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Fused One-vs-All Features With Semantic
Alignments for Fine-Grained
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Xiaopeng Zhang, Hongkai Xiong, Senior Member, IEEE, Wengang Zhou, and Qi Tian, Fellow, IEEE

Abstract— Fine-grained visual categorization is an emerging
research area and has been attracting growing attention recently.
Due to the large inter-class similarity and intra-class variance,
it is extremely challenging to recognize objects in fine-grained
domains. A traditional spatial pyramid matching model could
obtain desirable results for the basic-level category classification
by weak alignment, but may easily fail in fine-grained domains,
since the discriminative features are extremely localized. This
paper proposes a new framework for fine-grained visual catego-
rization. First, an efficient part localization method incorporates
semantic prior into geometric alignment. It detects the less
deformable parts, such as the head of birds with a template-based
model, and localizes other highly deformable parts with simple
geometric alignment. Second, we learn one-vs-all features, which
are simple and transplantable. The learned mid-level features
are dimension friendly and more robust to outlier instances.
Furthermore, in view that some subcategories are too similar
to tell them apart easily, we fuse the subcategories iteratively
according to their similarities, and learn fused one-vs-all features.
Experimental results show the superior performance of our
algorithms over the existing methods.

Index Terms— Part-based alignments, mid-level features,
convolutional neural networks, image similarity.

I. INTRODUCTION

AS AN emerging research topic, fine-grained visual cat-
egorization targets at discriminating typically hundreds

of subcategories belonging to the same basic-level category.
Applications include distinguishing different types of flowers,
birds, and dogs, etc. It lies between the basic-level category
classification (e.g., categorizing bikes, boats, cars, and so on
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Fig. 1. Sample images from CUB-200-2011, which shows (a) great
intra-class differences and (b) small inter-class variations, it is hard even for
humans to recognize them accurately.

in PASCAL VOC [7]) and the identification of individual
instances (e.g., face recognition). A layperson can recognize
basic-level categories like bikes or horses immediately since
what often differentiates them is the presence or absence of
some parts (e.g., a bicycle has two wheels, while a horse has
four legs). In contrast, fine-grained subcategories often share
the same parts (e.g., all birds should have wings, legs, etc.),
and are often discriminated by subtle variations in the shape,
texture, and color properties of these parts (e.g., only the shape
of beak or color of breast counts when discriminating similar
birds). The challenge not only results from the subtle and
localized inter-class differences, but also from the great intra-
class variations. Taking the widely used fine-grained dataset
CUB-200-2011 as an example (Fig. 1), it is not easy even for
human beings to recognize them accurately.

Traditional Bag-of-Words [1] framework has been widely
used in various applications [3], [4] due to its simplicity
and effectiveness. However, with the ignorance of spatial
layout information, it suffers severely from limited descriptive
capability. A standard way to introduce weak geometry in
Bag-of-Words representation is the use of spatial
histogram [8], which defines pooling regions based on
a uniform grid at predefined scales (typically the whole
image, then quadrants, sixteenths, etc.). The spatial pyramid
matching is effective for basic-level category classification
since the composition of particular object or scene typically
shares common layout properties, and there are plenty of clues
that can distinguish them. However, it is at odds with that
in the fine-grained domains due to the highly localized and
subtle nature of distinguished features. Hence, localizing and
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describing object’s parts has become crucial for fine-grained
recognition.

Most of previous works [19], [21], [22], [37] follow the
idea of part-based localization. Among them the deformable
part model (DPM) [10] is one of the most widely used
template-based methods these years. While this kind of stan-
dard parametric model is suitable for structures that are
relatively stable, it is insufficient to tackle the large variations
and performs poorly for those highly deformable objects.
As revealed by the detection performance [10] on PASCAL
VOC 2010 challenge data, DPM obtains an average precision
of only 13.1% on birds, far below that of bicycles (53.8%) and
buses (53.4%) which are less deformable. On the other hand,
Gavves et al. [26] propose to localize parts by roughly aligning
objects with overall shape, and equally dividing the foreground
object into several parts via ellipse fitting. However, this kind
of alignment can easily fail since it does not take semantic
information into consideration.

Features matter, and the choice of visual features for image
representations may deserve the most important research in
current state-of-the-art image classification. One of the greatest
achievements during the past dozen years is the introduction of
SIFT descriptors [24], and the improved aggregation methods
from soft Vector Quantization [25], Locally-constrained Linear
Coding (LLC) [38] to Improved Fisher Vector (IFV) [36].
Most of current classification tasks follow the pipeline of
extracting basic low-level descriptors like SIFT, aggregating
the descriptors into compact visual words and pooling the
visual word histograms via Bag-of-Words for image represen-
tation [11]. These low-level features may not be optimal for
specific classification tasks due to the well-known semantic
gap [2] between low-level features and high-level image
semantics. Furthermore, extremely high dimension of
low-level features, especially Fish Vector, may lead to overfit-
ting in a discriminative hyperplane spanned by the linear clas-
sifier, which degrades the classification accuracy and increases
the computational complexity.

