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ABSTRACT
This paper addresses the problem of advanced silhouette
tracking with no prior information, and proposes shape-
oriented segmentation together with graph matching cor-
roboration. In terms of unified energy minimization, the
shape-oriented graph cut in segmentation exploits the shape
information by penalizing the feature points in alignment
with shape-oriented map of adjacent frames. While reducing
the temporal inconsistencies and improve the accuracy of
segmentation, the energy model of graph matching is further
designed to compensate the validity of segmentation. To
be concrete, it is involved with structural matching cost and
unmatched penalty cost to deal with occlusion during track-
ing. The effectiveness of the proposed scheme is shown with
experiments on challenging real-world image sequences.

Index Terms— Silhouette tracking, shape-oriented graph
cut, segmentation, graph matching

1. INTRODUCTION

Visual tracking is a challenging and important problem in
computer vision. According to a recent review by Yilmaz et
al.[1], there are three types of tracking forms: point track-
ing, silhouette tracking, and kernel tracking. The difference
between silhouette tracking and other kinds of tracking is
that silhouette tracking not only localizes the position of the
objects, but also segments the objects from the background.
Moreover, silhouette and contour rather than primitive geo-
metric shapes could properly represent the time-lapse non-
rigid objects for animation, surveillance, human-computer
interaction, medical diagnosis, and further event recognition.
Hence, silhouette tracking has been an active research field
for decades and draws attention of this paper.

We can classify silhouette tracking as contour evolution
and segmentation-based methods. Contour evolution ap-
proaches evolve an initial contour to a new position in the
current frame by either using state space searching or mini-
mizing certain contour energy functional. Isard and Blake [8]
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defined a state space including the spline shape parameters
and the affine motion parameters. Particle filter was employed
to update the state in the current frame based on the edge ob-
servation along the normal lines at the control points on the
contour. However, the parametric representation set the limits
of this approach for which certain model assumptions must
be satisfied. Segmentation based approaches track silhouettes
by segmenting every frame into foreground and background
regions. Lu et al. [9] addressed the problem of localizing a
target’s position and segmenting a target as an online binary
classification problem using dynamic foreground/background
appearance models. The appearance models were formulated
as bags of image patches, which were maintained using tem-
poral adaptive importance resampling procedure based on
simple nonparametric statistics of the appearance patch bags.

Malcolm et al. used graph cuts for multi-objects tracking
through clustering in [2], by introducing a distance penalty
and location prediction. However, it may lead to an inaccu-
rate result when there is an occlusion or large scale change
since it does not take the shape of the objects into account. In
[3], a combined scheme on silhouette tracking against drastic
scale change and occlusion was composed of particle filter
tracking, 3D graph cut based segmentation. When predict-
ing the position by particle filter, the result of segmentation
still depends on graph cut and the mask which may not be
always accurate. A combined shape and feature based video
analysis for non-rigid object tracking was proposed in [4],
which is tightly coupled with an adaptive background gener-
ation method to compensate the weakness of block matching.
It generates a set of features called shape control points
(SCPs) by detecting edges in the neighboring four directions.
However, it estimates the objects’ boundary using the second-
order derivative which is prone to local noises. Conditional
random field (CRF) has ever been adopted for silhouette
tracking [5], where different visual cues are fused by means
of a graphical model and the temporal shape continuity is
neglected.

In terms of unified energy minimization, this paper pro-
poses shape-oriented graph cut segmentation together with
graph matching corroboration as shown in Fig.1. To reduce



the temporal inconsistencies, the shape-oriented graph cut in
segmentation exploits the shape information by penalizing the
feature points in alignment with shape-oriented map of ad-
jacent frames. For the validity of segmentation, the energy
model of graph matching is further designed to involve with
structural matching cost and unmatched penalty cost. It com-
pensates for the segmentation results if needed and cope with
occlusion during tracking. The effectiveness of the proposed
approach is demonstrated with experiments on challenging
real-world image sequences.

