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Abstract—This paper aims to optimize the overall video quality
and traffic performance for multi-rate video multicast over hy-
brid wired/wireless networks. In order to perform layered utility
maximization over tiered networks, we propose a joint source-
network flow optimization scheme where individual layers of the
scalable video stream are imposed on their optimal multicast
paths and associated rates for the highest sustainable layered
video quality with minimum costs. It sufficiently guarantees that
each destination node accesses progressive layered stream in an
incremental order, considers network coding across overlapping
paths to destination nodes for decent multicast capacity, and
addresses the link contention problem during wireless trans-
mission. We formulate the problem into convex programming
with the objective to minimize the total rate-distortion variations
between layers. Using primal decomposition and the primal-dual
approach, we develop a decentralized algorithm with two levels
of optimization. The numerical and packet-level results compare
extensive performance under different control conditions over
coded and non-coded hybrid networks. It demonstrates that
the proposed algorithm could actually achieve the max-flow
throughput and provide better video quality with optimal layered
access for heterogeneous receivers.

Index Terms—Multi-rate multicast, network coding, rate-
distortion, resource allocation, scalable video coding.

1. INTRODUCTION

ULTI-RATE MULTICAST has emerged as an impor-

tant method for content distribution over large net-
works with its capability in adapting to different user re-
quirements and time-varying network conditions [1]. From a
source coding perspective, scalable video coding (SVC) allows
rate adaptation not only at the encoder/decoder, but also at
intermediate network nodes while achieving highly efficient
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rate-distortion performance [2]. An SVC stream consists of
a base layer and one or multiple enhancement layers with a
flexible multi-dimensional layered structure, providing various
operating points in spatial resolutions, temporal frame rates,
and reconstruction quality levels. Different SVC layers with
multi-rate multicast are transported in different IP multicast
groups which are subscribed by heterogeneous receivers with
different computation and communication resources and ca-
pabilities. Within this context, layered multi-rate multicasting
is equivalent to a generalized multi-source problem where the
progressive inter-layer dependency is considered as fairness
between different sources [9], [11].

Recently, the hybrid wired/wireless network has become an
increasingly important tool for communication [3]-[5], which
is formed by placing a sparse network of base stations in
an ad hoc network, where base stations are connected by a
high-bandwidth wired network and act as relays for wireless
nodes. Hybrid networks present a tradeoff between traditional
wired networks and pure ad hoc networks. By introducing the
flexibility and scalability that traditional wired-only networks
cannot achieve, data may be forwarded in a wireless manner
or through the high capacity wired links. On the other hand,
the addition of wired base station nodes in hybrid networks is
a natural approach to reducing the energy and traffic burden on
ad hoc nodes and increasing the system throughput. Further-
more, hybrid ad hoc network model can be viewed as a means
to extend the communication coverage of wireless cellular
infrastructure. Due to the heterogeneous network performance
where different wireless users are capable of distinct access
capacities and correspondingly require different quality of ser-
vice, the hierarchical hybrid wired/wireless network structure
can benefit the asymptotic capacity in terms of flexibility and
scalability. Such advantages make the multicast over hybrid
networks suitable for multimedia dissemination with different
quality levels. In this paper, we aim to develop an efficient
flow control and performance optimization scheme for scalable
video streaming over hybrid wired/wireless networks. Fig. 1
shows an example, where the layered SVC stream is generated
at the source node, and distributed to different users through
the two-tier wired and wireless network. The objective is to
maximize the overall video quality of all receivers.

The contribution of this paper is twofold. First, we formulate
a mathematically rigorous convex optimization problem with
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Fig. 1. Illustration of a two-tier wired/wireless network.

the objective to minimize the total quality variation among
layers, which considers the inter-layer dependency constraints
of SVC bit streams to achieve the highest sustainable lay-
ered video quality with minimum costs. The advantages of
this optimization formulation include: it guarantees that each
destination node accesses progressive layered stream in an
incremental order; network coding is utilized for a decent
multicast capacity; the link contention of wireless transmission
is addressed in the formulation; and a partial quality layer
is allowed to be received by introducing a tolerable rate
region for each SVC layer. Second, we develop a distributed
algorithm with two levels of optimization to maximize the total
network utility by jointly optimizing the allocated source rates,
transmission flow rates, and routing scheme. The proposed
distributed algorithm is proven to be asymptotically stable
using the Lyapunov theorem. The extensive numerical and
packet-level results demonstrate that the proposed algorithm
could actually achieve the max-flow throughput and benefit
overall received video quality.

The rest of this paper is organized as follows. Related work
is discussed in Section II. The notations and network models
are described in Section III. In Section IV, we formulate the
flow control and resource allocation problem for scalable video
coding and multi-rate multicast over hybrid wired/wireless net-
works. The decentralized algorithm for SVC-based multi-rate
multicasting with network coding based routing is proposed
in Section V. We also prove the stability of the proposed
decentralized rate control scheme and provide an efficient
implementation scheme. Numerical experimental results and
packet-level simulations are presented in Section VI. Section
VII concludes this paper.

II. RELATED WORK

In communication networks, to achieve the capacity in
single-source multiple-terminal multicast [6], network coding
is often performed at intermediate nodes. Recent research
has demonstrated that it is able to significantly improve the
network throughput and robustness to link or node failure and
packet losses [7]. Distributed random linear coding schemes
[7], [17] have been proposed for practical implementation of
network coding. Chen et al. [8] developed adaptive rate control
algorithms for networks with and without coding sub-graphs.

In this paper, we incorporate network coding into scalable
video streaming over the network to optimize the overall
content distribution performance.

Several rate control schemes have been developed in the
literature on scalable video coding, layered multicast, and
network coding [9]-[12]. For example, the distributed rate al-
location scheme in [9] addressed the problem of rate allocation
for video multicast with SVC over wireless mesh networks,
with the goal of minimizing total video distortion of all peers.
Yan et al. [10] used a rate-distortion function as the application
utility measure for optimizing the overall video quality. These
rate control methods improve the performance of scalable
video streaming over hybrid networks. However, they are
suboptimal solutions and the inter-dependency between SVC
layers has not been adequately addressed. This might cause
decoding problem in scalable video streaming over networks.
For example, video packets from higher-layers may arrive
before or without packets from lower layers, which will cause
decoding failure. Recently, network coding has emerged as an
important tool for maximizing the network throughput during
content distribution. Incorporating network coding to flow con-
trol and resource allocation allows us to achieve the maximum
network throughput and performance limit. A recent work by
Zhao et al., called the LION algorithm [11], demonstrated
that incorporating both inter-layer dependency and network
coding into flow control is able to significantly improve
the network throughput for overlay multicast. However, it
should be noted that the LION algorithm is only a heuristic
method that progressively organizes receivers into separated
layered meshes and achieves only sub-optimal performance. In
addition, it fails to provide rigorous theoretical justifications
on the relation between the LION algorithm and the initial
layered overlay multicast problem. As a further improvement,
[12] proposed a prioritized flow optimization formulation for
SVC and multicast over heterogeneous networks, which used
the path cost and prices of each layer as the priority param-
eters to capture inter-layer dependency and provided rigorous
distributed algorithms proven to be stable and convergent.

