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Abstract

The contourlet transform provides a flexible directional image decompo-
sition by employing Laplacian pyramid and uniform directional filter banks.
Although it is able to efficiently capture the 2-D piecewise smooth functions
with line or curve discontinuities, its major drawbacks of 4/3 redundancy and
non-ideal filter banks in Laplacian pyramid are the main obstacles for high per-
formance image/video coding. In this paper, we propose a video coding scheme
based on the sharp frequency localized contourlet transform (contourlet/SFL)
under the sparse representation framework, in which the iterative threshold-
ing algorithm is applied to get an [; norm sparser version of the transform
coefficients. In the meantime, considering the fact that strong inter-band and
inter-scale dependencies exist in the contourlet /SFL coefficients, a directional
embedded image coding system is proposed to propagate the significance sta-
tus by using the neighbor, cousin and parent significant coefficients as seeds.
Experimental results show that the coding performance and visual quality of
the sparse contourlet /SFL based video compression scheme are superior to the
wavelet-based one, especially on those sequences full of directional structures
at low bit rates.

1 Introduction

The traditional video compression frameworks such as H.264/MPEG-4 AVC [1] are
based on a hybrid temporal-spatial representation of video sequences. A typical
video compression framework consists of several stages sequentially, e.g., after one
block of frames are obtained, a motion estimation/compensation module is applied
to decouple them into temporal subbands, then a spatial transformation is carried
on each temporal subband to decompose the pixels into coefficients. The sparseness
of coefficients in the transform domain determines its effectiveness in the following
entropy coding stage. It is therefore crucial in the low bit-rate video coding since
much of the acquired information would be discarded after encoding.

The discrete wavelet transform (DWT) has been successfully employed as a core
technique in some video coding frameworks. 3-D wavelet-based scalable video codec
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introduced by Microsoft [2] serves as a good example because of the inherent charac-
teristics of multiscale representation in the 2-D spatial wavelet decomposition along
with the temporal scalability supported by 1-D temporal wavelet transform. Basically,
a separable 2-D wavelet filter commonly used in image compression applications is ex-
tended from two 1-D filters in the vertical and horizontal direction via tensor product.
Therefore 2-D wavelet basis can only capture the scan-lines or the 1-D discontinuity
on edge points, but cannot efficiently model the smoothness along the curves such as
contours and directional textures which are abundant in natural images.

To solve the problem of lacking directionality of wavelet basis, a category of trans-
forms which employ 2-D nonseparable directional filter banks are proposed. Con-
tourlet [3] is one of the most typical example among these transforms for it can
provide multiscale and directional image representations by employing the Lapla-
cian pyramid and uniform nonseparable directional filter banks (UDFB). The best
M-term approximation error decay rate for contourlets is O((log M)3*M~?), which
is much better than the rate of O(M 1) for wavelets. Conceptually, the Laplacian
pyramid iteratively split L?(R?) into self-nested and complete subspaces while the
UDFBs are applied to each highpass subspace to combine all point discontinuities
on the same direction into one coefficient. Thus, any modification to the choice of
pyramid or directional filter banks will derive a unique transform with its own char-
acteristic. For example, by substituting critical subsampling Mallat pyramid for the
Laplacian pyramid which has a redundancy factor of 4/3, a nonredundant version
of contourlet transform called wavelet-based contourlet (WBCT) is introduced [5,6].
However, due to the frequency scrambling existing in all the levels of highpass wavelet
subbands, WBCT suffers from severe pseudo-Gibbs phenomena artifacts when some
coefficients become zero during NLA and coding. Furthermore, taking account of the
fact that the stopband frequency of the Laplacian pyramid filter is over [—7 /2, m/2]?
which also results in fuzzy artifacts during image coding in the original contourlet
transform [7], sharp frequency localized contourlet (contourlet/SFL) [8] is another
example which significantly reduces the frequency scrambling by employing a new
multiscale decomposition which can flexibly configure the width of transition band
of the lowpass filters. Contourlet/SFL provides a considerable potential to further
improve the coding performance on the trade-off between transform redundancy and
frequency scrambling.

The contourlet/SFL basis form an overcomplete dictionary which seems contra-
dictory to the goal of image/video compression, thus it is a crucial task to seek a
good approximation which uses the minimal number of significant coefficients before
compression. For a given signal, we cannot have a well-posed representation based
upon overcomplete dictionaries but nevertheless such a redundancy provides freedom
to find the sparsified solution which is friendly to data compression. In recent years,
a series of iterative, greedy search algorithms such as matching pursuit (MP) [9],
orthogonal MP [10] and iterative thresholding (IT) [11, 12] were proposed to seek
sparse solutions to underdetermined linear systems. Since the contourlet transform
is linear, and therefore the coefficients can be further sparsified to get a better coding
performance.