Fig. 1. The diagram of the proposed scheme with shape-
oriented segmentation and graph matching corroboration.

The remainder of the paper is organized as follows. Sec-
tion 2 details our proposed method for silhouette tracking, in-
cluding shape-oriented segmentation and graph matching cor-
roboration. Section 3 gives some experiments on real life se-
quences and Section 4 is the conclusion of the paper.

2. THE PROPOSED SCHEME FOR SILHOUETTE
TRACKING

Our proposed method for silhouette tracking consists of two
parts, shape-oriented segmentation and graph matching cor-
roboration. We first segment the object from background via
shape-oriented graph cut method, which can reduce the tem-
poral inconsistencies and improve the accuracy and correct-
ness of segmentation. This part is described in Section 2.1.
Graph matching technique is then used to check the valid-
ity of segmentation and compensates for the results if needed,
which will be elaborated in Section 2.2. The framework of our
proposed method is shown in Fig.1, and algorithm 1 depicts
the overview algorithm of our silhouette tracking method.

2.1. Shape-Oriented Graph Cut Segmentation

We denote the image sequences as {Ω1,Ω2, ...,Ωn}. To dis-
tinguish foreground from background, we also introduce a la-
beling function f : for ∀x ∈ Ωt, f(x) = 0 if x belongs to the
background, otherwise f(x) = 1.

Algorithm 1 Overview of our proposed silhouette tracking
algorithm

INPUT: Image Sequence{Ω0,Ω1, ...,ΩN} and the initial
object shape C0 in frame Ω0

OUTPUT: The object silhouette C1, C2, ..., CN in frame
{Ω1,Ω2, ...,ΩN}
Initialize the maximum iterations ITERATIONS
for n = 1 to N do

Set En(M) infinite.
iter number = 0
while En(M) > W × En−1(M) and
iter number < ITERATIONS do

Segment object in frame Ωn using Shape-Oriented
Graph Cut and get segmentation result Ĉn; (See Sec-
tion 2.1)
Match Ĉn with Cn−1 using Graph Matching tech-
nique and minimize the energy function En(M); (See
Section 2.2)
iter number ++

end while
Cn = Ĉn

end for

The energy function for graph cut segmentation consists
of three parts: the data term εD, the regularization term εR,
and the shape-oriented term εS . The data term εD measures
the likelihood Pi(x) of a pixel belonging to background(i =
0) or foreground(i = 1)

εD(f) =
∑
x∈Ωt

1∑
i=0

Pi(x)δ(f(x)− i) (1)

where δ(l) is the characteristic function.
The regularization term εR penalizes the situation when

two neighboring pixels belong to different classes.

εR(f) =
∑
x∈Ωt

∑
y∈N l(x)

F (Ix, Iy)[1− δ(f(x)− f(y))] (2)

where the neighbor of the pixels N l is defined by:

N l(x) = {y ∈ Ωt such that 0 < |y − x| ≤ l} (3)

, and F : R×R → R+ is a decreasing function that penalizes
the spatial discontinuities of the segmentation according to
the image data.

With only the data term and the regularization term, the
segmentations obtained at each frame would still suffer from
temporal inconsistencies. Therefore, a third term is intro-
duced to improve the graph cut algorithm by penalizing pixels
in alignment with their distance from the expected location,
which is called shape-oriented term.

Denote the segmentation obtained at frame Ωt−1 and
Ωt−2 as Ct−1(x) and Ct−2(x), respectively. The shape-
oriented map St(x) at frame Ωt is the function of Ct−1(x)
and Ct−2(x).



Algorithm 2 illustrates how the shape-oriented map is
generated, and a corresponding example is shown in Fig.2.