In the light of all these evidences, A new framework is
proposed to cope with part localization and description in fine-
grained domains. For part localization, the less deformable
parts are first detected with template-based model, which can
be regarded as semantic prior of the object. Then the other
parts are obtained by geometric alignment of foreground mask
under such semantic prior. The semantic prior is incorporated
into geometric alignment, which enables more accurate part
localization. For description, we learn One-vs-All Features [6],
which are simple and transplantable, and the learned mid-
level features are dimension friendly and more robust to
outlier instances. Considering that some subcategories are too
similar to tell them apart easily, we fuse them iteratively
using Neighbor Joining method [43], and learn Fused One-
vs-All Features (FOAF) based on these fused subcategories.
Integrating all these techniques makes a powerful framework
for fine-grained visual categorization, which outperforms the
existing methods by a considerable margin.

This paper makes the following contributions:
1) We propose a new method for part localization,

which incorporates semantic prior into geometric alignment.

The semantic prior is obtained by detecting the less deformable
parts with template-based model, while the geometric align-
ment is conducted on the foreground object mask with the
guidance of semantic prior.

2) We propose to learn a range of mid-level features, which
is called Fused One-vs-All Features (FOAF). Comparing with
the low-level features, FOAF enjoys low-dimensionality, and
is robust to outliers. Moreover, FOAF is ready to be integrated
with existing techniques to further boost the performance.

3) We report classification results under different levels of
automation (with and without object bounding boxes), in order
to meet various requirements in real applications. To the
best of our knowledge, previous works seldom focus on this
situation (no object bounding boxes at both training and testing
time).

4) We make an elaborative comparison to uncover the effect
of part localization, and demonstrate the effectiveness of the
proposed part localization scheme. Besides, we reveal that
excessive parts, though accurate, are harmful for recognition.

The rest of this paper is organized as follows. Section II
briefly reviews related works on fine-grained visual cate-
gorization. Section III overviews the proposed framework.
In Section IV, we elaborate the proposed semantic and geo-
metric alignment method. The detailed algorithm of learning
One-vs-All Features are presented in Section V. Experimental
results and discussion are shown in Section VI and VII,
respectively. Finally, we draw conclusions in Section VIII.

II. RELATED WORK

Fine-grained visual categorization is a challenging problem
and has recently emerged as a hot research topic. There has
been a great number of works dealing with different species
of birds [21], [22], dogs [19], and cats [16], etc. Based on
the vision tasks, we organize the discussion related to fine-
grained recognition with two aspects: part localization and
feature representation.

A. Fine-Grained Part Localization

The detection of objects in fine-grained domains ranges
from template-based models to exemplar-based models.
Inspired by the pictorial structure [9] which provides a
powerful framework for representing objects by non-rigid
constellations of parts, many methods have been applied
to jointly localize geometrically related parts. Among them,
DPM [10] has become one of the most effective template-
based approaches to date. In the scenario of fine-grained cate-
gorization, it also conveniently enables part-based approaches
since objects belonging to same basic-level often share the
same parts. Chai et al. [19] utilized simultaneous segmen-
tation (Grab-Cut [13]) and detection (DPM) to improve
integrated accuracies. Yang et al. [17] accomplished unsu-
pervised learning of DPM to find discriminative parts for
fine-grained categorization. Since DPM largely relies on the
careful initialization of parts, [37] and [41] adopted strongly
supervised DPM [23] with additional part-level supervision
to construct better, class-specific object models. For highly
deformable objects such as birds and dogs, however, DPM and
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Fig. 2. Flowchart of the proposed fine-grained classification framework. Given an input image, we first detect the less deformable part (such as the head of
birds) as well as the object using template-based detectors. The confidence map is obtained via weighting top scored detection locations of object and used
as segmentation prior. Based on the localization and segmentation results, we perform part alignment and obtain several semantic meaningful parts, such as
“head”, “body”, and “tail”. We learn mid-level features according to the part-based low-level representation for classification. FOAF is obtained via fusing
similar subcategories into macro-classes, and learning One-vs-All Features with SVM.

other template-based models are even inferior to simple
Bag-of-Words models since they suffer a much weaker notion
of geometry.

