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Abstract- With the ever increasing concern of vision-based 
video analysis and coding over resource-limited systems, this 
paper proposes a novel video coding scheme that exploits low­
quality video data and formulates as an inverse learning based 
video reconstruction from online training by diverse stochastic 
processes. Given a sparsely sampled incomplete data, the intrinsic 
nonlocal and spatio-temporal geometric regularity related to 
online training examples in the key frames are considered as a 
state-dependent uncertainty estimation problem using Gaussian 
Process (GP) regression. Unlike non-parametric or exemplar­
based sampling methods, we consider non-parametric system 
models for sequential state estimation by using the Unscented 
Kalman Filter (UKF) as the state estimator. It inherits the 
unscented transform for linearization to the transition function 
and the observation function. Once an approximate motion and 
observation model is available, it can naturally be incorporated 
to make a further performance improvement. 

I. INTRODUCTION 

There are ever increasing number of resource-limited sys­
tems with a demand of vision-based video analysis and cod­
ing, e.g. mobile or wearable cameras. Video compression is 
endowed with a challenging task to exhibit a high-performance 
capability on a given low-quality video data. The mainstream 
video coding schemes, e.g. H.264/AVC, only focus on explor­
ing statistical redundancy among pixels through intra and inter 
prediction. In 2005, High-performance Video Coding (HVC) 
was initialized to suit regions of different properties. In 2010, 
High Efficiency Video Coding (HEVC) joint project were ex­
pected to attain bit rate reduction of 50% at the same subjective 
image quality comparing to H.264/AVC. Hopefully, it provides 
an opportunity to revisit most compression techniques in a new 
paradigm allowing for pixel-wise difference while achieving 
acceptable subjective visual quality. 

The vision based technologies have ever been envisaged 
to hallucinate missing image contents with good perceptual 
quality. Parallel with the vision based progress [I], image­
based compression framework has been designed by either 
removing some smooth and flat blocks [2] or reducing the 
entropy of source by clustering the homogeneous area that 
contains the epitome content of all related regions [3]. Ob­
viously, it is so difficult to reflect stochastic pixel intensity 
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models (e.g., scaling, rotation, and local motion) and attributes 
(e.g. combination of different texture) without sufficient prior 
knowledge. Those have not yet been suitable for video com­
pression because there often exists temporal inconsistence 
derived from independent reconstruction of each frame. The 
coding burden from the assistant information is also a critical 
issue for generic video coding. Another important effort is 
focusing on a correlation between a sparsely sampled low­
resolution and high frequency contents [4]. To guarantee the 
sufficient prior and overcome the inaccurate estimated motion, 
a learned co-occurrence prior to predict the correspondence 
between low-resolution and high-resolution image patches has 
been investigated using a training set [5]. In order to achieve 
more patch patterns with a smaller database, manifold learning 
has been assumed similarity between the two manifolds in 
the high-resolution and the low-resolution patch spaces [6]. 
Such exemplar-based detail reconstruction would assume a 
linear relationship among high-resolution signals and can be 
precisely recovered from their low-dimensional projections. 
When the dataset is corrupted by noise or non-rigid transform, 
the restoration will always suffer from distortion. 

In this paper, we proposes a novel video coding scheme that 
exploits low-quality video data and formulates as an inverse 
learning based video reconstruction from online training by 
diverse stochastic processes. It acts as a super-resolution video 
completion with non-parametric nonlinear system models for 
sequential state estimation where the state estimator is an 
Unscented Kalman Filter (UKF). It inherits the unscented 
transform for linearization to the transition function and the 
observation function. A subset of frames regularly spaced 
in the video sequence abstracts the co-occurrence prior in a 
sparser way, and the remaining key frames are treated as an 
online training set. Considering each sample of a frame as 
a system state, its estimated value is supposed to depend on 
both the manner of pre-filtering (the observation model) and 
the state transition (the process model). The nonlinear process 
and observation models in the reconstruction inference could 
be learned from the online training examples using Gaussian 
Process (GP) regression in a non-parametric manner. The 
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Fig. 1. The diagram of the proposed video coding framework where the red lines indicate the abstracted sample frames. 

proposed approach relies on the state-dependent uncertainty 
estimates, which take into account both noise and regression 
uncertainty derived from the limited training examples of 
key frames. It is capable of estimating the state of arbitrary 
nonlinear systems on non-stationary video statistics. Once an 
approximate motion and observation model is available, it 
can naturally be incorporated to make a further performance 
improvement compared to existing texture synthesis methods. 