In this paper, we propose a low bit rate video compression framework which is
based on the sparsified contourlet/SFL transform. It consists of four main stages: in
the temporal decomposition stage, the temporal dependencies of source frames have
been eliminated along the motion trajectories by lifting-based motion compensated
temporal filtering (MCTF); in the spatial decomposition stage, each temporal sub-
band is further decomposed into multiscale subbands via a wavelet-contourlet/SFL
hybrid transform. The transform coefficients are then sparsified by I'T in accordance
with the tolerant error bound. Finally, the sparsified spatio-temporal subband co-
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efficients are coded by a directional embedded image coding system. Experimental
results of the sparse representation based video codec present a higher performance
than the wavelet-based scalable video codec [2] with a comparable computational
complexity.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the contourlet/SFL transform. How to sparsify the redundant directional transform
via IT is presented in Section 3. An embedded coding method which can exploit
the inter-band and inter-scale dependency of the directional subbands is introduced
in Section 4. The application as a scalable video codec as well as the experimental
results are shown in Section 5, followed by the conclusion in Section 6.

2 Contourlet/SFL Transform

A generic operation flow within contourlet transform family can be illustrated by Fig.
1(a). A critically sampling Laplacian pyramid iteratively decomposes 2-D frequency
spectrum into multiscale bandpass and lowpass subbands, followed by UDFBs applied
on each bandpass subband. Finally the image will be decomposed into wedge-shaped
divisions as shown in 1(b).

m e
D @ Multiscale

U decomposition
Multiscale D Directional
decomposition subbands
D Directional
subbands (b) Frequency Divi-

sion
(a) Contourlet Transform Operation Flow

Figure 1: The contourlet operation flow and one possible resulting frequency division

In practice, the potential performance of the contourlet transform may be affected
by the non-ideal filters in the multiscale decomposition stage. The prevalent 2-D
lowpass filters used in the Laplacian pyramid are separable and 9/7 biorthogonal
filters with their passband and transition band not restricted within [—m/2, 7/2]?,
which fail to satisfy the Nyquist criteria with respect to critical sampling. Hence
frequency scrambling appears after each bandpass is filtered by UDFBs and it will
degrade the coding performance.

As a solution to overcome the scrambling, Lu and Do introduce the contourlet /SFL
transform [8] which designs a new multiscale pyramid with zero response out of
[—7/2,7/2]?. Raised-cosine filters are employed in the new multiscale pyramid for
the first level and all other levels by providing extra free parameters which can flex-
ibly configure the width of transition band of the low-pass filters to cancel out the
scrambling components. Suppose the separable 2-D lowpass filters Ll@D) (w) used in
the level i can be written as LEzD) (w) = Lz(-lD) (wl)Lng) (wq), while each Lz(-lD) (w) is a

1-D filter with passband frequency w,; and stopband frequency w; ;, defined as
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1 for |w| <wp;
L) (W) = { L+ Lcos % for w,; < |w| <ws; (1)
0 for ws;, <|w| <7

where the passband frequency w,; and the stopband frequency ws; are set to 47 /21
and 107 /21, respectively [8]. Since the output signal of the lowpass filters are always
downsampled by (2, 2), the resulting redundancy ratio of the entire transform keeps
the same as 4/3 as the original one.

r1(n) To(n)
=L§2D)(w)4> Yo(n) 4>L2(2D) (w)
z(n) 1Ly (n)
- H* (w) >y (n) 20 (1) =

Figure 2: Type-II 2-channel filter banks

As shown in Fig. 2, each level of pyramid should fulfill the requirement of perfect
reconstruction (PR) to allow the entire multiscale pyramid achieve PR property.
According to the theory of general two-dimensional multirate filter banks, we have

1
Xo(w) =Y (Dlw)= ——— X, (w— 27Dy Tk 2
2( ) 1( 2 (U) |det(D2)‘k€A/(ZD T) 1((.() T2 ) ()

where Dy = (g g) is the critical sampling matrix and k € A (Dy") is the coset

vectors as ko = [0,0]7, ky = [0,7]T, ko = [r,0]7 and k3 = [7,n]T. Since X;(w) =
X(w)LPP) (w), we have