Inspired from the exemplar-SVMs [20] which bridges
parametric and nonparametric models, transferring informa-
tion from training to test images has been successfully
used in several applications. The exemplar models do not
learn template-like detectors for individual parts, instead, they
localize distinctive details by roughly aligning the objects.
Gavves et al. [26] developed a supervised alignment method
which retrieved nearest neighbor training images for a test
image, and regressed the locations from these neighbors to get
predicted parts. Similarly, Berg and Belhumeur [21] proposed
to automatically detect part locations using a consensus of
exemplars. Recently, Christoph et al. [39] suggested to transfer
part annotations from objects via performing a simple but very
powerful global matching and a subsequent ensemble learning.

B. Fine-Grained Representation

For the description of fine-grained objects, different
proposals have been made in literature. The most widely
used descriptors are color SIFT, gray SIFT plus color his-
togram [19], [26]. A common characteristic of these descrip-
tors is that they can be largely handcrafted. Namely, all
of them comprise dense sampling of local image patches,
describing by means of low-level visual descriptors, encod-
ing into a high-dimensional representation, and pooling over
images. Since single descriptor might fail to capture the
rich information within local pathes, it is reasonable to fuse
multiple descriptors [37] for compensation. Boureau et al. [5]
learned semantic representations of images by aggregating
neighboring descriptors to form micro-features or visual
phrases. Gao et al. [27] learned category-specific dictionary
for each category and shared-dictionary for all the categories.
The category-specific dictionaries encode subtle visual differ-
ences among different categories, while the shared-dictionary
encodes common visual patterns among all the categories.

However, they are de facto low-level features, and suffer from
dimension dilemma.

Recently, these hand-crafted descriptors have been substan-
tially outperformed by the features learned with convolutional
neural networks [18], which have a more complicated structure
than traditional representations. They contain several layers of
non-linear feature extractors, and are considered to be deep
representation of images (in contrast, traditional descriptors
such as SIFT would be referred as shallow representation).
These networks have achieved competition-winning results
on a large of benchmarks. Though not specifically designed
to model subcategory level differences, it has been demon-
strated [15] that convolutional features capture such informa-
tion well and obtain the state-of-the-art results for fine-grained
categorization so far.

III. FRAMEWORK OVERVIEW

Fig. 2 shows the diagrammatic flowchart of the proposed
approach, which consists of two modules - part alignment
(Sec. IV) and Fused One-vs-All Features (FOAF) learning
(Sec. V). Different from previous works which assume that
object bounding boxes are provided, we tackle the problem
in a more general case - no bounding boxes provided at both
training and testing time.

Given an input image, we first detect the less deformable
part (such as the head of birds) as well as the object with
R-CNN [28], respectively, followed by a geometric refinement
which restricts the detected head within the region of detected
object. In order to segment foreground from background
without object bounding boxes, we compute object confidence
map which denotes the possible locations of foreground object,
and works as prior for subsequent segmentation. The final
alignment is under the guidance of the detected head and
segmented foreground mask, which guarantees the accurate
part alignment.

For FOAF learning, we extract features based on the
aligned parts, and train one-vs-all SVM classifiers to obtain
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Fig. 3. Overview of the object and head detection method. Given an input
image, we (1) extract region proposals using selective search [30], (2) obtain
top scored candidates for object and head using the trained SVM detectors
and (3) perform geometric constraint to update the detection results.

mid-level features. Furthermore, similar subcategories are
fused iteratively using the Neighbor-Joining [43] method and
treated as micro-classes, then FOAF is learned according to
the fused subcategories. We show that FOAF is more powerful
than traditional features for classification.

IV. SEMANTIC AND GEOMETRIC ALIGNMENT

For animals such as birds and dogs, extreme articulations,
atypical viewpoints, and partial occlusions induce variations
of the appearance that cannot be well captured by a template-
based detector. Hence, it is inappropriate to model and detect
each part of such highly deformable objects. Fortunately, the
head is demonstrated to be distinctive and can be detected
very reliably by template-based detectors [16]. Inspired by
this observation, we only detect the head of animals, and
bypass other parts (e.g. the wings and legs of birds) which
are highly deformable. Different from [16] which makes use of
the detected head to localize the whole object via homogenous
color and texture propagation, we align the rest parts by way of
the head prior and foreground segmentation. The semantic and
geometric alignment method includes three steps, i.e., object
and head detection, object confidence map generation, and
consistent part alignment.