III. NOTATIONS AND NETWORK MODELS

We consider video content distribution over a tiered wired
and wireless network. The network can be modeled as a
directed graph G{UG,, where G| = (V}, E) denotes the wired
network and G, = (V,, E,) represents the wireless network.
In the wired network G, E; is the set of wired links and
Vi={s}UNUT is the set of wired nodes, where {s}, N and
T represent the set of source nodes, relay nodes and receiver
nodes, respectively. The wireless network G, is composed of
the set of wireless links E, and the set of wireless nodes
Vo, = TURU D, where R and D denote the relay nodes
and destination nodes, respectively, and T represents the set
of source nodes in G, which is also the set of receiver nodes
in G;. Hereinafter, we write V = {s UNUT U RU D and
E = E{UE,. Let each wired link / € E; have a finite capacity
of C;, and consider the wireless link contention in a shared
transmission medium of wireless link / € E, with capacity C
[20].
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A. SVC Coding Model

Utilizing SVC technique, a scalable bit stream could be
represented in two different ways, as a layered representation
(layered scalable) or a flexible combined scalability (fully
scalable) [34]. Generally, the flexible combined scalability can
benefit the scenario of unicast, where the target stream can
be extracted at any bit rate from the SVC elementary stream
in compliance with the single receiver’s capacity status. In
comparison, the layered scalability can benefit the network
multicasting by offering simple adaptation operation to het-
erogeneous receivers, i.e., different receivers can subscribe
to different combinations of layers under the constraints of
network capacity and layer dependency.

Therefore, we adopt the layered scalability for its simplicity
and assume that the SVC video stream is encoded into a set
of M layers {L{, Ly, ..., Ly} with a predefined encoding rate
based on the network condition. According to the encoding
rates of layers, we can make the optimal adaptation decision
in the scalability cube model illustrated in Fig. 2 by mapping
from an SVC elementary stream with fully scalable repre-
sentation into the layered representation. Correspondingly, the
multicast of SVC video stream is divided into M multicast
sessions. Each multicast session m has one source node s, a
set of destination nodes D, and a set of relay nodes NUT UR.
In order to successfully decode received SVC video streams,
we should make sure that all destination nodes are able to
subscribe to SVC multicast layers in an incremental order,
since layer m + 1 is not decodable without its previous layers
1 to m. This layer dependency constraint promises the most
efficient SVC decoding at each destination node.

In fact, a practical SVC encoder and decoder during
fluctuating network adaptation could perform a very large
variation of options to make a flexible inter-layer motion-
compensated prediction and reconstruction [38]. It is well
known that the standardized scalable extension of H.264
(SVC) only specifies the bit-stream syntax and bounds to
facilitate different applications. To be concrete, a higher layer
might be able to be decoded even if the lower dependent
layers are either truncated or partially dropped to a mild
extent. Certainly, it would cause a drift between the decoded
pictures reconstructed in the encoder and in the decoder. To
prevent error propagation, the reconstructed reference pictures
in the motion-compensated prediction would be limited in
the highest layer which is completely received. Under the
condition, non-normative coding techniques, e.g., a variety of
error resilience and error concealment tools, would be utilized
to estimate the lost information for the decoding of the higher
layer. It makes a receiver possible to subscribe to a partial
quality layer within an achievable rate region. Considering
both fluctuating network adaptation and optimization condition
[39], [40], each layer is distributed over a multicast session
at a variable transmission rate within a tolerable rate region
[y, B,]. Mathematically, the upper bound B, (e.g., the
encoding rate with a resilient margin) and the lower bound b,,
(e.g., the minimum partial margin for layer m) are specified for
a confidence interval of the layered transmission rate in layer
m. It differentiates the layers with the piecewise confidence
intervals along the layer-dependent direction, namely, the
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Fig. 2. Typical structure of scalable video bitstream with multiple dimen-
sions.

achievable transmission rate for each layer is mathematically
extended from an encoding rate point to a tolerable rate region.
From the layered optimization, the fine-granular continuity
of the targeted variables (rates) could specifically urge the
convexity of optimization problem for developing a distributed
solution, and support a strong notion of fairness.

B. Network Coding Model

The algebraic operation in packet level at intermediate
nodes, called network coding [6], recently has attracted sig-
nificant research interests [8], [13]. Besides improving com-
munication network’s throughput, various potential benefits
of network coding have been found, including robustness to
link/node failures [14] and packet losses [15], [16]. Distributed
random linear coding schemes [7], [17], on the other hand,
have made practical implementation of network coding pos-
sible. To transmit multiple multicast sessions over a shared
network, we might perform network coding across sessions
to achieve the optimal throughput. However, combining data
belonging to different layers makes it difficult to recover all
original data for destination nodes that only receive partial
layers. Thus, we limit network coding within each session in
this paper. This approach is often referred to as intra-session
coding or superposition coding [18].

With intra-session network coding, flows to different desti-
nations of a multicast session are allowed to share network
capacity by being coded together. For a single multicast
session m with transmission rate R,, € [b,,, B,,], information
flow must be transmitted at rate R, to each destination.
However, with network coding, we only need to set the actual
physical flow on each link to be the maximum of the individual
destinations’ information flows. Specifically, for link ! = (i, j),
let xf;‘ff) denote the information flow for destination d of multi-
cast session m, and f¢' ;) denote the physical flow for multicast
session m, then these constraints can be expressed as follows:

R,., fori=ys
DG = Y Al =4 —Ra fori=D (D)
Jj:G.))eE j:(i.)eE 0, otherwise
x(% < fity vdeD )

where (1) reflects the information flow balance equation
similar to the physical flow balance equation. Equation (2)
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specifies the network coding condition, relating physical rates
to information rates.

Here, the physical flow rate vector f is called the coding
subgraph and can vary within a constraint set F. For a feasible
coding subgraph, [22, Theorem 1] states that the multicast
sessions can be achieved with the distributed random network
coding schemes in [7] and [17] using intra-session network
coding. For a completeness of this paper, we include this
theorem here with slight adaptation to our scenario:

Theorem 1: Given a feasible coding subgraph f € F, a
multicast session m at rate arbitrarily close to R,, from source
node s to destination nodes in the set D and that injects packets
at rate arbitrarily close to f7';) on each link (i, j) is achievable
with network coding if and only if the information flow rate
vector X and the physical flow rate vector f satisfy (1) and (2).

Therefore, when setting up optimal multicast sessions over
the hybrid network, there is no loss of optimality in separating
the problems of subgraph selection and network coding. In
other words, we can find an optimal coding subgraph f
satisfying (1) and (2), and then apply a network coding scheme
to it where coding is done on overlapping links across different
destination nodes’ paths.

For each multicast session, we find multiple paths from
the source node to destination nodes using existing multi-path
routing schemes [30], [31]. For each node d € D, we use a
matrix H; = {hﬁjj} to represent the relationship between its
transmission paths and corresponding links. More specifically,
suppose destination node d has J(d) alternative paths from
source node s, then hﬁij = 1 if the path j of node d uses link
I, and K ; = 0 otherwise.