Algorithm 2 Generation Of Shape-Oriented Map
INPUT: Results of segmentation Ct−1(x) and Ct−2(x) at
frame Ωt−1 and Ωt−2

OUTPUT: Shape-Oriented map St(x) at frame Ωt

Initialize factor and count
Ck

D(x) = Ck
E(x) = Ck(x) (k = t− 1, t− 2)

for Erode(Ck
E) ̸= NULL do

count++
Ck

E = Erode (Ck
E)

Ŝk = min(Ŝk, Ck
E × factorcount)

Ck
D = Dilate (Ck

D)
Ŝk = min(Ŝk, Ck

D × factor−count)
end for
St(x) = min(Ŝt−1, Ŝt−2)
Calculate the center of Ct−1(x) and Ct−2(x), denote them
as mt−1 and mt−2

Predict the center of St(x), m̂t = 2mt−1 −mt−2

Shift the center of St(x) to m̂t

(a) (b)

(c) (d) (e)

Fig. 2. (a) and (b) are the segmentation results of Ct−1(x) and
Ct−2(x) at frame Ωt−2 and Ωt−1. (c) and (d) are the results
of Ŝt−1 and Ŝt−2, and (e) shows the result of shape-oriented
map St.

Thus, the shape-oriented term is formulated as

εS(f) =
∑
x∈Ωt

[St(x)δ(f(x)− 1) +
1

St(x)
δ(f(x))] (4)

where St(x) is the shape-oriented map at frame Ωt. When
x belongs to the foreground (f(x) = 1), more cost will be
required if x is far away from its expected position, and vice
versa.

(a) λS = 2 (b) λS = 10

Fig. 3. Segmentation results using different λS .

Fig.3 shows how shape-oriented term affects the segmen-
tation results. When the value of λS is small, the segmenta-
tion result largely depends on the data term and regularization
term, which may not correctly segment the objects from back-
ground when occlusion exists, as shown in Fig.3(a). How-
ever, if we set λS a large value, it is likely to obtain the sim-
ilar shape of the objects as the preceding frame, as shown in
Fig.3(b).

The shape-oriented term is neither rough nor precise, be-
cause the rough information may not include the importance
of shape or silhouette of the objects, while precise informa-
tion may violate the situation of objects deformation.

Combining the Eq.(1), (2), and (4), the total energy func-
tion for segmentation can be written as

ε(f) = εD(f) + λRεR(f) + λSεS(f) (5)

There are at least two advantages introducing shape-
oriented method into graph cut method. First, it alleviates
the problem of temporal inconsistencies by considering the
shape of objects in the two former frames. Secondly, it can
help to improve the accuracy of segmentation because the
shape-oriented term makes full use of the shape information
besides the intensity information.

2.2. Graph Matching Corroboration

We now describe the energy function of our graph match-
ing model. Here, we first clarify some important definitions
will be used in graph matching algorithm. Denote P and
Q as the sets of feature points extracted from two images,
where P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qm}. Here
pi(i = 1, 2, ..., n) are the feature points from the first image,
and qj(j = 1, 2, ...,m) are the feature points from the second
one.

Denote G as the set of possible feature point correspon-
dences, where G ⊆ P×Q. We also introduce a binary valued
matching vector M ∈ {0, 1}G to indicate whether the feature
points from set P and Q are matched or not. ∀a = (pi, qj) ∈
G (i = 1, 2, ..., n; j = 1, 2, ...,m) , ma = 1 if feature points
pi and qj are matched, ma = 0 otherwise.

In graph matching problems, we also constrain that at
most one active match per feature point is allowed. This re-



quirement is known as the uniqueness constraint, and it is
commonly used in correspondence problems. Therefore, the
matching vector should satisfier∑

a∈G(k)

ma ≤ 1 (6)

where k ∈ P ∪Q is a feature point from either of the image ,
and G(k) is the set of correspondences involving feature point
k.

The energy function of our graph matching model con-
sists of three parts: local matching cost, structural matching
cost, and unmatched penalty cost. And it is formulated as
following:

E(M) = λlocalE
local(M)+λstrucE

struc(M)+Epenal(M)
(7)

where λlocal and λstruc are scalar weights. We describe each
of the energy term below.