A. Object and Head Detection

The overall detection framework is illustrated in Fig. 3.
Given an input image, the whole object (in case object
bounding box is not provided) and head are first detected.
Since object and head are detected independently and do
not incorporate any knowledge about how they should be
constrained geometrically, the detected head may discord with
the object and even respond entirely outside the detected
object. To tackle this issue, we return several high scored
regions for object and head, and identify the best detections by
introducing geometric prior which constrains head responses
within the object.

1) Model Fine-Tuning and Detector Learning: To adapt the
CNN pretrained on ImageNet to the fine-grained detection
task, we continue stochastic gradient descent (SGD) to fine-
tune the network as [28]. Without loss of generality, the
annotated external data of PASCAL VOC [23] are chosen for
network fine-tuning. There are about 1100 annotated images
for birds and 2000 images for dogs. Fig. 4 shows some
example images with object and head annotations for birds
and dogs. The network is fine-tuned for object and head,
respectively.

Fig. 4. Example figures in PASCAL VOC with corresponding object and
head annotations, the top row for birds and the bottom row for dogs.

For detector learning, features are extracted from the
training samples with the fine-tuned network. Only the ground-
truth boxes are treated as positive examples and propos-
als with intersection-over-union (IoU) overlap below 0.3 are
treated as negative ones. The others with IoU overlap between
0.3 and 1.0 are discarded. We independently optimize linear
SVM classifiers for head and object, and obtain two kinds of
detectors {w0, w1}, respectively.

2) Geometric Constraint: Denote X = {x0, x1} as the top
scored candidates for object p0 and head p1, and φ(x0), φ(x1)
as corresponding features. Given the detectors {w0, w1} for
object and head, the detections are refined via solving the
following optimization problem:

arg max
X

�(wT
0 φ(x0)) + [λ]ε�(wT

1 φ(x1)) (1)

where

�(z) = 1

1 + e−z
, and [λ]ε =

{
λ, if λ ≥ ε

0, if λ < ε
(2)

where �[·] is a nonlinear function which maps the score to
range [0, 1], and [·]ε is a hinge loss function at ε (which
is 0.8 in our experiment). The parameter λ measures the
ratio of overlapping region (intersection between head p1 and
object p0) to head p1, with range [0, 1]. The overall score is a
weighted sum of object and head scores. The parameter [λ]ε
is introduced to penalize the inconsistency between the head
and object. In case that the overlap is less than 0.8, the second
term becomes zero, thus lowers the overall score. The goal is
to find the detection pair which maximizes Eq. (1).

B. Object Confidence Map
In realistic scenarios object bounding box is unavailable,

which makes it difficult to segment the foreground from the
background. To overcome this issue, object confidence map is
computed and used as prior for the subsequent segmentation.

The object confidence map indicates the possible locations
of object in an image. According to the geometric constraint 1,
we return several top scored pairs {X x0

i , X x1
i } with corre-

sponding detection scores {Si }. These pairs indicate the most
possible locations of object and head. We do not try to obtain
accurate object bounding box from these possible locations.
Instead, we collect these most possible locations via soft
voting to obtain object confidence map O, which can be
represented as

O(p)=
∑

i
Si (X x0

i (p) + X x1
i (p))

Z
=

∑
i

Si (X x0
i (p) + X x1

i (p))∑
i

Si (X x0
i + X x1

i )

(3)
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Fig. 5. Some consistent part alignment results (fourth row) of the proposed method. For completeness, the first row shows refined detection results (Eq. (1))
of object and head, and the second row is the generated object confidence maps. GrabCut segmentation with object confidence prior is shown in the third
row. Our method incorporates semantic prior into foreground object alignment, which is robust in different situations including (a) easy case (b) irregular
deployment and (c) highly deformable case. The last two columns show some failure cases of the proposed method. For comparisons, the last two rows exhibit
other alignment methods in [19] and [26]. Note that these two methods suppose object bounding boxes are provided at both training and testing time, while
our method does not require these fussy annotations. Best viewed in color.

where the binary variable Xi (p) indicates whether the i -th
bounding box (object or head) contains the pixel p or not,
and the score Si indicates the confidence coefficient. The
value Z is a constant for normalization which enables the
maximum value in object confidence map equal to 1. Each
pixel in the object confidence map O indicates the probability
of containing the object, and can be used as spatial prior for
the following segmentation. Some example object confidence
maps are shown in the second row of Fig. 5.

After obtaining object confidence map, we proceed with
GrabCut segmentation [13]. GrabCut segmentation groups
pixels with similar appearance together via Gaussian mixture
model, such that the foreground is separated from the back-
ground. The foreground model is estimated from the pixels
with object confidence higher than a threshold, set to the
95% quantile of the confidence distribution in the image,
and the background model is estimated from the pixels with
confidence smaller than 30% quantile. Sample segmentation
masks are shown in the third row of Fig. 5. Although GrabCut

is not always accurate and in rare cases fails to recover a basic
contour, in the vast majority it is able to return a rather precise
contour of the object.