II. SUPER-RESOLUTION VIDEO COM PLETION WIT H  

NONLINEAR SY STEM MODELS 

The proposed coding framework is depicted in Fig. I, where 
a subset of video frames are pre-filtered to achieve a smoothed 
version as {Xn2} in a sparse representation while remaining 
key frames are denoted as {Yn1}. Hereinafter, X denotes 
image samples with smooth filtering (observations) and Y 
for image samples containing detail information (states). We 
adopt a prior filter with deterministic weights such that the 
decoder could reproduce the filter with an accurate observation 
model. The two types of frames will be arranged into groups 
of pictures (GOP) and coded independently. For the pre­
filtering sub-sequences, the higher compression efficiency can 
be achieved from both intra and inter predictions. At the 
decoder side, the missing detail for {Xn2}' i.e. {Xn2} is 
predicted based on an inference from {Yn1}. 

A. Problem Formulation 

We consider a generic stochastic discrete filtering problem 
in a dynamic system as: 

(I) 

(2) 

where Y n denotes the state vector at time n, which shall rep­
resent the video frames with complete information. Xn is an 
observation vector to represent the incomplete data generated 
by a function G. E and 8 are random noise with probability 
p(E) '-" N(O, Qd and p(8) '-" N(O, Q2)' resepctively. 

Eq. 1 characterizes the state transition probability prior 
p(Y n I Y n-l), which reflects the temporal correlation between 
frames. Eq. 2 describes the likelihood of the prediction com­
paring with the observation p(XnlY n) , which measures the 
spatial accuracy of the restored content. The objective of the 
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Fig. 2. Frame reconstruction through state estimation. 
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Fig. 3. A summary of the unscented Kalman Filter algorithm. 

filtering is to estimate the optimal state value, i.e. P(YnIXn)' 
where Xn = {Xo, Xl,'" Xn}, as Fig. 2. 

The state transition and measurement process F is consid­
ered as nonlinear while the observation model G is regularized 
as a prior. To solve such a non-linear problem, we apply UKF 

which uses a deterministic sampling (the unscented transform) 
to pick a set of sample points (sigma points). The sigma 
points will be propagated through the non-linear function for 
the estimation of mean and covariance. The overall process is 
summarized by Fig. 2. Given a proper model in the form of 
(1) and (2), we will get stable prediction after iterations. 

B. UKF with Gaussian Process Prediction Model 

The motion model F is a known non-linear function, and 
such a parametric model is usually unavailable. According 
to UKF from Fig. 2, we are interested in what the best 
forward projection Y n = F(Y n-l) is, rather than a parametric 
estimation of F, given a state Y n-l. 
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Here we introduce Gaussian Process (GP) for learning 
regression from sampled data [7]. It defines a distribution over 
functions, which is able to predict a projection from the noised 
training data as well as estimate the uncertainty. 

Consider a function bi = !((ai)) + E with training data 
D = {(al, bd, (a2, b2),··· , (an' bn)}, a GP model is able to 
provide prediction on an unknown points a * through defining 
a distribution of b* with mean: 

and variance: 

where k is the kernel function: 

1 k(a, a') = 0"] exp(( -2(a - a')(a - a'f)) (5) 

and K(A, A) is the kernel matrix with elements defined as 
Ki,j = K(ai,aj). 

Our objective is to project the current state forward, i.e. to 
estimate the pixel value in the forward frame based on the 
backward motion field. The estimation error is supposed to be 
involved and corrected within a Gaussian system model. Since 
GP only outputs a scalar value, it cannot be directly applied to 
predict state vector with a high dimension in a video sequence. 
Here we consider to predict the motion vector instead of the 
state vector so that only two scalars will be estimated, i.e. 

(6) 

where M is a defined interpolation operator and Vi-l is the 
motion vector obtained through GP: 

Vi-l = GP(:(Yi-l,Dp =< Yn,Vn » .  (7) 

The training set will be acquired using the preceding frames. 
In the block by block reconstruction, the motion between 
frames is consistent within a small region and the motion 
vector is correlated with the current state vector. 

As for the observation model, it is correlated with the pre­
filter at the encoder side. A Gaussian smooth filter is used 
to maintain an accurate observation model. Since it is linear, 
the observation can be expressed in the matrix form, i.e. 
[X]m2xl = [G]m2xn2 [Y]n2xl, where x is the observation 
vector and Y is the state vector that contains necessary 
information to generate x; n = m + filteLsize - 1. 