Local matching cost Elocal is defined in Eq. (8).

Elocal(M) =
∑
a∈G

αama (8)

Considering a matching pair of the feature points a =
(pi, qj) ∈ G (i = 1, 2, ..., n; j = 1, 2, ...,m), αa is defined as
the distance between the local descriptor of the feature nodes
pi and qj . Therefore, Elocal can achieve a rather small value
when two matched feature points have quite similar local
information.

Before describing Estruc, we clarify the definition of
neighbor. We denote Np as K nearest neighbor feature points
of p, where K is a positive integer controlling the size of the
neighborhood. And for two assignments a = (pi, qj) ∈ G
and b = (pii, qjj) ∈ G. We say (a, b) ∈ N if pi and pii are
the neighbors of each other, and so are qi and qii. Thus, the
set N is defined as following:

N = {((pi, qj), (pii, qjj)) | (pi ∈ Npii) ∧ (pii ∈ Npi)∧
(qj ∈ Nqjj ) ∧ (qjj ∈ Nqj )}

(9)
The term Estruc measures the geometric agreement be-

tween two neighboring matching pairs a and b by evaluating
how well the segment ¯pipii matches the segment ¯qjqjj both
in length and direction.

Estruc(M) =
∑

(a,b)∈N

βabmamb (10)

where βab measures the structural similarity between match-
ing correspondences a and b.

βab = edis(a,b) + earg(a,b) − 2 (11)

dis(a, b) =
|∥pi − pii∥ − ∥qj − qjj∥|
∥pi − pii∥+ ∥qj − qjj∥

(12)

arg(a, b) = arccos(
pi − pii
∥pi − pii∥

qj − qjj
∥qj − qjj∥

) (13)

Unmatched penalty cost Epenal is defined to punish fea-
ture points that are unmatched.

Epenal(M) = 1− 1

min{|P |, |Q|}
∑
a∈G

ma (14)

where |P | and |Q| are the number of feature points in graph P
and Q respectively, and

∑
a∈G is the total number of match-

ing pairs between the two graphs.
We can rewrite the energy function Eq. (7) into the form

of Eq. (15) which can be solved by the Dual Decomposition
algorithm [6].

minE(M) =
∑
a∈G

ᾱama +
∑

(a,b)∈N

βabmamb (15)

In the proposed method, we conduct the graph matching
between Ĉt and Ct−1, where Ĉt is the result obtained by
shape-oriented segmentation at frame Ωt, and Ct−1 is the seg-
mentation result of frame Ωt−1. The point sets P and Q are
uniformly sampled along the contour of Ĉt and Ct−1, and
we use the Shape Context descriptors [7] as the local feature
descriptor.

To ensure that the segmentation result is reasonable, the
minimized graph matching energy at frame Ωt, denote as
Et(M), should be smaller than the minimized energy at the
previous frame multiply a factor.

Et(M) < W × Et−1(M) (16)

where W is the constant factor.
To be concrete, we will increase the value of λS to give

more attention to the shape of the objects and do the shape-
oriented segmentation again until it satisfies the criterion in
Eq. (16) or reaches the maximum number of iterations.

3. EXPERIMENTS

The proposed scheme is validated on several challenging im-
age sequences, where the tracker is developed using Matlab
combined with a C++ implementation of graph cut and Dual
Decomposition [6] algorithms.

Within implementation, we set Pi(x) = (Ix − µi)
2 in

the data term of Eq. (1). The loss function F (Ix, Iy) in
the regularization term of Eq. (2) is defined as F (Ix, Iy) =

exp(
−(Ix−Iy)

2

2σ2 ) 1
∥x−y∥ , and the neighborhood size N l = N5.

As to the parameters configuration, we set λR = 5 and the
value λS = 2 of Eq. (5) in all experiments. We also set con-
stant factor W = 1.2 in Eq. (16), and the maximum number
of iterations is 5.

