TRANSDUCTIVE VIDEO CO-SEGMENTATION ON THE TEMPORAL TREES

Zhihui Fu, Botao Wang, Student Member, IEEE, Hongkai Xiong, Senior Member, IEEE

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

ABSTRACT

This paper proposes a novel multi-component video
co-segmentation approach to simultaneously separate the
foreground from the background in the video frames. To
capture the variance of appearance of the foreground ob-
ject, a multi-component foreground model is developed.
Each component of the model characterizes a specific view-
point/pose/appearance of the foreground object. To learn
the parameters of the multi-component model, a transductive
learning algorithm is leveraged to “transfer” the informa-
tion of the labeled frames to the unlabeled frames in a tree-
structured model, namely, temporal tree. Each branch of the
temporal tree consists of the exemplars of a foreground com-
ponent, and a transductive support vector regressor is capable
of being trained. Experiments show that the proposed method
outperforms quite a few state-of-the-art video segmentation
algorithms in public benchmark.

Index Terms— Video segmentation, co-segmentation,
transductive learning, mixture model.

1. INTRODUCTION

Video segmentation aims at separating video frames into con-
sistent regions with both spatial and temporal consistence.
It serves as an imperative phase for various computer vision
tasks, e.g., object detection [ 1], visual tracking [2] , and action
recognition [3].

Current video segmentation algorithms can be broadly
divided into two categories: unsupervised approaches and su-
pervised approaches. Unsupervised approaches [4, 5] group
the pixels into spatially and temporally coherent clusters
based on the visual and motion cues of the video. However,
they often result in over-segmentation for complex videos
because of the ambiguity of visual features. Up to now, the
popular motion segmentation [6—8] mainly focuses on the
objects which exhibit different motion patterns in comparison
with the background. Obviously, it might fail if the objects of
interest are static.

Supervised segmentation [9, 10], also known as inter-
active segmentation, is devoted to segmenting the objects
which could be hinted in a few frames. The task is more
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well-defined — to segment the foreground objects of inter-
est from the background in the frames. It stimulated the
notion of image co-segmentation [ 11, 12], namely, automat-
ically segmenting common foreground in multiple images.
A couple of methods [13, 14] borrow the idea of image co-
segmentation for video segmentation, however, would require
multiple videos which contain similar foreground and diverse
background. It is worth mentioning that this paper is ded-
icated to co-segmenting the foreground of the frames in a
single video clip. As a matter of fact, the main challenge of
video co-segmentation is to separate the foreground from the
background, which are both high-correlated across frames.
Within the supervised video segmentation, a small number of
annotated frames could provide critical prior to disambiguate
them.

The contributions of this paper are two-fold. First, a
multi-component video co-segmentation approach is pro-
posed. On the one hand, it simultaneously segments the
foreground regions in the frames of a video clip by maximiz-
ing both the inter-frame similarity between the foregrounds
and the intra-frame dissimilarity between the foreground and
the background. On the other hand, it enforces temporal
consistency regularization to video co-segmentation, so as to
keep the region both visually consistent and temporally co-
herent. Unlike [14, 15], it uses multiple foreground models to
capture the variances of the foreground object which exhibits
changes in pose and appearance.

Second, the parameters of the multiple foreground mod-
els are learned with a tree structure by a transductive learning
algorithm. Each path in the temporal tree defines a compo-
nent model, which consists of visually similar and temporally
adjacent frames. It is constructed for all the frames to predict
the foreground masks of the unlabeled frames by transferring
the prior of the labeled frames to the unlabeled frames. It is
transferred by fitting a support vector regressor to maximize
the margin of the prediction error of the foreground region.
The experimental results show that the proposed method out-
performs state-of-the-art video segmentation and image co-
segmentation algorithms in public benchmarks.

The rest of this paper is organized as follows: Section
2 presents the proposed video co-segmentation framework.
Section 3 illustrates the transductive learning algorithm to fit
the hyperparameters of the foreground model. Section 4 pro-
vides the experiment results. Section 5 concludes the paper.
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Fig. 1. The proposed video co-segmentation framework.

2. TEMPORAL COHERENT VIDEO
CO-SEGMENTATION

2.1. System Overview

The proposed framework is illustrated in Fig. 1. The video
sequence, denoted as {I;}¥ ;, consists of labeled frames and
unlabeled frames, where N is the total number of frames.
Without loss of generalization, let us assume that the first
L:1<L < N frames {I;}F_; are labeled. Hence, the task
is to predict the foreground masks of the unlabeled frames
{I,}N. ;1. A segmentation of a frame is defined with a bi-
nary matrix x € {0, 1}7>*W where H and W is the height
and the width of the frames, respectively. z(u,v) = 1 if the
pixel at (u, v) is the foreground, and z(u, v) = 0 otherwise.

