Shanghai Jiao Tong University Intelligent Video Modeling LAB



# Semi-s<mark>upervised Object Reco</mark>gnition Using Structure Kernel

#### Botao Wang, Hongkai Xiong

Institute of Image Communication and Information Processing (IICIP) Department of Electronic Engineering Shanghai Jiao Tong University

#### **Xiaoqian Jiang**

Division of Biomedical Informatics University of California, San Diego **Fan Ling** Wireless Comm. Tech. Limited QUALCOMM



- Structure kernel
- Optimizing kernel parameters and training classifier
- Experimental results





### **Part-based object representation**















The part sizes of objects in real scenarios vary within certain scales because of intra-class variations, viewpoints, etc.





parts

**Outline** 

Structure kernel

Optimizing kernel parameters and training classifier

Experimental results





### **Structure kernel**



Structure kernel measures the similarity of two part-based represented objects in(1) Global visual similarity;(2) Part visual similarity;(3) Spatial similarity.



### **Structure kernel**

| Global visual similarity                             | Part visual similarity                                                                  | Spatial similarity                                                          |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $S_{g} = k(\boldsymbol{F}_{0}, \boldsymbol{F}_{0}')$ | $S_{p} = \sum_{i=1}^{n} w_{i} k \left( \boldsymbol{F}_{i}, \boldsymbol{F}_{i}' \right)$ | $S_{s} = \sum_{i=1}^{n} \exp \left\{ -\gamma (g_{i} - g_{i}')^{2} \right\}$ |
| $F_0, F_0'$ : global feature vectors                 | $F_i, F_i'$ : part feature vectors                                                      | $g_i, g_i'$ : part locations                                                |
| k : base kernel                                      | <i>k</i> : base kernel                                                                  | $\gamma$ : penalty factor                                                   |
|                                                      | $w_i$ : part weight                                                                     |                                                                             |

#### Structure kernel

The structure kernel *K* measures the similarity between two part-based represented objects  $\boldsymbol{x}$  and  $\boldsymbol{x'}$  as

$$K(\boldsymbol{x}, \boldsymbol{x}') = k(\boldsymbol{F}_0, \boldsymbol{F}_0') + \sum_{i=1}^n w_i k(\boldsymbol{F}_i, \boldsymbol{F}_i') + \lambda \sum_{i=1}^n \exp\left\{-\gamma (g_i - g_i')^2\right\}$$

 $\lambda$  : parameter that balances the visual similarity and spatial similarity.



**Outline** 

Structure kernel

Optimizing kernel parameters and training classifier

Experimental results





## **Training and optimizing parameters**

#### 1. Optimizing kernel parameters

$$K(\boldsymbol{x}, \boldsymbol{x}') = k(\boldsymbol{F}_0, \boldsymbol{F}_0') + \sum_{i=1}^n \boldsymbol{w}_i k(\boldsymbol{F}_i, \boldsymbol{F}_i') + \lambda \sum_{i=1}^n \exp\left\{-\gamma (\boldsymbol{g}_i - \boldsymbol{g}_i')^2\right\}$$

#### **Inter-class objects**

Low similarity

p,q i=1

#### **Intra-class objects**



 $\min\sum_{i=1}^{n} \sum_{i=1}^{n} w_{i} k\left(F_{i}^{p}, F_{i}^{q}\right) \quad (1)$ 

$$(1) \qquad \max_{w} \sum_{p=1}^{N} \sum_{q=p}^{N} y_{q} \sum_{i=1}^{n} w_{i} k \left( \mathbf{F}_{i}^{p}, \mathbf{F}_{i}^{q} \right)$$

$$(2) \qquad \max_{w} \sum_{p=1}^{N} \sum_{q=p}^{N} y_{q} \sum_{i=1}^{n} w_{i} k \left( \mathbf{F}_{i}^{p}, \mathbf{F}_{i}^{q} \right)$$

$$(3) \qquad (3) \qquad (3)$$

### Normalized stochastic gradient ascent algorithm

$$\max_{\mathbf{w}} E(\mathbf{w}) = \sum_{p=1}^{N} \sum_{q=p}^{N} y_{q} \sum_{i=1}^{n} w_{i} k\left(\mathbf{F}_{i}^{p}, \mathbf{F}_{i}^{q}\right)$$
  
s.t. 
$$\begin{cases} \sum_{i=1}^{n} w_{i} = 1 \quad (1) \\ w_{i} \ge 0, i = 1, \dots n \quad (2) \\ y_{p} = +1 \end{cases}$$

Sub-gradient of samples  $\boldsymbol{x}_p$  and  $\boldsymbol{x}_q$ :  $\nabla = y_v \left[ k \left( \boldsymbol{F}_1^{\ u}, \boldsymbol{F}_1^{\ v} \right), k \left( \boldsymbol{F}_2^{\ u}, \boldsymbol{F}_2^{\ v} \right), \cdots, k \left( \boldsymbol{F}_n^{\ u}, \boldsymbol{F}_n^{\ v} \right) \right]$ 

Normalized sub-gradient:

$$\nabla' = y_{v} \left[ k \left( \boldsymbol{F}_{1}^{u}, \boldsymbol{F}_{1}^{v} \right) - \frac{1}{n} \sum_{i=1}^{n} k \left( \boldsymbol{F}_{i}^{u}, \boldsymbol{F}_{i}^{v} \right), \cdots, k \left( \boldsymbol{F}_{n}^{u}, \boldsymbol{F}_{n}^{v} \right) - \frac{1}{n} \sum_{i=1}^{n} k \left( \boldsymbol{F}_{i}^{u}, \boldsymbol{F}_{i}^{v} \right) \right]$$

If  $w^{(t)}$  satisfies (1) (2),  $w^{(t+1)} = w^{(t)} + \alpha \nabla'$  also satisfies (1) (2) and  $E(w^{(t+1)}) \ge E(w^{(t)})$ 

## **Training classifier with latent SVM**



**Outline** 

Structure kernel

Optimizing kernel parameters and training classifier

Experimental results



### **INRIA person dataset evaluation**

- 1. Different base kernels
  - a. linear kernel:  $k(F, F') = F \cdot F'$
  - **b. polynomial kernel:**  $k(\mathbf{F}, \mathbf{F}') = (\mathbf{F} \cdot \mathbf{F}' + 1)^m$
  - **c. RBF kernel:**  $k(\mathbf{F}, \mathbf{F}') = \exp\left\{-\delta \|\mathbf{F} \mathbf{F}'\|^2\right\}$



| Base kernel       | Average precision |  |
|-------------------|-------------------|--|
| SK (linear)       | 0.938             |  |
| SK (polynomial)   | 0.946             |  |
| SK (radial basis) | 0.954             |  |
| Felzenszwalb      | 0.917             |  |
| Dalal-Triggs      | 0.927             |  |
|                   |                   |  |



## **INRIA person dataset evaluation**



### **PASCAL VOC 2007 dataset evaluation**



## **PASCAL VOC 2007 dataset evaluation**

#### 1. Different base kernels



## **PASCAL VOC 2007 dataset evaluation**

# 2. Multi-scale part representation and weighted combination of part similarities



## **Conclusions and future work**

- The multi-scale part-based model is more robust to intra-class variations and viewpoint changes than existing part-based models.
- The structure kernel measures the similarity of two part-based objects in both visual appearance and spatial layout in a joint manner.
- The normalized stochastic gradient ascent method makes the kernel parameters adaptive to the distribution of data.
- A more sophisticated cost function can be used to penalize the deformation of objects



Shanghai Jiao Tong University Intelligent Video Modeling LAB