C. Consistent Part Alignment
The head is successfully detected by template-based meth-

ods due to its stable property. However, for highly deformable
parts such as the body of birds, it is not preferred to locate
these regions with such template-based methods. In this
section, a geometric partition method is proposed for highly
deformable part alignment.

The principle is based on the fact that all subcategories in
fine-grained domains share similar global characteristics after
pose normalization. The corresponding parts can be obtained
by consistently dividing the aligned object. Based on the
segmentation, we compute the centroid of the foreground
object, which is obtained by averaging the coordinates of
foreground pixels. It is relatively stable to random fluctuations.
Together with the center of the detected head, we obtain
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two centers of mass. The line connecting the two centroid
points are regarded as the semi-principal axis of object, which
is similar with the “spine” of object, and each anatomical
part is arranged along the principal axis in order. Specifically,
starting from the intersection point between head bounding
box and semi-principal axis, the foreground object is divided
into two parts along the principal axis, and could capture, for
example, the “body” and “tail” of birds. Together with the
detected head, we have three parts in total. In order to be
compatible with the CNN input, all pixels within each part
are enclosed with a minimal rectangular. The method imposes
semantic prior when performing geometric alignment, which
can be regarded as an improved method of SPM [8] and ellipse
fitting [26].

Fig. 5 shows some alignment examples. The first row shows
the input images with detected object and head, while the
second row illustrates the corresponding object confidence
maps. GrabCut segmentations under object confidence map
prior are shown in the third row. The fourth row shows the
alignment results. Besides, the last two rows show the results
of [26] (ellipse fitting) and [19] (symbolic segmentation) for
comparison. Ellipse fitting method simply localizes parts by
roughly aligning objects with the overall shape, while sym-
bolic segmentation resorts to template-based models. We illus-
trate three kinds of situations, which are denoted as (a) easy
case, (b) irregular deployment, and (c) highly deformable
case. The alignment regions are labeled with different colors,
i.e. red, green, and blue in order (object marked with magenta
bounding box). For easy case when segmentation is accurate
and object is less deformable, all three methods perform well.
In the latter two cases, the other two methods completely fail
to locate parts. However, our method is relatively robust to
these situations and performs well. The last two columns show
some failure cases. Note that different from the two methods
which assume object bounding boxes are provided, our part
localization method is fully automatic.

V. FUSED ONE-VS-ALL FEATURES

Based on the above aligned parts, different features
(e.g. SIFT, HOG, and CNN, etc.) can be extracted from each
part. The image I can be represented as a set of region
features:

D = {(f1, R1), (f2, R2), . . . , (fM , RM )} (4)

where fi , Ri , i ∈ {1, 2, . . . , M} denote the i th feature vector
and the occupied region, respectively, and M denotes the total
number of regions.

Intuitively, we could get the representation of image by
simply concatenating different part features into a long vector,
and train a classifier for recognition. Such a pipeline has served
as a routine for most classification tasks. However, this kind of
image representation is not only high-dimensional (to achieve
high classification accuracy, the dimension of the low-level
features could be as high as tens of thousands, and even
higher when concatenating different parts into a longer one)
but also entry meaningless, from which we could not interpret
what each entry of the features means. Furthermore, with

these high-dimensional features, a discriminative hyperplane
can be easily obtained even using a linear classifier, but it
may easily introduce overfitting and perform poorly on test
data. To tackle these issues, we learn a new kind of mid-level
features, which is called Fused-One-vs-All Features (FOAF).
The FOAF is dimensional friendly, semantic meaningful, and
robust for classification.

A. One-vs-All Features

Our method requires low-level features extracted from the
same part of different objects, and annotated with class labels.
We refer to low-level features as those directly extracted from
the images, hence SIFT, HOG, and CNN can all be treated as
low-level features. To enhance the semantic representation for
accurate recognition, it is intuitive to learn mid-level features
since they share more semantic meanings than the low-level
ones. Given the reference dataset, the training set consists of
images belonging to N classes {1, . . . , N} and includes M
parts {1, . . . M}. The one-vs-all mid-level features are learned
as follows:

1. Selecting any part p ∈ {1, . . . , M} from the objects,
and all the none zero features corresponding to part p, these
features are denoted as f p. We learn a one-vs-all SVM
classifier based on the part features f p , and project f p to
get one-vs-all scores based on the learned SVM weights. The
dimension of the projected scores is equal to the number of
classes, which is N in the definition.

