, [13] adopted the minimum description length
(MDL) principle to select supports based on their correlations with the current pixel.

Commonly, LS-based adaptation is a linear model over the support with its pa-
rameters optimized based on the training set. However, LS-based linear predictors
can only measure the second order moments, but cannot account for the higher order
statistics [14]. As a result, the performance of predictive coding is hampered, as the
high-dimensional correlations in image signals are not fully exploited, especially in
edge and texture regions.

In this paper, we propose Gaussian process regression (GPR) for prediction in
lossless image coding. In order to fit the non-stationary image statistics, the prediction
support is nonlinearly projected into a high-dimensional feature space using the kernel
functions. Consequently, a linear model is applied in this space instead of directly on
the support. The model parameters for prediction are trained by relating them to the
similarities among the supports for training sets and current pixels. These similarities
are measured in terms of translation and rotation invariance in the feature space.

Actually, LS-based adaptation is a restricted kind of Gaussian process regression
with linear model and free noise in the input space spanned by its support [15].
Therefore, the similarities among the supports for training sets and current pixels
are measured with their inner products in the input space. In the view of similarity,
improved methods for selecting support in LS-based adaptation exclude the redundant
pixels in support for similarity measure, but do not develop optimal measurement
for structures with higher dimension. In contrast, the proposed predictor leverages
Gaussian process to make pixel-by-pixel prediction in a nonlinearly projected feature
space, which exploits high-dimensional correlations in anisotropic image signals.

To validate the proposed GPR-based adaptive predictor, we apply it to lossless
image coding. In the projected feature space, rational quadratic and polynomial dot
product function are proposed to measure similarities in the sense of translation and
rotation invariance, respectively. The parameters of the two functions are estimated
by the automatic relevance determination (ARD) algorithm, which is adaptive to
the varying training set neighboring to the current pixels. Remarkably, the encoding
and decoding can be performed in one-pass coding without any side information, as
the proposed predictor utilizes the causal neighbourhoods as the supports of current
pixels. The proposed predictor outperforms both the typical LS-based predictors and
the two-pass predictive coding schemes, e.g. MRP and TMW.

The rest of the paper is organized as follows. Section 2 describes the Gaussian
process regression based prediction for lossless image coding. In Section 3, kernel
functions are developed for similarity measure in the sense of translation and rotation
invariance in the projected feature space. Experimental results for validation are
reported in Section 4. Section 5 concludes this paper.
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Figure 1: GPR-based predictor of order 12 and the corresponding training window used to
optimize the prediction coefficients.

2 Gaussian Process Regression Based Prediction

In this section, we propose the GPR-based prediction, including its formulation and
the estimation of its parameters. In the view of Gaussian process regression, LS-based
adaptation is found to be one of its special cases with the dot product kernel function.

2.1 Formulation of Gaussian Process Regression

Gaussian process (GP) is a powerful, non-parametric tool for learning regression
functions from the sample data. Key advantages of Gaussian process are modeling
flexibility, capability to provide uncertainty estimates, and ability to learn noise and
smoothness parameters from the training set. Given the current pixel y∗ for predicting
and its support x∗, we assume that the training set S = {xi, yi}Ni=1 is composed of N
couples of an M -tuple support xi = [xi1, xi2, · · · , xiM ]T and a scalar output value yi
drawn from

yi = f (xi) + ε, (1)

where the term ε is white noise with variance σ2
n. As shown in Fig. 1, yi is the

predicted pixels in the training window with a size of 2T (T +1) and xi is its support
that has similar causal neighborhoods as the current pixel. For convenience, both
the vectorial supports and the predicted pixels are collected in the form of X =
[x1,x2, · · · ,xN ] and y = [y1, y2, · · · , yN ]T , respectively. Under the assumption of
Gaussian process, the collected vector y of the predicted pixels follows a zero-mean
multivariate Gaussian distribution.

y ∼ N (
0, K (X,X) + σ2

nI
)
, (2)

where I is the identity matrix, andK (X,X) is the covariance matrix with its elements
determined by Kij = k (xi,xj). The kernel function k (x,x′) is designed to measure
the similarity between two supports x and x′, which is commonly associated with a
diagonal scale matrix W. Here, the term σ2

nI introduces the Gaussian noise derived
from ε in Eq. (1).
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When the observation is noise-free, the prediction of the multivariate Gaussian dis-
tribution is simplified by obtaining the covariance matrix conditioned on the training
set. The current pixel y∗ is predicted conditioned on the support x∗ and the training
set S is obtained by estimating the mean and variance of the multivariate Gaussian
distribution. In detail, the mean μ is estimated by

μ (x∗, X,y) = K (x∗, X)K (X,X)−1 y, (3)

and the variance Σ is

Σ (x∗, X,y) = K (x∗,x∗)−K (x∗, X)K (X,X)−1K (X,x∗) , (4)

where K (x∗, X) measures the similarity between x∗ and X and is Abelian. Conse-
quently, the mean μ is taken as the prediction of the current pixel y∗.