3

Xo(w) = i > X(w— 27Dy k) L (w — 27Dy ") (3)
=0
Obviously,
V1ous Y. B (QD) (QD)
X (W) = Xo(w)L;™ 7 (w) + Yi(w) H; 7 (w) (4)

put Eq. 3 and Y (w) = X(w)Hi(QD) (w) into 4, we have

3 (5)

[+

X(w — 27D ki) L (w — 27Dy~ ki) L) (w)

1

+

-

()

Assuming all the spectrum aliasing of the lowpass filters have been cancelled out,
in order to keep the PR property, ie., X,(w) = X(w), the relationship between

HP)(w) and L) (w) should be
2

+ Z LE2D) (w)

Il
—_

(6)

’H.(QD)(Q)))Q 1

96



Fig. 3 shows the difference of the frequency and spatial basis images between the
original contourlet transform and the contourlet/SFL transform. For the contourlet
basis images, Fig. 3(a) indicates an obvious impact of the scrambling on the frequency
domain and therefore the basis does not have a good spatial regularity as shown in
Fig. 3(b). For the contourlet/SFL basis images, the scrambling problem is greatly
suppressed in Fig. 3(c) and the spatial regularity shown in Fig. 3(d) is much better.

(a) (b) (d)

Figure 3: Comparison of basis images. From left to right: Contourlet frequency
domain basis, Contourlet spatial domain basis, Contourlet/SFL frequency domain
basis, Contourlet /SFL spatial domain basis

3 An Iterative Thresholding Approach

Redundancy of the contourlet/SFL transform would be a major impediment to the
coding efficiency, so that it is crucial to sparsify the transform coefficients as much as
possible. The contourlet/SFL transform provides a multiresolution directional tight
frame with frame bounds equal to 1 if both the multiscale pyramid and UDFBs use
orthogonal filters [3,4]. In this case, the inverse transform would be the dual frame
operator to achieve the linear reconstruction. Define the input signal by y € R”, the
contourlet /SFL coefficients by x € R™, and the redundant system can be represented
as x = y and ¥y = x, where ¥ € R™™(n < m) is the synthesis operator
and T = UT(PWT)~! is the analysis operator which is the pseudo-inverse of the
W. For the inverse transform ¥x = y, infinite number of solutions x exist to this
underdetermined system.

A straightforward model to find the sparsified x is to minimize the number of
its significant coefficients, i.e., min ||x||, s.t. ¥x = y. However, [13] proves such a
combinational search problem is NP-hard, and reduces it into a convex optimization
problem by relaxing the [y norm into /; norm as follows:

min x]], s.t. [Ex - yll, < e (7)

The iterative thresholding (IT) algorithm, is firstly developed for signal denoising
[14] by shrinking the small coefficients without distorting the signals of interest too
much. IT attracts people for its computational-friendly to the large-scale problems
such as image/video processing. A generic IT algorithm can be described as follows
[13]:

In the algorithm, x* = Shrink(x; \) can be determined by either hard thresholding
(set all but the largest A elements of |x| to 0) or soft thresholding (max(|x| — A, 0) -
ﬁ) The shrinkage step diminishes those small coefficients into zero, and makes the
coefficients more sparse, also introduces some distortion. Define space S = {x =
Wiy} S is the orthogonal complementary space of S, and P = WIW is the projector
onto S while PL = I — ¥W is the projector onto S* since P2 = P and P1* = P,
In each iteration k, the intermediate result x* = X* + €*, where X* achieves perfect

97



Problem: Find x that solves: min A|[x]|, + 3[ly — \leﬂg

begin: Initialize & = 0, solution x* = 0
repeat
Back Projection: Compute e* = ¥f(y — Wx*)
Line Search: Find yy, which minimizes the function ||x* + ue®||; by
gradient descent algorithm
Shrinkage: x**1 = Shrink(x* + yue*; \) with threshold X
Increment k£ by 1
until [xF — x5 < ¢
Algorithm 1: Iterative Thresholding Algorithm

reconstruction and €* is the noise caused by shrinkage. According to the Algorithm
1, we have
§k+1 — Xk + u‘I’T(y _ \I’Xk)
=XV 4 4+ Pt (UxF - UxF)
=X+ (I — )" + (1 — p)TTTE

:§k+PJ‘€k+(1—M)PEk (8)
k

=R+ ) Plé+ (1 - p)Pe
1=0

Through the back projection process, the initial result of X" is sparsified by intro-
ducing orthogonal components to S with each iteration. The normalized scalar p is
used to control the convergence speed. With 1 = 1, none of the non-zero coefficients
in S will go back to the reconstructed coefficients in the next iteration, therefore
the shrinkage process reduces the number of non-zero coefficients. When p > 1, the
convergence speed of reconstructed image energy is much faster but at the price of in-
troducing more components in S. The transform coefficients achieve sparseness until

Xk ~ inl.