2. According to the projection transformation, all the
low-level part features are mapped into a new mid-level feature
space. These mid-level features are concatenated part by part
after normalization.

3. For a test image, extract low-level features from part p,
and project the corresponding part features to N dimensional
vector according to the learned SVM weights. Concatenating
the mid-level features in the same way as the training ones.

After a simple projection, all the part features are projected
to the mid-level feature space. The advantages of the learned
mid-level features over the low-level ones are as follows:

1) The dimension of the mid-level features is far less than
that of the low-level ones, since the transformation projects the
low-level features to N dimensional feature vectors regardless
of the dimension of the low-level features, the total dimension
of the mid-level features is M N , which is only several
thousand in most situations. In contrast, the dimension of
the low-level features, such as Fisher Vector, can be as high
as hundreds of thousands. We will demonstrate the super-
performance of the learned mid-level features in the following
sections.

2) Comparing with the low-level features which are entry
meaningless, every entry of the mid-level features is semantic-
aware. For example, given a reference image x , and denote
the mid-level features for part p as Xp = {Xp

1 , Xp
2 , . . . Xp

N },
The score Xp

i (i ∈ {1, . . . N}) represents the signed distance
from current image to category i for part p. The larger the
value Xp

i is, the more similar of image x with category i .
This kind of representation is very helpful and understandable
for classification.
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B. Deep Insight Into One-vs-All Features

In this section, we elaborately clarify the classifica-
tion process of One-vs-All Features. For a certain part
p ∈ {1, . . . , M}, given a set of part-level features together with
their corresponding labels (xp

i , y p
i ), i = 1, . . . , l, xp

i ∈ Rn ,
and y p

i ∈ {1, . . . , N}, where l, n, and N denote the number of
training instances, the dimension of low-level features, and the
number of classes, respectively. The one-vs-all SVM classifier
tries to solve the following optimization problem:

min
wm,ξ

p
i

1

2

N∑
m=1

wT
mwm + C

l∑
i=1

ξ
p

i

s.t. wT
y p

i
x p

i − wT
m x p

i ≥ e pm
i − ξ

p
i , i = 1, . . . , l (5)

where

epm
i =

{
0, if y p

i = m

1, if y p
i �= m.

(6)

It can seen that SVM classifier tends to fit the positive
samples and makes the positive sample scores larger than
that of the negative ones. The One-vs-All Features are the
projection of the low-level ones, which are the signed distance
to the decision hyperplane. Denote the mid-level features of
xp

i as Xp
i = {Xp

i1, Xp
i2, . . . , Xp

i N }, each entry of Xp
i is obtained

according to the following equation:

X p
im = wT

mxp
i

‖wm‖2
, m = 1, 2, . . . , N, (7)

hence, for the mid-level features Xp
i , Xp

iy p
i

is usually larger

than all the other entries. As shown in Fig. 6, the upper
row is an example of magnitude distribution of the low-level
features and learned mid-level ones for a given part. Different
colors represent different magnitudes, which are sorted in
descending order and correspond to colors of red, yellow, and
blue. The magnitude of the low-level features are orderless,
while the learned mid-level features exhibit regular stripes,
especially the one around feature dimension 25, the dark red
line indicates that the magnitudes are large, which means
that this part is more likely to belong to the corresponding
subcategory.

Then, another SVM classifier is trained based on these
mid-level features for final classification. As Fig. 6(b) shows,
the magnitudes at the specific dimensions are large and stable,
so the coefficients trained on the mid-level features are large
at these dimensions. More specifically, for a given part p, the
largest coefficients in the learned model Wp

(N×N) are focused

on {W(1,1), W(2,2), . . . , W(N,N)}. As shown in Fig. 6(d), The
weight coefficients lying on the diagonal from upper left
to lower right are large and regarded as dominant weight
coefficients. As a comparison, Fig. 6(c) shows the weights
learned directly based on the low-level features, the coeffi-
cients are irregular and it is difficult to find any dominant
weight coefficients.

Given a test image with One-vs-All Features X ∈ RM N .
Denote the weight coefficients learned from One-vs-All Fea-
tures as WN×M N (an example is shown in Fig. 7, and M = 4).
One-vs-All Features are robust for two reasons:

Fig. 6. The upper row shows the magnitude distribution of (a) the
low-level features and (b) the learned mid-level features for a given part, both
from the same class. The lower row shows the corresponding SVM weights
learned from this two kinds of features. Different colors represent different
magnitudes, which are sorted in descending order and correspond to colors
of red, yellow, and blue. Note that in (a), the magnitude is irregular while
in (b) it exhibits regular stripes, especially the red line around dimension 25.
The weights lie on the diagonal from upper left to lower right are dominant
in (d), while the weights are irregular in (c).

