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ABSTRACT
Object recognition is a fundamental problem in computer vi-

sion. Part-based models offer a sparse, flexible representation

of objects, but suffer from difficulties in training and often use

standard kernels. In this paper, we propose a positive definite

kernel called “structure kernel”, which measures the similari-

ty of two part-based represented objects. The structure kernel

has three terms: 1) the global term that measures the global

visual similarity of two objects; 2) the part term that measures

the visual similarity of corresponding parts; 3) the spatial ter-

m that measures the spatial similarity of geometric configu-

ration of parts. The contribution of this paper is to gener-

alize the discriminant capability of local kernels to complex

part-based object models. Experimental results show that the

proposed kernel exhibit higher accuracy than state-of-art ap-

proaches using standard kernels.

Index Terms— Object recognition, kernel, image fea-

tures, machine learning, data mining

1. INTRODUCTION

Object recognition is a fundamental problem in computer vi-

sion and artificial intelligence. Partial occlusion, background

clutters and non-rigid deformation are among the most chal-

lenging problems in object recognition. In recent years, sig-

nificant improvements have been made in object recognition

with machine learning techniques, such as support vector ma-

chine [1] and kernel methods [2].

Kernels are symmetric bivariate functions that capture re-

semblance between input data. We assume Φ(x) : X → H
to be a function that maps x from original data space to a

high dimensional Hilbert space. The kernel function calcu-

lates the inner product of the mapped data in H : K(x,x′) =
Φ(x) · Φ(x′) without explicitly computing the mapped da-

ta. To ensure the existence of such mapping, the kernel func-

tion must satisfy positive definiteness condition, which is also

called the Mercer condition. In general, kernel methods can

be utilized in many machine learning techniques as long as

they handle only inner products of the input data.
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Fig. 1. Examples of standard kernels and the structure kernel.

Standard kernels do not take spatial dependency into consid-

eration while the structure kernel uses spatial dependency to

improve the quality of object detection.

In this paper, we propose a positive definite kernel called

“structure kernel” to measure the similarity of two part-based

represented objects. The main contribution of this paper is to

incorporate the discriminant capability of local kernels into

complex object models. In our approach, we use a part-based

representation of objects, which models an object as a collec-

tion of visual parts arranged in a deformable configuration.

Visual appearance of each part is encoded with a region-based

image descriptor, which is robust to background clutters and

semantically significant. Parts are arranged in a deformable

configuration, which offers more flexibility and invariance to

partial occlusion. We propose a structure kernel to measure

the similarity of complex models, which is more discriminant

than standard kernels because it takes both visual appearance

and the spatial configuration of corresponding parts into ac-

count, as indicated in Figure 1. Experimental results show

that the proposed method has accurate performance and out-

perform many state-of-the-art approaches.

2. RELATED WORK

Summation kernel [3] calculates the sum of all of the cross-

similarities between all of the possible combination of fea-

ture vectors. It is a Mercer kernel but its discriminative a-

bility is compromised because good matchings can be easily

swamped by bad matchings. The “max” kernel [4] improves
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the summation kernel by summing only the similarities of the

best matched feature vectors. But the “max” operation makes

the kernel non positive definite and this is risky because the

implicit mapping may not exist. In [3], a circular-shift invari-

ant kernel was proposed to measure the neighborhood similar-

ity of two keypoints, but the geometric configuration is only

reflected by the orientation of the keypoint. In [5], a context-

dependent kernel was proposed, which considers the context

as a part of the alignment process in designing kernels.

3. STRUCTURE KERNEL

3.1. Object Representation
Our model represents an object as a collection of parts ar-

ranged in certain geometric configuration. We use both the

global feature and local features of parts to represent an ob-

ject. Global feature is typically coarse and sensitive to back-

ground clutters and partial occlusion, and through incorporat-

ing local features that are more distinctive among the object

category, we expect the detection result can be more robust.

An example is shown in Figure 2(b), where the object is

represented as a n+ 1 tuple:

x = (F0, P1, . . . , Pn) (1)

where F0 is the feature vector of the whole object. Pi =
(Fi, gi), i = 1, . . . , n are part models, where Fi is the feature

vector of part i and gi is the 2D coordinate of the part relative

to the whole object.

Fig. 2. (a) Positive examples from INRIA dataset; (b) Object

representation; (c) Object model and part selection.

To encode the visual appearances of object and parts

Fi, i = 1, . . . n, we utilize a variation of histogram of ori-

ented gradients used in [6]. Image patches are divided into

8 × 8 non-overlapping cells, each of which is represented

by a 31 dimensional feature vector consisting of 4 sums

over 9 contrast insensitive orientations, 9 sums over differ-

ent normalizations for contrast insensitive orientations, and

18 sums over different normalizations for contrast sensitive

orientations.