4 Embedded Directional Subband Coding

The image is decomposed into two sorts of subbands, the low frequency subbands
and the high frequency subbands after the contourlet/SFL transform. The former
ones carry the approximations of one image which contain most of its energy, while
the latter ones carry the details of one image which play a vital role in reconstruction
quality. Unlike the wavelet transform which has weak correlation among the cousin
and parent subbands, subbands of the contourlet /SFL transform exhibit much higher
inter-band and inter-scale dependencies [15]. Based on the measured statistics re-
search, contourlet coefficients tend to be clustered in spatial and frequency domains,
so it would be more probable to find a significant coefficient where it has significant
neighbors.

Traditional wavelet-based embedded entropy coding algorithms such as EBCOT
[16] used in the JPEG2000 and its 3-D counterpart 3D-ESCOT [17] used in video cod-
ing only take intra-band dependencies into account. They mainly consist of three cod-
ing passes: significant propagation (SP) pass, magnitude refinement (MR) pass and
cleanup (normalization) pass. To exploit the intra-band dependency in the wavelet
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subbands, the SP pass is established based on the observation that the significant
coefficients always tend to be clustered in the high frequency subbands, and the
previously detected significant coefficients can be regarded as seeds to search new
significant ones.

Here we propose a three-dimensional embedded directional subband coding with
optimized truncation (3D-EDSCOT) which can further exploit the inter-band and
inter-scale dependencies. Unlike the regular 3D-ESCOT which only focuses on the
context modeling of the significant neighborhood, 3D-EDSCOT utilizes the condi-
tional probability relationship of one coefficient with its cousin and parent by intro-
ducing two more coding passes: cross-scale prediction (CSP) pass and cross-neighbor
prediction (CNP) pass. The new coding method retains random access property. We
summarize the coding procedure in Algorithm 2 which consists of five consecutive
passes in each bit-plane.

e Initialization: Divide the contourlet subbands into independent N x N
blocks, find the coefficient with the highest non-zero bitplane M and set
current processing bitplane n <— M.

e Significance Propagation (SP) Pass: If n == M, go to MR Pass.

For those coefficients that are neither significant nor scanned, check its 3-by-3
horizontal, vertical and temporal neighbors. If at least one significant neighbor
exists, we use ZC primitive to code the bits, if any of them become significant,
the SC primitive to encode their signs.

e Cross-scale Prediction (CSP) Pass: If current subband is a wavelet
subband, go to MR Pass.

For those coefficients that are neither significant nor scanned, check its parent
coefficient within a 5-by-5 cross shaped horizontal and vertical neighbors.
Similar to SP pass, if at least one of them has already been significant, encode
the newly scanned bits by ZC primitive, if any of them become significant,
encode the signs by SC primitive.

e Cross-neighbor Prediction (CNP) Pass: If current subband is a wavelet
subband, go to MR Pass.

For those coefficients that are neither significant nor scanned, check its left and
right cousin coefficient within 3-by-3 horizontal, vertical neighbors. Encode the
candidate bits with preferred cousins and if the newly scanned coefficients
become significant, encode their signs.

e Magnitude Refinement (MR) Pass: Use MR primitive to encode the
nth bit of the coefficients that has been detected as significant in previous
bit-planes.

e Normalization Pass: Encode all the remaining coefficients which are
neither significant nor scanned by ZC or SC primitives.

e Process a New Bit-plane: Reset scanning record, set n <—n — 1 if n > 0,
and go to SP Pass.