When multi-path routing is employed, a link / might
be shared by multiple paths of a certain destination node.
Therefore, destination d’s bandwidth consumption for layer
m on link [ is the sum of the specified layer-m flow rates
on d’s all paths which pass link /. Mathematically, let Ry
denote the information flow rate of destination node d’s jth
path in multicast session m, and f;" represent the physical
flow rate for link / in multicast session m, then we have
xnd = ijg) hldj - The information flow balance condition in
(1) will be automatically satisfied. With intra-session coding,
the network coding constraint in (2) becomes

J(d)
S Ry < f" VYmeM VIeE VdeD. (3)
j=1

C. Channel Capacity Model

In a wired network, the total transmission rate of the
physical flow at each link should be no more than its capacity
C(i,j), that is

>ty <Caj VG j) € Er. )

meM
In wireless networks, however, the capacity of a wireless
link is interrelated with other adjacent wireless links. Con-
sequently, we should consider the wireless link contention
in a shared transmission medium by introducing constraints
of the location-dependent contention among the competing

wireless data flows [19]. In the proposed problem formula-
tion, the assumption is that the wireless medium capacity
C is shared among a wireless link / and the cluster of its
competing links. The method in [20] considers the spatial
locations of the nodes and determines which transmission can
be successfully received by its intended recipient. According
to this protocol model, suppose that any link originating from
node k will interfere with link (i, j) if the link distance
di,jy < (1 + A)dj, A > 0 and define ¥ ;) for each link
(i, j) € E, as the cluster of links that cannot transmit when link
(@, j) is active. As compared to individual links in traditional
wired network, the notation of cluster can be treated as a basic
resource unit. Wireless data flows compete for the capacity
of individual cluster that is equivalent to the capacity of the
wireless shared medium. Hence, the wireless network channel
capacity constraint [35] is

Z 1o+ Z Z fop =C - =pajp) VG )) € Er

meM (p.@)eY, jy meM
(5)

where C is defined as the maximum rate of link (i, j) and its
corresponding cluster W(; ; supported by the wireless shared
medium, p ;) is assumed to be the packet loss probability at
wireless link (7, j). Theoretically this packet loss rate can be
derived from the Gilbert—Elliott model [41], [42].

D. Rate-Distortion Model

From the perspective of application-layer QoS, rate-
distortion related model [21] could be picked as the optimized
targeted utility for video applications

0

De(R,) = ———
(R =

+ Dy 6)

where D, is the distortion of the encoded video sequence,
measured by the mean squared error, and R, is the encoded
rate. The variables 0, Ry, and D, are the parameters of the
R-D model, which can be fitted to empirical data from trial
encodings using nonlinear regression techniques.

For an SVC stream, a destination node can subscribe to a
partial layer. To characterize the video streaming performance
of each layer m, we introduce a utility function U,,(-), which
is continuously differentiable, increasing and strictly concave
with respect to the receiving rate. In this paper, we multicast
the video streams to all destination nodes and attempt to
maximize the total utility of all recipients. In other words,
our objective function is given by

J(d)
max > Y Un(R =max > Y U.O Ry (D
deD meM deD meM j=1

where R} denotes the received rate at destination node d in
multicast session m. Using the R-D model in (6) and Taylor
expansion, we can define the utility function in (7) as the
absolute value of the distortion decrement for destination node
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d when a new layer m is successfully received and decoded
m—1

m—1
—[D.> R+ R}) — DY | R ®)
i=0 =

0 0

m—1 RZ’ T m—1

O Ry - RoY O Ry = RyY’
i=0 i=0

Equation (8) is a quadratic function with regard to R} and the

coefficient of the quadratic term is a negative number, it can

be easily seen that U,,(R}) is strictly concave.

Um(RZ[I) =

(R7)2.

IV. PROBLEM FORMULATION

Within the context of SVC, layered multi-rate multicasting
is equivalent to a generalized multi-source problem where
the inter-layer dependency is considered. The proposed op-
timization problem will integrate the prior context of source
decomposition into the layered multi-rate multicast optimi-
zation.

In most previous rate control schemes [9], [11], one sink
node can either receive an entire layer or discard the layer, i.e.,
receiving a partial layer when there is residual bandwidth is not
supported. In contrast, the proposed optimization formulation
is a continuous optimization problem and makes a receiver
possible to subscribe to a partial quality layer by introducing
a tolerable rate region [b,,, B,,] for Layer m. Therefore, the
proposed algorithm can fully utilize the network bandwidth
resource. As follows, we propose a new optimization formu-
lation which can achieve the global optimal solution while
the layer dependency constraints of SVC stream are strictly
satisfied with minimum costs

J(d)
P1: max Z Z U’"(Z Ry ()]
deD meM j=1

S.t.
J(d)

1) Zh Ry < f
2) Zf, <C VieE

VmeM VlieE VdeD

meM
3 DY Y A =C-(l—p) VIEE
meM kew(l)meM
J(d) J(d)
4) bmfZRZSBm OTZ i?]:OVmEMVdED
i =1
Jd J(d) !
(m+1)
D R Z Ry
5) S > Vme(l,2,....,M—1} Yd e D
bm B(m+1)

6) R;>0 VjeJd) VmeM VdeD

7) f">0 VIcE VYme M.

Constraint 1 specifies the required physical flow rate on each
link for each layer under the network coding condition. With
network coding, different destinations will not compete for
link bandwidth within the same layer, therefore the required

physical flow rate on link / for Layer m is the largest
information flow rate on link / consumed among all destination
nodes. Constraint 2 ensures that for each wired link, the
aggregate physical flow rates of different layers do not exceed
the link’s capacity. Constraint 3 characterizes the wireless
link contention in a shared medium. For each wireless link
[, the sum of I’s physical flow rate and the physical flow
rates of links in W(/) cannot exceed the wireless medium
capacity C. Constraint 4 gives the lower bound and upper
bound of the transmission rates allocated for Layer m, denoted
by b, and B, respectively. According to Proposition 1,
constraints 4 and 5 together can strictly ensure that each
destination node subscribes to SVC multicast layers in an
incremental order, i.e., Layer m being received before Layer
m + 1. Constraint 6 specifies that the allocated rates are
nonnegative.

Proposition 1: The allocated rate R satisfies constraints 4
and 5 if and only if each destination node receives layered
video streams in an incremental order.

Proof: See Appendix A. |

To ensure the convexity of the proposed optimization prob-
lem P1, constraint 4 needs to be re-defined to meet the
convexity requirement. Based on the nonnegativity constraint

6, it can directly imply Z ) Ry = 0 from Ry; > 0. Hereby,
we can simply extend the second equality term Zj(d) Ry =0
in constraint 4 to Zji[{)R 7 < 0 because Zj(d)R =0
can be promised along with the nonnegativity constralnt 6.

Therefore, constraint 4 is formalized as b,, < Zj(d) RdJ <

B,, or ZM) Ry, < 0, and further simplified as a cubic
inequality <Z’<‘” R Ry — b)) Ry — Byy) < 0.

In P1, the OptlleatIOI’I varlable is the rate vector R =
[RZ}], i.e., the information flow rates along the jth path to
destination node d in multicast session m, Vm € M,Vd €
D,Vj € J(d). If we choose for each destination node the
same number of multiple paths, the total number of the
optimization variables will be |[M| - [D| - |J(d)|. On the
other hand, considering optimizing over the entire network
without specified paths from the source node to destination
nodes, the optimization variable will be the links’ information
flow vector x = [x}”d], i.e., the vector of information flow
rate on link [ for destination d of multicast session m,
where Vm € M,¥d € D,Vl € E and accordingly, the
total number of optimization variables is |M| - |D| - |E|. In
large-scale networks, the number of total links |E| is often
much larger than the number of transmission paths |J(d)|.
Therefore, compared with performance optimization over the
entire network, P1 has a much smaller number of optimization
variables.