3.2. Definition of Structure Kernel
Let Fi, i = 0, 1, ..., n be the feature space of the feature vec-

tors of the whole object (i = 0) and parts (i = 1, ..., n) and

G = N × N is the space of 2D coordinate. The feature space

of part i can be represented as Pi = Fi × G. Together, the

feature space of an object is X = F0 × P1 × ...× Pn.

Given two structured represented objects xi and xj , a

structure kernel k : X × X → R is defined as:

Definition 1 (Structure Kernel). Let X be the input space,
x,x′ ∈ X are two structured data. We define the structure
kernel K : X × X → R between x and x′ as

K(x,x′) = K00 (F0,F
′
0) +

n∑
i=1

K0i(Fi,F
′
i )

+λ

n∑
i=1

exp

{
− (gi − g′

i)
2

2σ2

} (2)

where K0i(·) : Fi × Fi → R is a standard positive definite
kernel, λ : λ > 0 is a kernel parameter that balances the
relative weights between the appearance similarity and the
geometric similarity, and σ is the parameter of the measure-
ment of the geometric similarity.

The structure kernel consists of three terms: the first term

in Eq. (2) is a “global term”, which measures the resemblance

of the feature vectors of the whole objects. The second term

in Eq. (2) is a “part term”, which measures resemblance of

the feature vectors of of all the corresponding part pairs. Both

the global term and the part term compare visual appearances

of objects and parts, which are calculated with a pre-defined,

positive definite, standard kernel function K0. The third term

in Eq. (2) is a “spatial term”, which reflects the similarity of

the spatial configurations of these two objects.

3.3. Mercer Condition
To guarantee the existence of the high dimensional repro-

ducing kernel Hilbert space, the structure kernel K must

satisfy the Mercer condition: for any selection of examples

x1, . . .xm ∈ X , the Gram matrix K of the structure kernel

K : X × X → R , which is defined as K(i, j) = K(xi,xj),
is positive definite.

Proposition 1. Structure kernel is a Mercer kernel.

Proof. Recall that a matrix K is positive definite if and only

if αTKα > 0 for all non-zero vector α. We denote the

Gram matrix for kernel K0i as K0i and the Gram matrix for

di(gi, g
′
i) = exp

{
− (gi−g′

i)
2

2σ2

}
as Di, i = 0, . . . , n. As K0i

are Mercer kernels and exp
{
− (gi−g′

i)
2

2σ2

}
is in the form of

Gaussian function. So K0i and Di are positive definite. For

any m-dimensional non-zero vector α,

αTKα = αT

(
n∑

i=0

Koi + λ

n∑
i=1

Di

)
α

=
n∑

i=0

αTKoiα+ λ
n∑

i=1

αTDiα ≥ 0
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Therefore, the structure kernel satisfies the Mercer condi-

tion.

3.4. Training

Our object classifier can be trained in a semi-supervised way

where only positive examples are labeled with bounding box-

es (i.e., each covers an instance of the object of interest).

The classifier is capable of automatically identifying effec-

tive parts that have similar visual appearance and geometric

configuration in the object category in the training process.

3.4.1. Initializing Global Detector and Part Detectors

Candidate objects and parts are extracted from images by

global detector and part detectors, using linear Support Vector

Machine (SVM) classifiers. The detector can be represented

as D = {β, b}, where β is a linear filter and b is the bias

term. An image patch is scored by s = βTF + b, where

F corresponds to the feature vector of the image patch. The

training of global detector is similar to [7].

Parts are defined to be sub-regions of objects which have

similar visual appearance in the object category. These re-

gions typically have high values in the filter of the global de-

tector. We greedily place a pool of rectangular average filters

to search for high value regions. Parts are symmetric and do

not overlap with each other, and total area of all parts cov-

ers at least 60% of the object. An example of detectors for

“person” category is shown in Figure 2(c).

3.4.2. Train Classifier

An object hypothesis x ∈ X is scored by the discriminant

function:

fK(x) =
N∑
i=1

αiyiK(xi,x) + b (3)

where K is the structure kernel, xi are training examples, yi ∈
{−1,+1} are labels of training examples, N is the number of

training examples, and b is the bias term.

The training procedure is shown in Algorithm 1. In train-

ing, we solve α = (α1, . . . , αn) by optimizing the dual for-

mulation of the primal SVM formulation:

min
αi

1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj)−
N∑
i=1

αi

s.t.