In fact, the kernel functions are commonly characterized by a set of parameters
θ = [W, f ]. They are learned by pursuing the maximized conditional log-likelihood
based on the training set.

θ̂ = argmax
θ
{log p (y|X, θ)} (5)

Eq. (5) can be iteratively implemented by using numerical optimization techniques,
as described in Section 3.3.

2.2 Kernel Function for LS-based Adaptation

This section analyzes the LS-based adaptation in the view of Gaussian process re-
gression, where each pixel is predicted based on its support obtained from its causal
neighborhood in a raster scan order in the sense of Euclidean distance. Taking consid-
eration of the 2-D spatial dependencies in image signals, the training set S is similarly
collected as shown in Fig. 1. Consequently, the model parameters are adaptively es-
timated by locally seeking a minimized squared error over the training set.

ŵ = argmin
w
‖y −XTw‖2 (6)

Expanding the squared error and pursuing zero value of the partial derivative of w,
the least square estimation ŵ is obtained by

ŵ =
(
XXT

)−1
Xy. (7)

Noting the fact that
(
XXT

)
X = X

(
XTX

)
, the prediction of the current pixel y∗

conditioned on its support x∗ and the training set S is rewritten in the linear form.

y∗ = xT
∗ ŵ =

(
xT
∗X

) (
XTX

)−1
y (8)

Obviously, Eq. (8) coincides with the Gaussian process regression with linear function
f (x) = xTw. However, the main drawback is that such linear prediction allows only
a limited flexibility. Owing to the non-stationary local statistics of natural images,
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the relationship between input X and output y cannot be reasonably approximated
with linear assumption. In the view of Gaussian process regression, the covariance
matrix for LS-based adaptation is K (X,X) = XTX, where each element is defined
by the kernel function in Eq. (9).

k (xi,xj) = (xi,xj) = xT
i xj (9)

Therefore, the kernel function of LS-based linear prediction is isotropic and stationary,
which is the dot product of arbitrary two vectors xi and xj with identity scale matrix
W = I. Furthermore, the improvement of support selection is equivalent to utilizing
a compact training set S̄ ⊆ S or adopting anisotropic scale matrix W. The fact
shows that the dot product function for covariance matrix is still maintained without
exploiting high-dimensional correlations.

3 Kernels for Similarity Measure

Instead of dot product function with identity scale matrix in the LS-based adapta-
tion, we proposed to measure the similarities among supports in the high-dimensional
feature space. To maintain the geometry of the input space, similarities are measured
in the sense of invariance under certain global transforms, like translation and rota-
tion. Consequently, the eigenvalues for these transforms are constrained, so that the
covariance matrix before and after transform can be isomorphic.

3.1 Similarity Measure for Translation Invariance

Appending a constant at the end of support x and rearranging them, we can obtain
the translation transform in a matrix form.

Tx =

(
I b
0 1

)
x, (10)

where b is a constant vector that determines the displacement for translation. Con-
sequently, the kernel function k (x,x′) is associated with x−x′ to keep the covariance
matrix translation invariant. From (10), we can obtain

Tx− Tx′ = I (x− x′) = x− x′.

Such that k (Tx, Tx′) = k (x,x′).
The rational quadratic (RQ) function is a typical kernel function invariant to the

translation transform, which is in the form of

k (x,x′) =

(
1 +

(x− x′)T W (x− x′)
2α�2

)−α
. (11)

The RQ function is stationary and invariant to all rigid motions. Therefore, it allows
for inference from the covariance matrix based on all pairs of sampling supports xi

and xj with the same lag vector ‖xi − xj‖. The RQ function can be viewed as
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a scale mixture of the squared exponential (SE) covariance functions with different
characteristic length scales �.

kRQ (r) =

∫
e

r2

2�2 p (�) d�, (12)

where p (�|α, β) is a Gamma distribution with β = �−2 and the shape parameter
α > 0 . Here, the length scale is an important property for the kernel function, which
vanishes when the input is greater than the length scale. Thus, a short length scale
makes SE covariance function vary rapidly to fit the training set, while the longer
one is suitable for slowly-varying signals. Since SE covariance function exp (−r2/2�2)
is with a characteristic length scale �, the RQ function is supposed to weight over all
the scales with respect to the Gamma distribution p (�|α, β). Consequently, it adapts
to varying distances ‖xi − xj‖ between arbitrary two supports xi and xj.