We can see that P1 has a unique optimal solution since
its objective function is strictly concave and the solution
space defined by the constraints is convex. In other words,
this is a convex optimization problem. Centralized solutions
require global information and coordination between all nodes
and links, which is very costly and sometimes infeasible in
practice [23], [24]. In the following section, we will develop
a distributed solution based on decomposition and duality
theories.
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V. DISTRIBUTED ALGORITHM

In this section, we develop a distributed solution to the pro-
posed optimization problem which allows each node and link
to control and update the transmission parameters by itself.

A. Primal Decomposition

Decomposition theories provide a mathematical foundation
for the design of modularized and distributed control of net-
works [24]. The decomposition procedure aims to decompose
a large and complex optimization problem into a set of small
sub-problems, which can be then solved with distributed and
often iterative algorithms that converge to the global optimum.
For P1 with coupling variables f;", the primal decomposition
is often used

J(d)
PI-1:  max ZZU (ZRZ; (10)
deD meM
s.t. constraints 1, 4, 5, and 6
P1-2: U*(f) (11)

max
f

s.t. constraints 2, 3, and 7

where P1-1 performs a low-level optimization when the
coupling variable vector f is fixed, while P1-2 performs a
high-level optimization to update f. U*(f) is the value of
the objective function in P1-1 for a given f. The output of
the low-level optimization is locally optimal and provides an
approximation to the global optimal solution.

As mentioned in Section III-B, the coupling variable vector
f in P1 represents the sub-graph of network coding. Note
that in P1, the impact of network coding is embedded in
constraint 1. Based on Theorem 1, it implies some form of
“separation principle” that allows independent decisions on re-
source utilization and rate control during network coding. This
suggests that the optimal configurations of multicast sessions
over the hybrid network can be determined by decoupling
the problem of subgraph selection from network coding. The
task of the high-level optimization problem P1-2 is to update
f, by selecting the optimal subgraph, while the low-level
optimization problem P1-1 attempts to find a locally optimal
solution for resource utilization and rate control of a specified
network coding scheme for a given coding subgraph f.

B. Low-Level Optimization

We observe that the low-level optimization problem P1-
1 can be further decoupled using dual decomposition. More
specifically, by relaxing the coupling constraints 1, 4, and 5
with Lagrange multipliers A, u, and n, respectively, P1-1 can
be written as follows:

J(d)
LR &)= > Uy ZR
deD meM
J(d)
TL 2 LN L kR A =22

leE deD meM deD meM

J(d)
wi | | LR
J=1
J(d)

Z R(m+l)

J(d)
> R —bu
J=1

J(d)

> R

J(d)

ZR;;; - B
j=1

M-1 —
j=
=2 D i - (12)
deD m=l B(’”“) b
and the corresponding Lagrange dual function is
g, u,m)=sup LR, A, w,m) Ry >0. 13)
R

The Lagrange dual problem of P1-1 can be formulated as
follows:

min

ZU,p=zU,n=

8, w, ). (14)

According to convex optimization theories [24], [25], if
the original problem P1-1 is convex, it is equivalent to its
Lagrange dual problem in (14). Then, the low-level optimiza-
tion problem P1-1 can be further decomposed to a secondary
master dual problem P1-1a and a set of sub-problems P1-1b
that can be solved in a distributed manner

Pl-la: min g(A, u,n) (15)
A p,m
s.t. A>0 =0 n=0

P1-1b : LR, A, i, n) (16)

max
R

st. Ryp>0 VjelJd) VmeM VdeD.

At the lower level, the sub-problems P1-1b (i.e., the La-
grangians) for each d, j and m, can be solved separately. At
the higher level, we have the secondary master dual problem
P1-1a to update dual variables A, u, and 7.

Since the objective functions of problem P1-1a and P1-1b
are differentiable with respect to the dual variables A, u, n
and primal variables R, both problems can be solved by the
gradient algorithm [26], [27]. Based on this observation, we
propose the following primal-dual algorithm that updates the
primal and dual variables simultaneously to solve the low-level
optimization problem P1-1:

LR, X, 1, 1),
Ry (i +1) = [RI(1y) +a(tL>(8W“”)] (17)
dj
OL(R, A, u,
A, 4 1) = [0y — b(n)%l* (18)
L(R, A,
Wi, + 1) = [ul (1) — c(&)%] (19)
d
OL(R, A, u,
G+ 1) = (1) — d(n)%r (20)
d

where #; denotes the iteration index, a(t), b(¢), c(t) and d(t)
are positive step sizes, and [-]* denotes the projection onto the
set of non-negative real numbers.

In terms of their physical meanings, A represents the “con-
gestion prices” of information flow at all links, i.e., )»;”l can
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be considered as the “congestion price” of information flow at
link / for destination node d’s bandwidth requirement in Layer
m. At each link [, if the total information flow bandwidth
demand Zfi‘f) hﬁinZ} in Layer m exceeds the supply f",
then the “congestion price” A%’ will increase. As a result,
in problem P1-1b, RZ} will decrease in order to meet the
link’s bandwidth requirement of information flow, f;", and
vice versa. Similarly, the other two Lagrange multipliers, ©
and 7, can be considered as the “SVC encoding prices” for
each destination node in a multicast session. Furthermore, all
updating operations are distributed and can be implemented at
individual links and nodes using only local information.

C. High-Level Optimization

The low-level optimization and corresponding primal-dual
algorithm operate under the assumption that the value of f
is fixed. Next, we discuss how to update f in order to solve
the high-level optimization problem P1-2. Suppose i;,”l is the
optimal Lagrange price, i.e., optimal variable corresponding
to the constraint 37 hl, R < £ in P1-1. First we define
the Lagrangian of P1-2 as follows:

L'(f,o,)=U® = (Z ;= a) @1

leE, meM
=SB DD =)
leE, meM keWw(l)ymeM
=Uh - (Z = cz> =SB S
leE, meM leE, meM
DS DB+ BC-(—p)
leE, meM ked(l) leE,

where we introduce a new notation ®(/) to denote the cluster
of links that are interfered by link /. Since W(k) denotes
the cluster of all links that cannot be transmitted when link
k is active, we have k € ®() < [ € W(k). And the
corresponding Lagrange dual function is

g, p=supLl'f,a,p) f">0 VIEE Vme M.
f

(22)

Similar to the solution of low-level optimization problem

P1-1, with dual decomposition, the following procedure is
used to solve the high-level optimization problem P1-2:

aL'(f, a, B)

P+ D = U )+ d )= 2T (3)
l
aL'(f, a,
oty + 1) = [ay(ty) — b/(m)%r (24)
oL'(f, «,
Bilts + 1) = [Bitn) — c/(@#r 25)

where 7y denotes the iteration index, @/(¢), b'(¢) and ¢'(¢) are
positive step sizes.

In terms of their physical meanings, o and B can be consid-
ered as the “aggregated congestion prices” of physical flows
at wired and wireless links, respectively. At each wired (or

wireless) link /, if the total physical flow bandwidth demand
Domem 1" 00 D icp 1"+ Dkewiy 2omen Ji') exceeds the
supply C; (or C-(1—py)), then the “aggregate congestion price”
a; (or B;) will increase. As a result, f;" in P1-2 will decrease
in order to meet the link’s bandwidth supply of physical flow,
C; (or C- (1 — p)), and vice versa. The update of f;” can be
performed individually by each link, only with knowledge of
the congestion price « or 8; while the update of o and 8 only
uses the local information of each link.