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ αi ≤ C

N∑
i=1

αiyi = 0

(4)

Problem (4) is solved by the quadratic programming tech-

nique, which is denoted as Train(Pa, Na) in Algorithm 1.

We treat the position of parts as latent variables, and use

a latent SVM [6] to train the classifier. In each iteration, we

relabel the positive examples and negative examples with the

current kernel so that their geometric configurations give the

highest scores. With the fixed geometric configuration for

each example, the classifier can be trained with standard k-

ernelized SVM techniques.

As there is a large number of training examples, it is inef-

ficient to make use of all of them in the training procedure due

to the memory limitation. Therefore, we use a fixed cache of

positives and negatives, denoted as Pa and Na for training, it-

eratively removing easy examples from the cache, and adding

hard examples to the cache. The algorithm below guarantees

to converge to the exact solution of the training problem using

all training data.

Algorithm 1 Training classifier

Input: positive examples P, negative examples N
Output: classifier C

for r = 1 to relabel do
[Pa, Na] = RandomSelect(P , N );

C = Train(Pa, Na);

for m = 1 to datamine do
[Pa, Na] = RemoveEasyExamples(Pa, Na, C);

[Pa, Na] =AddHardExamples(P − Pa, N −Na, C);

C = Train(Pa, Na);

end for
[P , N ] = relabel(P , N );

end for

4. EXPERIMENTAL RESULTS

We use the INRIA person dataset to evaluate the performance

of the proposed structure kernel. Some images in the INRIA

person dataset are shown in Figure 2(a). Positive training set

consists of 1,208 images and their left-right reflections, i.e.

2,416 images in all. Negative training set is more than 10,000

image patches randomly sampled from 1,218 images that do

not contain any instance of person. We set λ = 1, C = 0.1
and σ = 1.

We evaluate the structure kernel K using three settings and

apply a simple configuration of kernel parameters.

1. Linear kernel: K0(F, F
′) = F · F ′;

2. Polynomial kernel: K0(F, F
′) = ( 1dF ·F ′+r)m, where

d is the dimension of the feature vector, r = 1,m = 2;

3. Radial basis kernel: K0(F, F
′) = exp(−γ ‖F − F ′‖2)

with γ = 0.001.

The test set consists of 1,216 positive images and 12,160

negative images. The precision-recall curves are displayed in

Figure 3, and average precision values are shown in Table 1.

Furthermore, we also compare our result with Felzenszwalb

detector [6] and Dalal&Triggs detector [7].

In Figure 3, linear structure kernel achieves the best per-

formance at low-recall-high-precision region and radial basis
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Fig. 3. Precision-recall curves of structure kernel with differ-

ent K0 and other approaches for comparison.

Table 1. Average precision of different methods

SK(linear) SK(RBF) SK(poly) Dalal P. F. F

0.988 0.986 0.958 0.983 0.857

structure kernel achieves best performance at high-recall-low-

precision region. The linear kernel outperforms the RBF ker-

nel in the experiment because we limit the search space of

γ ∈ (0.0001, 0.01) of the RBF kernel for tractable computa-

tion, but in theory, RBF should always reduce to linear kernel.

In Figure 4, we illustrate some test images from the INRI-

A dataset, which are incorrectly detected by Felzenszwalb’s

approach [6] but are correctly detected by our proposed struc-

ture kernel.

(a)

(b)

Fig. 4. Comparison of detection results: (a) Felzenszwalb’s

approach [6]; (b) Structure kernel.

We also evaluate the influence of part numbers to the per-

formance of the structure kernel. We change the part numbers

from 2 to 5, which is shown in Figure 5(a), and train classi-

fiers where K0 is a linear kernel. The precision recall curve

is shown in Figure 5(b) and the average precision values are

listed in Table 2. These results indicate the structure kernel is

fairly robust with different part numbers.

(a)

0.8 0.85 0.9 0.95 1
0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

2 parts
3 parts
4 parts
5 parts

(b)
Fig. 5. (a) Different part configurations; (b) precision recall

curves of different part configurations.

Table 2. Average precision of different part numbers

2 parts 3 parts 4 parts 5 parts

0.987 0.985 0.982 0.987

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel positive definite kernel

called “structure kernel”, which measures the similarity of

two part-based represented objects in both appearances and

spatial configurations. Experimental results show that the

structure kernel achieves high accuracy in object detection

tasks and outperforms state-of-the-art approaches. Future

work will concentrate on the automatic tuning of parameters

to the structure kernel in training, so that the kernel can be

more flexible to fit the properties of various object categories.

Furthermore, we will evaluate the structure kernel on larger

datasets, like the PASCAL VOC challenge.
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