Algorithm 2: Three-dimensional Embedded Directional Subband Coding with
Optimized Truncation (3D-EDSCOT)

5 Experimental Results

5.1 Experiment Setup

The wavelet-based scalable video coding (WSVC) framework VidWav [2] is used as
the reference software. It consists of three main process stages: the temporal de-
pendencies of source frames have been eliminated along the motion trajectories by
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lifting-based motion compensated temporal filtering (MCTF), and then each tem-
poral subband frame is further decomposed into wavelet subbands. Consequently
the coefficients in the spatio-temporal subbands are coded by 3D-ESCOT. In our
experiment, the latter two are replaced by the sparse contourlet /SFL transform and
3D-EDSCOT, as shown in Fig. 4. More exactly, the video frames in one GOP are
temporally decomposed into four temporal subbands, and each temporal subband is
further spatially decomposed by the sparse hybrid wavelet and contourlet/SFL trans-
form into four scales for CIF test sequence (Walk and Foreman). The aliasing-free
multiscale pyramid decomposes the image into three scales, and then UDFBs with
ladder structures [18] are used at the two highest scales. For the two lowest scales,
9/7 DWT is employed because it is reported that UDFBs do not perform as well as
DWT in the low frequency subbands [7]. We use the iterative shrinkage algorithm
based on hard thresholding, the sparseness parameter A is optimized in terms of video
frames and the coding bit-rate operating points by experiments. The predetermined
threshold in the stopping criterion is € = 0.01.

Threshold Transform T ¢ Hard
Parameter ansto [ansionm Thresholding

N Multiscale and Directional Sparse Representation with IHT Approach
Iterative i
[ Contourlet/SFL| | Wavelet [t ]

Scalable
Bitstream

Jaxajdn|n\ weansug

R-D Optimization Control J
I

—\

Figure 4: Video compression scheme in the experiment
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Figure 5: Coding performance comparison by PSNR

5.2 Numerical Results

Fig. 5 and Table 1 give the rate-distortion performance comparison in terms of
PSNR and SSIM [19] between the wavelet-based VidWav, the H.264-based JSVM
and the sparse representation based video coding scheme. SSIM can be served as an
effective metric when qualifying video frames decoded at low bit rates, which assesses
image quality by measuring the structural similarity. We can see that the proposed
framework outweighs Vid Wav consistently in the range of low bit rates and proves the
advantage of applying sparse representation on redundant transforms. Particularly, in
the case of Walk sequence, our scheme achieves up to 0.5dB PSNR improvement over
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VidWav. Fig. 6 shows the original CIF frame in Walk and Foreman and the visual
effects of reconstructed frame coded by our scheme and VidWav at 128kbps, from
left to right respectively. Since the sparse contourlet /SFL representation in our video
coding scheme captures directional curves more efficiently, more details of directional
information have been well preserved after reconstruction. The open-loop control of
MCTF and the missing of intra-prediction reduce the coding efficiency gains when
comparing to JSVM. In fact, it is not relevant to the attention of this paper with a
sparsified directional decomposition and representation.

Table 1: Coding performance comparison by SSIM
SSIM of Walk CIF @ 30Hz
bit rate(kbps) | 128 192 256 320 384 448 512
DMSVC 0.765 | 0.845 | 0.879 | 0.902 | 0.912 | 0.923 | 0.927
WSVC(9 x 7) [ 0.741 | 0.833 | 0.873 | 0.899 | 0.910 | 0.926 | 0.931
H.264/SVC | 0.776 | 0.843 | 0.878 [ 0.902 | 0.915 | 0.927 | 0.935
SSIM of Foreman CIF @ 30Hz
bit rate(kbps) | 128 192 256 320 384 448 512
DMSVC 0.891 | 0.916 | 0.929 | 0.937 | 0.943 | 0.950 | 0.952
WSVC(9 x 7) [ 0.878 | 0.906 | 0.921 | 0.932 | 0.938 | 0.947 | 0.951
H.264/SVC | 0.887 | 0.923 | 0.938 | 0.947 | 0.945 | 0.956 | 0.958

IR\
N

(b) The original and reconstructed Foreman frame

Figure 6: Reconstructed visual quality. Each group from left to right: the origi-
nal frame, the reconstructed frame by sparse representation based scheme and the
reconstructed frame by Vidwav.

6 Conclusions

In this paper, we exploit video coding based on the sharp frequency localized con-
tourlet (contourlet/SFL) transform with sparse representation. By using the con-
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tourlet/SFL transform with non-aliasing multiscale pyramid, the video reconstruc-
tion performance can be further improved. Although the redundancy of the con-
tourlet /SFL transform seems to be the main obstacle for video coding, it provides
extra freedom for signal sparse approximation by iterative thresholding algorithm.
Since the strong inter-band and inter-scale dependencies among the directional sub-
bands can be utilized to pursue better performance, a three-dimensional embedded
directional subband coding method is used for constructing final bitstream. Exper-
imental results validate a superior coding performance and visual quality over the
wavelet-based video coding framework at low bit rates.
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