D. Convergence Analysis

We analyze the convergence behavior of the proposed
algorithm. Regard the primal-dual algorithm as a nonlinear
autonomous system on which we can apply the following
Lyapunov stability theorem [26], [29].

Theorem 2 (Lyapunov’s Theorem): Consider an autono-
mous system with its equilibrium point at X = 0, this equi-
librium point is globally asymptotically stable if there exists a
continuously differentiable Lyapunov function V(x), such that:

1) V(x) > 0, Vx #0; and V(x) =0, when x =0;

2) V(x) <0, Vx; and V(x) <0, Vx #0;

3) V(x) — oo, when ||x|| — oo.

Note that the above theorem also holds if the equilibrium point
is X #0, by considering a system with state vector x — X.

Proposition 2: If (R, &, ft, ) is an equilibrium point of the
low-level primal-dual algorithm outlined in (17)—(20), then the
equilibrium point is asymptotically stable, i.e., the low-level
p{imAal—dual algorithm can converge to its equilibrium point,
R, A, 2, ).

Proof: See Appendix B. |

Proposition 3: If (f‘, &, B) is an equilibrium point of the
high-level primal-dual algorithm proposed in (23)—(25), then
the equilibrium point is asymptotically stable.

Proof: See Appendix C. |

According to the Lyapunov’s theorem, if we can find a
Lyapunov function for the dynamical system which satisfies
all of these three conditions, then the equilibrium point of the
dynamic system is asymptotically stable. From Propositions 2
and 3, we proved the global asymptotic stability of the primal
and dual controllers of (17)—(20) and (23)—(25), respectively,
which leads to the convergence behavior of the distributed
solution to the dual problems of P1-1 and P1-2. Since P1-1
and P1-2 are both convex, we can solve them through their
equivalent dual problems using the proposed distributed
algorithms [24].

E. Summary of the Distributed Algorithm and Its Implemen-
tation

To implement the proposed distributed algorithm, each link
[ or destination node d is treated as an entity capable of pro-
cessing, storing, and communicating information. In practice,
each link ! = (i, j) is delegated to its sender node i, and all
computations related to link / = (i, j) will be executed on node
i. Assume that the processor for link / keeps track of variables
/" o, B and AZ”, while the processor of destination node d
keeps track of variables Ry, 1y and 7. A distributed version
of the proposed algorithm can be summarized in Algorithm 1.

Note that the low-level and high-level optimizations operate
at different timescales. The low-level iteration algorithm is
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Algorithm 1 Distributed two-level optimization algorithm

Step 1. Initialization:

Set R7;(0), AMLO), wm(0), n(0), £"(0), «(0) and B(0), respec-
tively, to some nonnegative value for all d, m, [ and j.

Step 2. Low-level optimization (1, = 1,2, ---):

At link /:

1) Receives R;’;(IL) from the subset {d|d € D and hfij =1}.

2) Fetches f;"(ty) stored in the local processor of node i.

3) Updates the congestion price A’{}”(tL) according to (18).

4) Sends the control packet (CP) that comprises updated price
A’;l(tL +1) in the downstream direction to the subset of destination
nodes {d|d € D and hl; = 1}.

At destination node d:

1) Receives from the network the aggregate congestion price
ZIeE )‘Zlﬂ(tL) ! hiij'

2) Fetches pj(¢.) and n}/(¢.) stored in the local processor.

3) Updates allocated rate Rj:(7;) with (17).

4) Updates the SVC encoding price u(t;) with (19).

5) Updates the SVC encoding price 1 (¢;) with (20).

6) Sends the rate packet (RP) that contains the updated rate Ry (1 +
1) in the upstream direction to the subset of links {/|/ € E and hf,j =
1}.

Iterate until the low-level implementation converges to the opti-
mality or the maximum iteration number is achieved, then proceed
to Step 3 (the high-level optimization stage).

Step 3. High-level optimization (ty = 1,2, --):

At wired link / € Eq:

1) Receives from the network the locally optimal congestion price
Aml of the low-level implementation.

2) Fetches f/"(ty) and oy(ty) stored in the local processor.

3) Updates a new f"(ty) with (23).

4) Updates the aggregate congestion price o;(fy) with (24).

At wireless link [/ € E,:

1) Receives from the network the locally optimal congestion price
Aml of the low-level implementation.

2) Receives f;"(ty) from the cluster {k|k € W(/)}.

3) Receives Bi(ty) from the cluster {k|k € ®(1)}.

4) Fetches f/"(ty) and B(ty) stored in the local processor.

5) Updates a new f;"(ty) with (23).

6) Updates the aggregate congestion price f;(fy) with (25).

7) Transmits the flow-rate packet (FP) that contains the updated
physical flow rate f"(ty + 1) to the cluster {k|k € ®(])}.

8) Transmits control packet (CP) that comprises the updated price
Bi(ty + 1) to the cluster {k|k € W(])}.

If the high-level implementation converges to the optimality or the
maximum iteration number is achieved, the algorithm stops, else
go back to Step 2 (the low-level implementation).

in the inner loop and operates at a smaller time index 7,
while the high-level iteration algorithm is in the outer loop
and performs at a larger time index ty. More specifically, the
high-level algorithm will not move to its step until A7//(¢,) at
the low-level converges to its optimum value )22” .

In summary, the centralized approach requires all of the
above variables shared in the entire network and thus causes
a great amount of communication overhead. Utilizing the
proposed distributed algorithm, however, the communication
overhead only comprises the sending overhead of A%!(z; + 1)
and RZ}([L + 1) at each iteration of the low-level optimization
and the transmitting overhead of f;"(ty + 1) and B;(ty + 1) at
each iteration of the high-level optimization.

The overhead of the proposed distributed algorithm con-
sists of two parts: the network coding overhead and the
communication overhead. It is demonstrated in [17] that the
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Fig. 3. Network topology associated with link capacity, where (a) and (c)
illustrate the wired and wireless network in numerical experiment, respec-
tively, (b) and (d) illustrate the wired and wireless network in packet level
simulation, respectively.

side information required by network coding is very small,
e.g., approximately 3% in the typical Internet scenario. The
communication overhead are the CP and RP information in
the low-level optimization, and the FP and CP information
in the high-level optimization. Consider the implementation
issues [39] and take Fig. 3(c) for example, at the end of each
low-level iteration, link (r;s, ri¢) needs only to send its CP
downward to destination nodes d; and d,4, and destination node
d; needs only to send its RP upward to the links belonging
to its six paths. Supposing each updated price or rate is float
type that takes up 4 byte, and let M = 3, then the CP of link
(715, r16) requires 3 x 2 x 4 = 24 bytes and the RP of node d;
requires 3 x 6 x 4 = 72 bytes. Generally, in the worst case, the
CP of link [ takes up 4- M -| D| bytes, and the RP of destination
node d takes up 4- M - |J(d)| bytes. Similarly in the high-level
optimization, wireless link / needs to send its FP and CP to the
cluster {k|k € ®(I)} and {k|k € W(l)}, respectively. Therefore,
FP and CP require 3 x4 = 12 bytes and 1 x4 = 4 bytes, respec-
tively. Thus, the total communication overhead sums up to 112
bytes. For the internet configuration of IP packet with a packet
size of 1400 bytes, the communication overhead introduced by
the proposed algorithm is 112/1400 = 8%. Furthermore, it can
be noted that these packets (CPs, RPs and FPs) in practical
implementation need not be communicated as separate pack-
ets; the CPs can be conveyed through a field in the video data
packets, while the RPs and FPs can be conveyed through a
field in the acknowledgement packets. The maximal additional
delay introduced by sending these packets is the one way
propagation delay of the particular multicast destination node.