The quality of a segmentation is measured by an energy
function parameterized by the foreground hyperparameter
O¢. To obtain the hyperparameters, which characterize both
the visual appearance and the temporal coherence between
the foreground region and the background region, a transduc-
tive learning procedure is performed to iteratively optimize
the hyperparameters via updating the temporal tree.

2.2. Foreground Energy Function

The foreground energy of a frame is defined as
E(z|I,0f) = D(z|1,0;) + aP(z|I), @)

which is composed of two terms: the divergence term
D(z|I,©y) and the prior term P(z|I). The divergence
term measures the visual similarity of the foreground x with
the foreground model, which is parameterized by ©;. The
prior term P(z|I) evaluates the quality of the segmentation
based on the low-level features of the image.

The divergence term D(x|I, ©Oy) is defined as
D(z|1,05) = f(c(x), O5) = Bf(c(7),04).  (2)

Here, c is the d-dimensional R-CNN descriptor [ 6] encod-
ing the visual appearance of the foreground region in z. In
the experiments, d = 4096. £ = 1 — x is the complemen-
tary matrix of x, which specifies the background region. f(-)
is the foreground discriminant function, which is a linear re-
gressor parameterized by ©y = (w, b). The divergence term
increases either: (1) the foreground region is more consistent
with the foreground model; or (2) the background region is
more different with the foreground model.

The prior term P(xz|I) evaluates the foreground seg-
mentation = based on the low-level image features, namely,
the color distribution, the boundary response and the visual
saliency. It it defined as

P(z|I) = ||h(z|I)=h(z|I)[1 + M B(x|I)+X2S(x|I). (3)

The first term measures the difference of the foreground re-
gion and the background region [17], where h(z|I) is the
color histogram of mask x. The second term B(x|I) mea-
sures the boundary strength of = using generalized boundary
detection [18]. Finally, the third term measures the visual
saliency of the foreground region using [19]. A; and Ao are
the weights, which can be obtained by grid search.

To compute the optimal labeling of the frame, we use
parametric min-cut [20] to generate a pool of segmentation
hypotheses H; = {xf}llili‘ where |H;| = 50 in the experi-
ments. The edge weights between pixel nodes are calculated
by [18] with both the color layer and the optical flow layer.
Finally, the optimal segmentation of the frame is

x* = argmax E(z|I,Oy). 4)
TEH

which can be computed efficiently, e.g., by greedy search.



3. MULTI-COMPONENT TRANSDUCTIVE
LEARNING ON THE TEMPORAL TREES

To capture the foreground object which exhibits large vari-
ations in visual appearance in the video, a multi-component
foreground model is proposed, which is parameterized by
O©f = {wy, by }+L |, where M is the number of components.
Without loss of generality, we assume that M is a constant.
Each component is parameterized by wj, € R? and b;, € R,
which are the coefficients of the linear predictor. Thus, given
the feature vector c of the foreground region, the discriminant
function of the k-th component is

f(C,'UJk,bk):<C,U)k>+bk, k:]-v;M (5)

It measures the compatibility of the foreground region of the
frame with the ¢-th component model.

To fit the multi-component foreground model O, a trans-
ductive learning algorithm is proposed, which “transfers” the
information from the labeled frames to the unlabeled frames
along a tree-structured graphical model, named temporal tree.
Each node in the temporal tree is a frame, and each branch
from the root to the leaf consists of visually similar and tem-
porally coherent frames, which defines a component. The
construction of the temporal tree is shown in Algorithm I.
The roots of the temporal tree are initialized with the labeled
frames, and the unlabeled frames are added to the temporal
tree recursively. The construction of the temporal tree is com-
pleted until all frames are added to the tree.

Here, we describe how the temporal tree grows. Let £
be the set of the leaves of the current tree (starting from the
labeled frames). The frames along the path from each leaf
Vi € L to the root is used to train a foreground compo-
nent (wy,by) by support vector regression. To be specific,
a foreground regressor predicts the overlap of a foreground
hypothesis with the ground truth foreground. Given the train-
ing set {¢;}, and {y; }!",, where m is the number of sam-
ples, ¢; is the descriptor of the i-th hypothesis, and y; € [0, 1]
is the intersection-over-union ratio of the i-th hypothesis and
the ground truth foreground. The optimal parameters of the
component model can be computed by solving

1 ) m
in - c 4 oex
min Sllwll” + ;(fﬁa)
yi — (Wi, ¢i) —bp <e+&,i=1,---,m
(W, i) + b —ys <e+ & i=1,---,m
gizo,i:L...’m
&>0i=1,---,m

(6)

where ¢ is the deviation and C is the trade-off parameter. The
optimal wy, and by can be computed by solving the dual for-
mulation of Eq. (6) via quadratic programming.