3.2 Similarity Measure for Rotation Invariance

The rotation transform with an angle θ can be represented in the matrix form.

Tx =

(
R 0
0 1

)
x, (13)

where the rotation matrix is the orthogonal matrix, whose eigenvalues are associated
with cos θ ± i sin θ. Consequently, the dot product of two M -tuple supports holds

〈Rx,Rx′〉 = xRTRx′ = x
(
RTR

)
x′ = 〈x,x′〉.

Therefore, the dot product function keeps the rotation transform invariant.
We take the polynomial dot product function k(x,x′) with degree p as example.

k (x,x′) =

(
1 +

M∑
k=1

xkx
′
k

)p

� φp (x) · φp (x
′) (14)

By expanding the polynomial kernel k(x,x′), its Mp components can be merged and
represented by

(
M+p
p

)
kernel bases. Thus, the feature vector φp(x) for k(x,x′) with

degree p is in the form of

(
1,
√
px1, · · · ,√pxM ,

√(
p

2

)
x2
1, · · · ,

√(
p

2

)
x2
M ,

√
2!

(
p

2

)
x1x2, · · · ,

√
2!

(
p

2

)
xM−1xM , · · · , xp

M

)

φp(x) spans the space of polynomials in R
M with degree p. According to Weierstrass

polynomial approximation theorem, there exists φp (x∗) to approximate the current
pixel y∗, as p → ∞. Since φ(x) is constructed by the polynomial bases with degree
not greater than p, the LS-based adaptation is achieved over the first order bases
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(x1, · · · , xM). By tuning p, k(x,x′) can asymptotically approximate y∗ based on the
training data in a flexible and refined way. In the regression of the high-dimensional
feature vectors, the support x is projected into x′ by associating their lengths and
principal angles. Remarkably, it is non-stationary and invariant when the coordinates
are rotated.

3.3 Combined Kernel for Similarity Measure

Since the sum of two kernels is still a kernel [15], various kernel functions can be com-
bined for similarity measure. In the sense of both translation and rotation invariance,
the proposed combined kernel function over arbitrary supports xi and xj is

k (xi,xj) = γ1

(
1 +

(x− x′)T W1 (x− x′)
2α�2

)−α
+ γ2

(
1 + xT

i W2xj

)p
+ γ3. (15)

Consequently, the parameters for Gaussian process regression are θ = {γ1, γ2, γ3, α, �,
W1,W2, p}. Thus, they can be iteratively tuned and optimized over the training set
based on their gradients dk(xi,xj)/dθ. Due to space limitation, we do not provide
the detailed formulation of these gradients.

Algorithm 1 Gaussian prediction regression based prediction with automatic rele-
vance determination (ARD)

Input: training set S = {xi, yi}Ni=1, kernel function k, current support x∗
Output: prediction of current pixel y∗
Initialize parameter θ
Cholesky decomposition L of covariance matrix K(X,X)
if L is invertible then
repeat
Solve α from equation LLTα = y
Calculating log-likelihood log p(y|X)
Updating θ with conjugate gradient descent
Calculating K(X,X) with updated θ

until Iterate n times
Solve α from equation LLTα = y
y∗ = k(x∗,x)α

else
y∗ is the mean of predicted pixels y

end if
Return y∗

Algorithm 1 shows the GPR-based prediction with automatic relevance determi-
nation (ARD). For each pixel to be predicted, Cholesky decomposition is incorporat-
ed for its covariance matrix K(X,X) based on the training set S. Subsequently, the
maximum log-likelihood estimation for conditional probability p(y|X) over S is solved
and the parameter θ is updated with conjugate gradient descent. The solving and
updating process is repeated until obtaining the optimal parameters for prediction.
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Figure 2: Test image set. From left-top to right-bottom: “Airplane”, “Baboon”, “Lena”,
“Peppers”, “Balloon”, “Barb”, “Barb2”, “Goldhill”, “Couple”, and “Cameraman”.