The proposed distributed algorithm needs to be implemented
whenever the initial network starts multicast session or the
dynamic change of network condition suddenly happens, to
catch up with the optimal allocated transmission rates for
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Fig. 4. Convergence performance of low-level optimization: (a) allocated
rate for da, d4, and ds, (b) example of Lagrange prices A, , and 7. And the
convergence behavior of high-level optimization: (c) physical flow rate for
links, (d) allocated rate for d;, (e) allocated rate for d3, and (f) allocated rate
for ds.

destination nodes. The implementation would not stop until
the algorithm converges to the optimality or the maximum
high-level iteration number is achieved. Theoretically, the
convergence time spent by destination nodes to catch up with
the calculated optimal transmission rates is the number of
iterations multiplies the update interval of each iteration. It
is found by [37] that an update interval which is about two
to three times the one way propagation delay of the particular
multicast destination node is sufficient.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented to demon-
strate the performance of the proposed algorithm. We first
conduct the numerical experiment in C++ code to jointly
implement the iterations of both low-level and high-level
optimization. The two-level optimization model is numerically
solved to evaluate the convergence behavior of the proposed
distributed algorithm and demonstrate that it is able to achieve
the max-flow throughput. Packet level simulations are per-
formed on ns-2 [32] with a hybrid wired and wireless network
where SVC video streams are distributed. We show that the
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Fig. 5. Impact of step size on the convergence behavior. (a) Constant step
sizes. (b) Diminishing step sizes and constant step size.

proposed algorithm will significantly improve the overall video
quality. Furthermore, we study the impact of playback deadline
(PD) and background traffic on the overall performance.

A. Algorithm Behavior and Performance Evaluations

We conduct numerical experiments and evaluate the pro-
posed algorithm over a hybrid wired and wireless network
shown in Fig. 3. Fig. 3(a) shows the wired network by a typical
butterfly network with network coding. Here, s denotes the
source node, ny, n; - - - ng4 denote relay nodes, #; and t, denote
two receiver nodes in the wired network as well as the source
nodes in the wireless network. Fig. 3(c) shows the wireless
network, which consists of 20 randomly distributed wireless
sensors. t; and f, denote the relay stations that connect the
wireless network with the wired network, d;, d> - - - ds denote
5 destination nodes and other nodes are wireless relay nodes.
In Fig. 3(a), we can see that each relay station in the wired
network has three alternative paths from the source. In Fig.
3(c), we assume that every two nodes within a distance of
less than 20 m are able to communicate with each other. We
plot two shortest paths for each destination node from relay
stations. Therefore, each destination node has six alternative
paths from the source.

In the numerical experiments, we assume that the video bit
stream has three layers, with the base layer at a rate of 3 (data
units/s), the first enhancement layer at a rate of 2 (data units/s)
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Fig. 6. (a) Allocated rate when wireless link contention exists. (b) Compar-
ison of the achievable throughput by different algorithms.

and the second enhancement layer at a rate of 1 (data units/s).
Suppose that the capacity of wireless links’ cluster is C =
10 with packet loss probability p; = 0.1. Using the proposed
algorithm, we can obtain that the achievable throughput for
destination nodes dy, d, - - - ds are 6, 3, 3, 6, and 5, respectively.
Therefore, destination node d; and d4 can receive all the three
SVC video stream layers, ds can receive the lower two layers,
while d> and ds can only receive the base layer.

Fig. 4 reflects the convergence behavior of the low-level
optimization with a fixed step size a(f;) = b(ty) = c(t) =
d(ty) = 0.05, where Fig. 4(a) shows the allocated data rate for
d, dy, and ds, and Fig. 4(b) shows the values of Lagrange
prices A, u, and n. It can be seen that all allocated data
rates and Lagrange prices approach the optimal value after
90 iterations. This implies that the low-level optimization
algorithm converges quickly. For example, the allocated data
rate for ds approaches within 10% of its optimal value after
30 iterations and converges to its optimal value 6.014 after 90
iterations. The Lagrange price A approaches within 10% of its
optimal value after 50 iterations and converges to its optimal
value 0.151 after 90 iterations.

Fig. 4(c)—(f) shows the convergence behavior of the high-
level optimization process. Fig. 4(d)—(f) shows the allocated
data rate for d;, ds, and ds, respectively, and Fig. 4(c) shows
the physical flow for selected wired and wireless links. It can
be seen that all allocated data rates and flow rates on links
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Fig. 7. High-level convergence behavior of the practical algorithm execution
in dynamic environments. (a) Dynamic change of the maximum rate of
wireless link C. (b) Wireless node ri¢ joins and leaves.

converge after 70 iterations. As discussed in Section V-E,
the low-level optimization operates at a smaller timescale and
needs a fast convergence speed. But the high-level counterpart
is at the outer loop of the iteration, which operates at a larger
timescale. So its convergence performance is determined by
the inner loop of the low-level optimization. Therefore, we can
indirectly control the convergence speed of the outer loop by
adjusting that of the inner loop.

Next, we study the impact of step size on the conver-
gence behavior of destination nodes’ rate. Fig. 5(a) shows
the convergence behavior of d,’s allocated rate with three
different step sizes, 0.15, 0.10, and 0.05. It can be seen that
the convergence behavior is smoother but slower when the
step size is smaller. With more detail, Fig. 5(b) shows the
convergence behavior of d,’s allocated rate with a fixed step
size 0.1 and two diminishing step sizes 0.1/(1 + 0.05¢5) and
0.1/(1 + 0.01¢g), both of which satisfy the requirement that
limy,, 400 @'(t) = 0 and ;2 @ (1) = +0c. It can be seen
that the convergence behavior with a diminishing step size
0.1/(1 + 0.05ty) is smoother but converges more slowly than
a fixed step size. A major advantage using the varying step
size is to be able to converge quickly first with large step sizes
and then refine itself in the later stage with smaller step sizes.
In conclusion, although a fixed step size is more convenient
in practice and can converge more quickly, a varying step size
is recommended since a slow-change rate profile is critical



560 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 5, MAY 2011

100 1
A —_—
% 6 P
. ]
% e s 'J:? % r\-
g z° |
= 2
§ 60 € 06 8 4
] o
8§ 40 ) 0.4 = —_,
e i | £ d
0.2 3 5
20 i 2| ===0,
0 =S 0 = 2
0 20 40 60 80 100 0 50 100 150 200 0 100 200 300 400

X Coordinate (m)

(a)

Number of low-level iteration

Number of high-level iteration

Fig. 8. (a) Larger wireless network with 10 destination nodes out of 40 randomly distributed wireless nodes. (b) Convergence behavior of low-level
optimization. (c) Convergence behavior of high-level optimization.
50 36 37
—o—BUS 3 =
FOOTBALL 35— 18
45 s —&— LION —&— LION
—&— FOREMAN & —»—PA ) l\ —HPA
8. Bog s
o 40 i o
- 4 Zn
i) @53 &
14 o o
Z 35 o 23
& & 22 g
T @ D 32
T30 E k<l é
H
25
b 20
20 20 2
0 500 1000 1500 2000 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Rate (Kb/s) Background traffic load (%) Background traffic load (%)

(a)

Fig. 9.