We first compare the segmentation results based on a foot-
ball match sequence with resolution 240 × 200 as shown in



Fig. 4. The top row shows the segmentation result using [2],
which takes into account the distance penalty and location
prediction, while the bottom row is the result by using our
proposed graph cut method in Sec. 2.1. Taking the advantage
of shape-oriented term, our graph cut method achieves a more
accurate segmentation result of the football player, especially
in Frame #153 after overlapping occurs.

Frame #059 Frame #119 Frame #153

Frame #059 Frame #119 Frame #153

Fig. 4. The top row shows the segmentation results by using
[2], and the bottom row by using our proposed segmentation
method in Sec. 2.1.

Fig. 5 shows the result on another football match se-
quence with resolution 240 × 200. In Fig. 5, the top row is
the result by [2], the middle row by using shape-oriented seg-
mentation in Sec. 2.1 only, and the bottom row is the result
by our proposed scheme. When occlusion happens in frame
#053, the proposed scheme maintains a better performance
because of the shape-oriented term and the graph matching
corroboration.

Frame #038 Frame #053 Frame #104 Frame #169

Frame #038 Frame #053 Frame #104 Frame #169

Frame #038 Frame #053 Frame #104 Frame #169

Fig. 5. The top row shows the result of a football match se-
quence by [2], the middle row by using shape-oriented seg-
mentation only, and the bottom row by our proposed scheme.

Fig. 6. The trace of the player in football match sequence,
where white line is the manually labeled results, blue by [2],
red by [3], yellow by shape-oriented method and green by our
proposed scheme.

Fig. 7. The left figure shows the distance error of each frame
by using different methods, and the right chart is the average
distance error of the four methods.

Fig. 6 shows the trace of the football player by using dif-
ferent methods. White line is our manually labeled results,
blue by [2], red by [3], yellow by shape-oriented method and
green by our proposed scheme. And the statistical result can
be seen in Fig. 6. The distance error is defined as the Eu-
clidean distance between the center of the segmentation result
and the ground truth. Fig. 7 computes the average distance
error of the four different methods.

We also validate our proposed method on a pedestrian se-
quence from PETS 2010 with resolution 768 × 576, which
is a more challenging video clip. Fig. 8 shows the result,
where the top row by [2] and the bottom row by our proposed
scheme. Fig. 9 is the trace of the man by using different meth-
ods, and Fig. 10 plots the distance error of each frame. We
can see that both [2] and [3] fail to track the people in serious
occlusion, while our proposed scheme can be immune to the
occlusion.



Frame #178 Frame #193 Frame #205

Frame #178 Frame #193 Frame #205

Fig. 8. The top row is the result of a pedestrian sequence by
[2] and the bottom row by our proposed scheme.

Fig. 9. The trace of the man in pedestrian sequence, where
white line is the manually labeled results, blue by [2], red
by [3], yellow by shape-oriented method and green by our
proposed scheme.

4. CONCLUSION

In this paper, we proposed a novel shape-oriented segmenta-
tion and graph matching corroboration scheme for more ac-
curate silhouette tracking. The shape-oriented graph cut seg-
mentation takes into account the shape-oriented map of the
objects in adjacent frames. The compensated energy model
of graph matching is devised to validate whether previous
segmentation results are causal, and accommodate occlusion
during tracking. The shape-oriented segmentation and graph
matching corroboration are combined to achieve robust detec-
tion and tracking. Experiments in real life sequences demon-
strate the accuracy of our framework.

There is still some future work to do. A more efficient
algorithm may be needed for checking the accuracy of seg-
mentation since the graph matching algorithm still takes much
of the time. Besides that, the object is initialized in the first

Fig. 10. The left figure shows the distance error of each frame
by using different methods, and the right chart is the average
distance error of the four methods.

frame of the video, and an detection mechanism may be help-
ful such that moving objects can be automatically tracked in
the video.
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