Fig. 7. Illustration of the robustness of One-vs-All Features. The dominant
weight coefficients lie in the diagonal locations for each part.

1) In terms of the mid-level features, each entry of
One-vs-All Features is obtained by the weighted sum of the
low-level features, which emphasizes significant entries and
suppresses nonsignificant entries. Thus One-vs-All Features
are roust to the disturbance in the nonsignificant low-level
entries.

2) In terms of the final classification, note that for
weight vector Wm , the dominant coefficients lie in
{Wm,m, Wm,m+N , . . . , Wm,m+(M−1)N }, which contribute most
to the final decision scores, while the dominant coefficients
for class n lie in {Wn,n, Wn,n+N , . . . , Wn,n+(M−1)N }. If there
exists some parts which can tell class m from class n, the score
differences based on these parts are significant, and the score
corresponds to the correct class increases. In other words,
classification is still successful when a small amount of parts
are not distinguishable.

One-vs-All Features include two stages of SVM training,
and can be regarded as “deep” SVM to some extent. Recent
researches on convolutional networks [18] have demonstrated
that deep representation really counts for objet recognition.
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Fig. 8. A subset of “tree of similarity” obtained by Neighboring Joining method. From the tree we find that it can generally discover subcategories which
are close in terms of animal taxonomy (such as Terns and Gulls), but there are exceptions. We show some example pairs which are close in terms of “tree of
similarity”, but not close in terms of animal taxonomy. Such cases may be examples of convergent evolution, in which two different species independently
evolve into similar traits.

Although we can perform multi-stages of One-vs-All Features
learning iteratively, experimental results show that two stages
of SVM training suffices.

C. Fused One-vs-All Features

A fundamental problem in fine-grained recognition is how
to handle subcategories that are nearly indistinguishable.
In the bird world, an example of this problem is Terns,
in CUB-200-2011, there are seven kinds of subcategories
all belonging to Terns, and sharing similar appearance
(see Fig. 1). If we regard them as independent subcategories
respectively, say Common Tern, and train a discriminative
one-vs-all classifier in usual way, the negative set would
include other Terns which are very similar with the positive
Common Tern. A classifier in this situation is very likely
to latch on to accidental features that distinguish Common
Tern from other Terns only in this particular training set and
de-emphasize significant features that distinguish Terns from
non-Terns.

To mitigate this issue, we fuse these similar subcat-
egories into a bigger one, and learn Fused One-vs-All
Features. Towards this goal, we first need to measure similarity
between any two classes. A direct distance-based measure-
ment is appealing for its simplicity, but considers all features
to be equally important, which is unlikely to be optimal.

The low-level features are high-dimensional, and some of
them are not helpful to discriminate the classes. We expect
to suppress the features that are not discriminative, and
emphasize those that are. A standard tool for this goal is
linear discriminant analysis. For a specified part p, given
a set of part-level pairs (xp

i , y p
i ), i = 1, . . . , l, xp

i ∈ Rn ,
and y p

i ∈ {1, . . . , N}, linear discriminant analysis projects
the n dimensional features xp

i to K (K < N) dimensional
subspace via finding the optimal projection matrix W =
[w1|w2| . . . |wK ], wi ∈ Rn, i = 1, 2, . . . , K that minimizes the
ratio of within-class variance to between-class variance. After
projecting the features into K dimensional subspace, for any
two classes, the similarity is measured as

s f = (µ1 − µ2)
T (µ1 − µ2)

σ 2
1 + σ 2

2

(8)

where µ1 and µ2 are mean feature values for the two classes,
and σ1 and σ2 are the corresponding standard deviations.

The next is to fuse classes according to the similarities.
Towards this goal, a Neighbor Joining [43] method is adapted
for its simplicity and robustness. The Neighbour Joining
method is a bottom-up clustering method for the creation of
phylogenetic trees, which is widely used in bioinformatics.
It computes the lengths of the branches based on the knowl-
edge of distances between pairs of taxa. In each stage,
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Fig. 9. A comparison of one-vs-all and fused one-vs-all classifier. One-vs-All
Features regard similar subcategories such as Common Tern and Black Tern
as two classes, and corresponding classifier latches on to accidental features
that distinguish them but de-emphasize significant features that distinguish
Terns from none Terns. However, Fused One-vs-All Features regard these
two subcategories as one, and could obtain more discriminative classifier.

the two nearest nodes of the tree are chosen and defined as
neighbours. This is done recursively until all of the nodes are
paired together. The trees are constructed from the perspective
of evolutionary, which with a root represents the origin of
life, and a leaf for every extant species or evolutional dead
end. Species close to each other in the tree are in the sense
more similar than species that are not close. Inspired from the
construction method in terms of phylogenetic similarity, we
replace the distance metric with the visual similarity calculated
in (8), and produce a tree in terms of visual similarity which
is denoted as “tree of similarity”.