(b) (c)
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quality in PSNR of FOREMAN sequence for destination node ds when the background traffic load varies from 0 to 70%, where the palyout deadline is set

to (b) 500 ms and (c) 700 ms.

for video quality smoothness. Otherwise, a sudden change
of access data rate will often result in undesirable quality
fluctuation.

To study the condition when wireless link contention occurs,
we vary the wireless capacity in a shared link cluster C from
10 to 2 and see the corresponding impact on the allocated
rate. The results are shown in Fig. 6(a). As mentioned before,
the achievable throughput for d;, d3, and ds with no link
contention are 6, 3, and 5, respectively. When the wireless
capacity C is less than 7, wireless link contention will first
affect the rate for d;. As C decreases, the allocated rate for
ds will decrease accordingly when the wireless capacity C is
less than 6. And the allocated rate for dsz will be affected
when C is less than 3.5. For example, if C is set to be
4, which means the link contention exists in the wireless
network and it will influence d; and ds. Using the proposed
algorithm, we can obtain that the achievable throughput for
each destination nodes d;, d3, and ds can approach to 3.6, 3,
and 3.5, respectively.

Fig. 6(b) shows the achievable throughput of all destination
nodes dy, ds, ..., ds, obtained by four different methods: the
shortest path algorithm, the distributed rate allocation scheme
in [9], the LION algorithm [11], and the proposed algorithm.
Compared with the other three multi-path algorithms, the
achievable throughput of shortest path algorithm is usually
smaller since each destination node only has one single
path from the source node, which under-utilizes the available

network resource. Furthermore, it can be seen that network
coding offers a significant gain in throughput. For example,
at most time, the throughput achieved by the LION algorithm
and the proposed algorithm (with network coding) is greater
than that by the distributed rate allocation scheme (without
network coding). Overall, it can be seen that the proposed
algorithm that combines network coding technique and ap-
propriate multi-path rate allocation mechanism can approxi-
mate the max-flow capacity for each member of a multicast
group.

To investigate the convergence in dynamic environment
[43], the execution of the proposed distributed algorithm
always starts directly from Step 2 (low-level optimization
step) with the previous optimal values (rather than from the
initialization step when the values of all optimization variables
and Lagrange variables are initialized to the very beginning),
thus expediting its convergence. In Fig. 7(a), we study the con-
vergence behavior of the running under a dynamic change of C
(the maximum rate of wireless link). Initially, the optimization
iteration begins from the initialization step with C = 6, and
allocated rates for d5, dy and ds converge to the optimal values
after approximate 70 iterations. At iteration 150 and 300, C
is varied to 4 and 5, respectively, and the proposed algorithm
starts directly from Step 2 with the previous optimal values.
The number of additional iterations required to converge to
new optimal values from the previous ones are about 25 and
35, respectively. The adaptation of the practical algorithm
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TABLE I
RECEIVED AVERAGE VIDEO QUALITY IN PSNR OF BUS, FOOTBALL, AND FOREMAN SEQUENCES WITH DIFFERENT PD

PSNR BUS Sequence FOOTBALL Sequence FOREMAN Sequence
PD (ms) 300 | 400 | 500 | 600 300 | 400 | 500 | 600 300 | 400 | 500 | 600
SA 232 | 239 | 239 | 239 229 | 232 | 232 | 232 294 | 295 | 29.5 | 295
DA 239 | 264 | 27.7 | 27.7 232 | 256 | 274 | 274 29.5 | 32.0 | 349 | 349
dy | LION | 236 | 239 | 264 | 264 230 | 232 | 25.6 | 25.6 29.4 | 295 | 32.0 | 32.0
PA 23.6 | 263 | 269 | 274 23.0 | 25.6 | 26.6 | 27.2 294 | 32.0 | 34.0 | 34.8
SA 232 | 239 | 239 | 239 229 | 232 | 232 | 232 294 | 295 | 29.5 | 295
DA 239 | 239 | 264 | 264 232 | 232 | 25.6 | 25.6 29.5 | 29.5 | 32.0 | 32.0
d, | LION | 21.8 | 239 | 264 | 264 222 | 232 | 25.6 | 25.6 29.1 | 29.5 | 32.0 | 32.0
PA 21.8 | 26.1 | 26.6 | 26.8 222 | 25.0 | 26.0 | 26.5 29.1 | 309 | 32.8 | 33.7
SA 239 | 239 | 239 | 239 232 | 232 | 232 | 232 29.5 | 29.5 | 29.5 | 295
DA 239 | 264 | 27.7 | 27.7 232 | 25.6 | 274 | 274 29.5 | 32.0 | 349 | 349
dy | LION | 264 | 27.7 | 304 | 30.6 25.6 | 274 | 30.0 | 30.2 32.0 | 349 | 39.2 | 39.7
PA 272 | 294 | 304 | 30.6 27.0 | 29.0 | 30.0 | 30.2 347 | 373 | 39.2 | 39.7
SA 232 | 239 | 239 | 239 229 | 232 | 232 | 232 294 | 295 | 29.5 | 295
DA 239 | 264 | 27.7 | 27.7 232 | 256 | 274 | 274 29.5 | 32.0 | 349 | 349
dy | LION | 239 | 264 | 264 | 27.7 232 | 25.6 | 25.6 | 274 29.5 | 32.0 | 32.0 | 349
PA 243 | 265 | 27.3 | 28.2 233 | 259 | 27.1 | 279 29.6 | 32.5 | 34.8 | 35.0
SA 227 | 234 | 23.8 | 239 22.6 | 229 | 23.1 | 232 293 | 294 | 295 | 295
DA 239 | 264 | 27.7 | 27.7 232 | 25.6 | 274 | 274 29.5 | 32.0 | 349 | 349
ds | LION | 239 | 264 | 264 | 27.7 232 | 256 | 25.6 | 27.4 29.5 | 32.0 | 32.0 | 349
PA 260 | 27.2 | 283 | 28.8 249 | 27.0 | 28.0 | 28.3 30.7 | 348 | 35.1 | 359

execution to node joining and departure is shown in Fig. 7(b).
The optimization iteration under network topology in Fig. 3(a)
and (c) starts from the initialization step, and converges to the
optimal values after approximate 70 iterations. At iteration 150
and 300, wireless node r¢ joins and leaves the path of ds, re-
spectively, and the proposed algorithm starts directly from Step
2 with the previous optimal values. The number of additional
iterations required to converge to new optimal values from the
previous ones are about 20 and 30, respectively.

Compared with the algorithm running from the initialization
step, Fig. 7 demonstrates that the dynamic execution of the
proposed algorithm which starts from Step 2 with the previous
optimal values converges much faster. In fact, it can also be
observed that in all cases the convergence to 90% optimality
is much faster, with at least 20% fewer iterations than those
required for convergence to optimality. Therefore, we can
obtain a feasible solution in realistic dynamic networks to a
certain degree of optimality in a much shorter convergence
time.