Table 1: Performance comparison with existing lossless image coders in bits per pixel (bpp).

Image(size) Proposed MRP BMF TMW Glicbawls CALIC JPEG-LS JPEG 2000
Airplane(512×512) 3.451 3.591 3.602 3.601 3.668 3.743 3.817 4.013
Baboon(512×512) 5.641 5.663 5.714 5.738 5.666 5.875 6.037 6.107
Balloon(720×576) 2.544 2.579 2.649 2.649 2.640 2.825 2.904 3.031
Barb(720×576) 3.821 3.815 3.959 4.084 3.916 4.413 4.691 4.600
Barb2(720×576) 4.184 4.216 4.276 4.378 4.318 4.530 4.686 4.789
Camera(256×256) 3.964 3.949 4.060 4.098 4.208 4.190 4.314 4.535
Couple(256×256) 3.339 3.388 3.448 3.446 3.543 3.609 3.699 3.915
Goldhill(720×576) 4.178 4.207 4.238 4.266 4.276 4.394 4.477 4.603
Lena(512×512) 3.880 3.889 3.929 3.908 3.901 4.102 4.238 4.303
Peppers(512×512) 4.170 4.199 4.241 4.251 4.246 4.421 4.513 4.629
Average 3.917 3.950 4.012 4.042 4.038 4.210 4.338 4.453

4 Experimental Results

We report the lossless code lengths of the natural images achieved by the proposed
GPR-based predictor. For lossless coding, predictions form the proposed predictor
are subtracted from the actual pixel values, and the prediction errors are transmitted
to the range coder. Both the encoder and decoder operate on a PC with a 3.2GHz
Intel Core i7 processor and are complied with VC++ 9.0 with same configuration
(“DEBUG” mode). In the experiments, the order M of predictor is 12. In training,
the window size T is set to 5 and there are 60 samples in the training set S for
predicting each pixel. For generality of the validation, the selected test images shown
in Figure 2 span a wide rage in bit rates.

For validation, we compare the proposed predictor with the existing benchmarks
in lossless image coding, as shown in Table 1. Among which, BMF [16] is a special
compressor designed for generic images and CG graphs with shapes. CALIC [17]
adopted the gradient adjusted predictor (GAP) for context-based adaptive lossless
image coding. The proposed predictor outperforms MRP, the best predictor reported,
in 8 of 10 test images. In comparison to MRP, it improves the coding performance
by an average margin of 0.033 bpp and the coding gain can be up to 3%. In a note
of practical interest, there is approximately 10% and 14% enhancement in bit rates
for the proposed predictor, when compared with JPEG-LS standard and the JPEG
2000 lossless mode on average. The experimental results show that the proposed
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(a) Proposed (b) MRP (c) EDP

Figure 3: Prediction error maps for test image “Lena” obtained by the proposed predictor,
MRP, and EDP. Their first order entropies from left to right are 3.944, 4.025, and 4.237
bits per pixel (bpp), respectively.

(a) Proposed (b) MRP (c) EDP

Figure 4: The zoomed detail of “hair” region in “Lena” obtained by the proposed predictor,
MRP, and EDP, respectively.

GPR-based predictor improves the predictive coding performance of natural images.
Figure 3 shows the prediction error maps for “Lena”, which are obtained by the

proposed predictor, MRP, and EDP, respectively. Figure 3(c) shows that the predic-
tion error map by EDP is most evident. While the proposed predictor is more illegible
in comparison to MRP, especially in the “hair” region. The zoomed details are shown
in Figure 4. It implies that the proposed predictor can improve the predictive results
around the texture regions, which are characterized by higher order statistics.

5 Conclusion

Recognizing that LS-based adaptation is a restricted kind of Gaussian process re-
gression with linear model and free noise in the input space of support, we propose
Gaussian process regression based predictor for lossless image coding. GPR projects
the prediction support into a high-dimensional feature space with the kernel functions
in a nonlinear way. Linear prediction is made in the projected feature space, rather
than directly conditioned on the support. Its parameters are optimized by considering
the similarities among supports for the training set and the current pixel, which is
measured with a combined kernel function regarding translation and rotation invari-
ance in the feature space. The proposed GPR-based predictor can fit non-stationary
statistics in image signals, as it outperforms the best predictor MRP in most cases.
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