Once we have all the parameters and models required, we 
shall make reconstruction in the following manner. Given a 
frame we are to restore XR E {Xn2} (the current observa­
tion, i.e. R = n + 1 ), we will select a set of frames as 
reference, which usually consist of its n neighboring frames 
Yn = {Yl, Y2,'" , Yn} C {Ynl} and its corresponding 
observations Xn = {Xl, X2, 00. , Xn} C {Xnl} . For one 
size m x m observation block denoted as Xk ( i denotes the 
coordinate of the interested block center), we apply motion 
estimation using Xk from Xn to generate a sequence of 
observations X� = {X�k}, and the corresponding known 
n x n states Y� = {Ykk}( k = 1,2, ... , n) , together with the 
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Fig. 4. The bit-rate saving percentages versus H.264/AVC. 

motion vector used for learning the motion model D} R =< 

{Ykk}, {Vd >. 
' 

We shall start UKF with initial state Yo and variance 

�o = E [(Y�k - Yk,,-:-n(Y�k - y�k-=-{f](k = 1,2,00' , n) . 
During each iteration, a set of sigma points will be generated 
based on the variance. GP will be applied to predict the current 
state forward projection from summing the projection of sigma 
points in the form as shown by Fig. 3: 

yL
i
l = M(YL

i
�l,GP(:(YL

i
�l,D},R)) (8) 

while the observations are generated from the filter matrix: 

(9) 

After iterations that the system has become stable, we shall 
input the current observation X�+l' with which we shall get 
an optimal estimation of the desired state vector (the image 
block containing missing detail) from previous information, 
i.e. the maximum posteriori possibility p(Y-�+lIX�+l' Y�) . 

For each m x m block, we will reconstruct a state vector 
with size sn x sn. Since sn > m, there will be overlap between 
the state vectors, which is equal to one half of the filter size. A 
min-cut algorithm is applied to the overlapped area to achieve 
an optimal seam and to avoid block artifact. 

III. EXPERIMENTAL RESULTS 

To illustrate the efficiency of the proposed video completion 
algorithm compared to existing vision-based methods, we per­
form the experiments on a variety of test video sequences with 
QCIF 176 x 144 resolution in YUV 4:2:0 format. Without loss 
of generality, the even frames are selected to be pre-filtered 
with a Gaussian smooth filter (with size 5 and (J" = 1) and the 
odd frames as key frames. For comparison, we use the same 
coding configuration for the involved H.264/AVC coding: two 
B frames, CABAC entropy coding with a frame rate of 25 
fps, and a GOP size of 9 frames. The decoded sequence with 
incomplete data is further reconstructed using the proposed 
algorithm. To restore one frame with low-quality data, seven 
frames are used as reference to create the training set. Fig. 
4 summarizes the result on coding gain versus quantization 
parameter (QP). Within common QP interval [16, 32], up to 
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(a) Original frames 

(b) Restoration from abstracted frames 

(c) Absolute difference map 
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Fig. 5. The illustration of the super-resolution based completion quality as well as the difference map evaluated by JND. 
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Fig. 6. The SSIM-based R-D performance compared to H.264/AVC. 

20% coding gain can be achieved beyond the H.264/AVC with 

similar visual quality. To show the similar visual quality, Fig. 

5 shows the reconstructed quality and evaluates just-noticeable 

distortion (JND) quality. Also, the objective metrics including 

PSNR and Structural Similarity (SSIM) are provided in Table 

I (the left two columns). The SSIM index reveals the visual 

quality of the proposed reconstructed video is hardly distin­

guishable from the H.264/AVC coded video. Comparing with 

the space-time completion [8], the proposed completion shows 

distinguishable improvement without annoying artifacts. The 

SSIM-based R-D curves on test sequences "container" and 

"Akiyo" are shown in Fig. 6, which outperform the traditional 

H.264 scheme. 

I V. CONCLUSION 

To address the demand over resource-limited communica­

tion, this paper proposes a super-resolution video completion 

as a non-parametric sequential estimation of nonlinear system 

state (the restored detail) based on low-quality observation 

and its measurement (the prior). We consider a more general 

situation where the motion model is non-linear and expressed 

through Gaussian process regression in a non-parametric man­

ner. Inheriting the unscented transform for linearization to the 

TABLE I 

THE OBJECTIVE QUALITY FOR THE COMPLETED VIDEO. 

The proposed Spatio-temporal completion 
PSNR(dB) SSIM PSNR(dB) SSIM 

Coastguard 32.56 0.9426 3 1.35 0.8483 
Container 35.23 0.9902 35.55 0.9422 

Akiyo 4 1.5 1 0.9949 37.47 0.9860 
Foreman 3 1.94 0.9496 Not Applicable 

transition function and the observation function, the unscented 

Kalman filter uniformly solves the process and observation 

equations for the unknown state. Under ill-posed inverse con­

text, Gaussian process regression could unite a sophisticated 

and consistent view with computational tractability given a 

finite number of observation pairs. 
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