To evaluate the effect for a more general network, we
implement the proposed algorithm over the hybrid network
which consists of Figs. 3(a) and 8(a) with a more complex
wireless network. In Fig. 8(a), we randomly place 40 wireless
nodes in a 100 m-by-100 m square area and choose ten nodes
to be destination nodes. Theoretically, since the proposed
algorithm is implemented in a distributed manner that only
requires local information, the communication overhead and
thus convergence behavior would not affected very much
by larger scale of networks. For instance, Fig. 8(b) and (c)
illustrates the convergence behavior of both low-level and
high-level optimization. It can be seen that the convergence
speed slows down slightly as the scale of networks increases.
Therefore, the impact on the system performance affected by
larger scale networks is relatively small.

B. Packet Level Simulations

We use ns-2 to conduct packet level simulations on the net-
work topology shown in Fig. 3(b) and (d). The wired network
is composed of one source s, three relay nodes ny, ny, ns,
and three relay stations ¢, t5, t3. The wireless network has 20
randomly distributed sensor nodes within a 50 m-by-50 m area,
among which 5 sensor nodes are considered as destinations.
In the wired network, each relay station has two different
paths from the source node. In the wireless network, we find
for each destination node three different paths which are the
three shortest paths from relay stations. In subsequence, each
destination node has six alternative paths from the source node
to obtain the SVC video stream.

We use Joint Scalable Video Model 7 10 reference codec
of H.264/AVC scalable extension standard [33], with three
well-known test video sequences (BUS, FOOTBALL, and
FOREMAN) at frame rate of 30 frames/s, CIF (352 x 288)
resolution, and a GOP-length of 32 frames. They are encoded
with 256 kb/s on the base layer, and 384 kb/s, 512 kb/s
and 1024 kb/s on the enhancement layers by fine granularity
scalable coding. The layered SVC sources are segmented into
small blocks which are encapsulated to multiple packets with
the packet size 512 bytes. The transmission delay for each
link is set to be 50 ms. Fig. 9(a) shows the R-D performance
(PSNR) of SVC for three CIF video sequences obtained
from the packet-level simulation on ns-2. Using the proposed
algorithm, we also obtained that the max-flow capacity for
destination nodes di,d, ...ds are {1200, 900, 2100, 1200,
1800} kb/s. In the following, we will compare the simulation
results obtained by the proposed algorithm against those by
other algorithms for different application requirements.

We change the PD from 300 ms to 600 ms and evaluate
the results obtained by the four different algorithms: shortest
path algorithm (SA), distributed rate allocation algorithm (DA)
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in [9], the LION algorithm in [11], and proposed algorithm
(PA). The results are shown in Table 1. Here, packets are
considered to be lost if they do not arrive at the destination
node before the scheduled playback time [36]. From Table
I, we can see that the average packet delay of SA and DA
(without network coding) is smaller than that of LION and PA.
However, when the PD is set to large enough, e.g., 600 ms, the
average video quality achieved by LION and PA is better than
SA and DA due to the use of network coding. By allowing
to receive partial layers, the proposed algorithm ensures the
network’s capacity resource is fully exploited, since if the
residual bandwidth is not enough for an entire Layer m but
still larger than b,, Layer m can be partially received to
improve the received video quality. On the contrary, when the
same situation happens to the other three algorithms, Layer m
will be discarded. Therefore, it can be seen that PA generally
achieves the best overall video quality for all destination nodes.

To study the impact of background traffic on the resource
allocation results with these four algorithms, FOREMAN is
adopted as the test video sequence and the percentage of
background traffic varies from 0 to 70% while the PDs are set
to be 500 ms and 700 ms. The results are shown in Fig. 9(b)
and (c). Since a layer is either entirely received or discarded
by SA, DA, and LION algorithms, the received video quality
achieved by these three algorithms can only locate in several
discrete PSNR values. Furthermore, it can also be seen that
with all the four algorithms and at different PDs, the received
video quality in PSNR for ds decreases as the increment of
background traffic load. By allowing partial layer reception,
PA outperforms the other three algorithms with better overall
video quality for ds at different background traffic loads and
PDs.

VII. CONCLUSION

In this paper, we developed an efficient flow control and
resource allocation scheme for multicast of scalable video
streaming over hybrid wired/wireless networks. In order to per-
form layered utility maximization over tiered wired/wireless
coded networks, we proposed a joint source-network flow
optimization scheme where each destination node accesses
progressive layered stream in an incremental order. It aims
to determine optimal multicast paths at associated rates for
the highest sustainable layered video quality with minimum
costs. A distributed algorithm with two levels of optimization
has also been developed and illustrated in detail. Experimental
results demonstrate that the proposed algorithm not only
provides better video quality with optimal layered access for
heterogeneous receivers, but benefits the asymptotic capacity
of a hierarchical “hybrid” wired/wireless architecture in a
scalable sense.

APPENDIX A
PROOF OF PROPOSITION 1

First, we prove that the sufficiency of constraints 4 and
5. From constraint 4, we can see that there only exist two
situations for destination node d in multicast session m, i.e.,

b, < Zj(d) R’" < B,, specifies that destination d subscribes
to layer m, and Zj(d) Ry, = 0 means that destination d fails
to subscribe to layer m. Under constraint 5, we can have
Vm € M, Vd € D, if b, < 31V Rl < By, then Y17 Ry
can be either 0 or within the range of [bon+1), B(m+1)] if
SV R =0, then Y1 RY™Y can only be 0. It indicates
that the destination d needs to join all the lower layers (from
layer 1 to layer m) before joining layer m+1, which guarantees
that each destination node can receive layered video streams
in an incremental order under constraints 4 and 5.

The necessity of constraints 4 and 5 can be easily proved in
the following way. If each destination node receives layered
video streams in an incremental order, then the lower bound
and upper bound of the receiving rate required for each layer
given by constraints 4 should be satisfied and the inequality
in constraints 5 as well can be obviously obtained.

APPENDIX B
PROOF OF PROPOSITION 2

For the primal-dual method in low-level optimization, we
construct the following Lyapunov function:

Ry
VR, A, 1, n)—ZZ[Z / ﬁ(" Rijdi
deD meM “jeJ(d) G

il . MZ’ 1
—— (@ — A"Hd + / ——(v — fuy)dv
Z /W b(D) o c(v) ¢
[ -]
+ s —fig)ds
i de)”
(26)
Note that V(R, &, i, §) = 0. If Ry #Rdy then f m a(K>( -

dj)d/c > 0, and this inequality can be extended to the
other three arguments. Hence, we have V(R,A,u,n) >
0, VR, A, u,n) # (IA{,):,,a, 7). Furthermore, it can be eas-
il'}\/ seen that V(R, A, u,n) — oo, when [[(R, A, u,n) —
R, %, 1, i)l — 0. _

Considering the KKT conditions of P1-1, we have V <
0 for all (R,’)\»,AL, n) and with equality if and only if
R, A, uw,m) =R, A, i1, ).

APPENDIX C
PROOF OF PROPOSITION 3

To prove the globally asymptotical stability of the high-level
dynamic system, we can construct the Lyapunov function in a
similar way as in the proof of Proposition 2 and apply the KKT
conditions to verify that all the three conditions in Lyapunov’s
Theorem are satisfied. Here, the detailed proof is omitted with
limited space.
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