With this component model, the temporal tree grows by
adding some unlabeled frames in the temporal neighborhood

of the frame at Vj to the children of Vj. Let S be the degree
of the temporal tree, i.e., the maximum number of children
that a node can have. The compatibility of a segmentation
hypothesis with the k-th component model is measured by
the discriminant value of the linear regressor of the compo-
nent model as Eq. (5). Finally, the top .S unlabeled frames
in the temporal neighborhood of V}, with largest discriminant
values are added to the temporal tree as the children of V.
In this way, the temporal tree grows by iteratively adding the
unlabeled frames to the leaves of the tree, until all frames are
added. Overall, the temporal tree can be regarded as the ex-
tension to the bootstrapping transductive learning with multi-
ple components.

Algorithm 1: Construction of the temporal tree

Input: Video frames: {Ix}7_;;

Segment hypotheses: {z}&_,
Output: Temporal tree
Initialize the temporal tree with the labeled frames;
while not all frames are added the tree do
Collect the leaf set £ of the current tree;
for each leaf Vi, € L do
Train an SVR from V}, to its root;
Find the unlabeled temporal neighbors of V};:
Ni;
Compute the discriminant values of the frames
in NV, by Eq. (5);
Add S frames in N, with the largest
discriminant values to the children of Vj;

end

end

4. EXPERIMENTS

The experiments are conducted upon the SegTrack dataset
[25] with six challenging video sequences, whose first frame
is manually labeled. The proposed method is compared with
four state-of-the-art video segmentation methods: (1) multi-
class cosegmentation [21], (2) level-set based video segmen-
tation [22], (3) graph based video segmentation [23], and (4)
key-segments based video segmentation [24]. For [21], we
change the class number from 2 to 9, and select the best seg-
mentation result. The mean pixel error [24, 25] is used to
evaluate the accuracy of video segmentation, which is defined
as

N
1 t
e=% ;Zl XOR(zy,x]"), @)

where xft is the ground truth foreground mask of the ¢-th
frame. The quantitative result is shown in Table 1, and some
segmentation examples are displayed in Fig. 2.



Table 1. Quantitative results and comparison on the SegTrack dataset

birdfall cheetah  girl monkeydog parachute penguin
Proposed 190 753 1871 722 387 4841
multi-class cosegmentation [2 1] 988 3279 5321 1125 3245 8932
level-set based video segmentation [22] 454 1217 1755 683 502 6627
graph based video segmentation [23] 305 1219 5777 493 1202 2116
key-segments based video segmentation [24] 288 905 1785 493 201 136285

(c) Birdfall

Fig. 2. The segmentation results of the Girl, Cheetah and
birdfall sequence in the SegTrack dataset.

The proposed method outperforms multi-class cosegmen-
tation [2 1] on all the test sequences. Compared with level-set
based video segmentation [22] and graph based video seg-
mentation [23], the proposed method obtains higher accuracy
in 4 out of 6 sequences, and the mean pixel error is reduced
by 22% and 21% on average for all the sequences. Com-
pared with key-segments based video segmentation [24], the
proposed method obtains higher accuracy in 3 out of 6 se-
quences.

To further evaluate the performance of the proposed algo-
rithm for objects with fast motion, the Monkeydog sequence

is down-sampled by the ratio of 0.1 in the temporal domain
to generate a new sequence, where the foreground object has
extremely large motion. The segmentation result is displayed
in Fig. 3. Clearly, the proposed method produces accurate
segmentation of the foreground object with large motion. In
comparison, optical flow based approach [23] gives different
labels to the same object.

Fig. 3. Sample results from the temporally down-sampled
Monkeydog sequence. The results of [23] are shown in the
second row. The results of the proposed method are shown in
the last row.

The experiments are conducted on a computer with Intel
Core 17-3770 CPU and 16GB RAM, and the average run-time
over the testing videos is about 4 minutes per frame.

5. CONCLUSION

In this paper, we proposed a multi-component transductive
video cosegmentation approach. It involves a temporal coher-
ent video co-segmentation framework, where the foreground
object is modeled by multiple foreground components. To
train the parameters in the model, a transductive support vec-
tor regression algorithm is performed in the temporal tree,
which automatically collects visually and temporally consis-
tent frames along the branches. Experimental results show
that the proposed method outperforms many state-of-the-art
approaches on public benchmark.
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