Comparing with the animal taxonomy which is based on
a combination of the fossil evidence, habitats, and genetic
data, etc., the “tree of similarity” is generated automati-
cally. However, we find that such automatic method tends to
rediscover taxonomies. Fig. 8 illustrates a subset of “tree of
similarity” obtained by Neighboring Joining method. From the
tree we find that it can generally discover subcategories which
are close in terms of animal taxonomy (such as Terns and
Gulls), but there are exceptions. The right column shows some
example pairs which are close in terms of “tree of similarity”,
but not close in terms of animal taxonomy. Such cases may
be examples of convergent evolution, in which two different
species independently evolve into similar traits.

Fig. 9 illustrates the advantage of Fused One-vs-All Features
over One-vs-All Features. Two subcategories Common Tern
and Black Tern are very similar with each other. One-vs-All
Features try to discriminate Common Tern from Black Tern,
but suffer from overfitting on training set and perform poorly
on testing set. However, when regarding Common Tern and
Black Tern as one macro-class, the separating plane is more
discriminative than that of the one-vs-all classifier.

FOAF is most related to the one proposed by
Berg and Belhumeur [21]. There POOF, which is defined by
specifying two parts, one for feature extraction, and another
for alignment, followed by training a one-vs-one classifier.
However, POOF makes use of SVM weights to learn
discriminative masks, which is sensitive to misalignment, and
is high-dimensional and redundancy since it learns features
for every pair of classes and every pair of parts. Comparing
with POOF, FOAF learns a one-vs-all classifier only once

for each part, which is more natural, and significantly more
efficient.

FOAF is somewhat an attribute feature [12], in the sense that
both are mid-level semantic representations of images. FOAF
coincides with the characteristic of attributes that several
classes share the same attributes. If we treat each class of a
given part as an attribute, each entry of the mid-level features
can be regarded as a continuous attribute value corresponding
to that class. Different from the binary attributes extracted
from [18] which need human annotations and have the form
like “black”, “water” and “eat fish”, FOAF reflects relative
attribute and does not need extra human interactions.

VI. EXPERIMENTAL RESULTS

A. Datasets

In this section, we evaluate our proposed method
on four publicly available fine grained animal datasets:
i.e. CUB-200-2011 [35], Stanford Dogs [29], Oxford-IIIT
Pets [16], and Columbia Dogs [32]. We use the default
training/test split and follow the evaluation protocol of the
corresponding paper. We not only report results with object
bounding boxes provided (if provided, such as CUB-200-2011
and Stanford Dogs) as most previous works we compare to, but
also consider a more general situation when object bounding
boxes are not provided at both training and testing time. To the
best of our knowledge, there are few related works reporting
in this situation. Last, note that only for CUB-200-2011 there
exists ground truth part locations as well as ground truth object
bounding boxes. Therefore, for experiments where ground
truth part locations are needed, we only report results on this
dataset.

B. Network Fine-Tune

Network fine tune has been demonstrated an effective
way to boost recognition performance [28]. We fine-tune the
network to adapt it to the specific fine-grained task. Aside
from replacing the network’s ImageNet-specific 1000-way
classification layer with a randomly initialized C-way layer
(C denotes the number of sub-categories to be classified,
e.g. 200 for CUB-200-2011), the architecture is unchanged.
In case of ground truth bounding box is given, we follow
the setting as suggested in [28], region proposals with IoU
overlap above 0.5 with ground truth bounding box are treated
as positives for that box’s class and the rest as negatives.
However, when ground truth bounding box is not provided, we
set positive samples with detection scores above a threshold
(in our implementation, it is set as −0.5, which both considers
the reliability of detection and the number of positives).
A stochastic gradient descent algorithm is used at a learning
rate one tenth of the initial pre-training rate. The network
is trained for 60K iterations, which takes about 12 hours
(Intel Core i7 with GPU 3.2GHz).

C. Experimental 1: How Many Subcategories for FOAF?

FOAF regards several subcategories as one macro-class, and
the remaining problem for FOAF is the choice of subcategory
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TABLE I

CLASSIFICATION ACCURACY OF FOAF WITH DIFFERENT MAXIMAL
ALLOWABLE NUMBER WITHIN A FUSED CLASS

TABLE II

SPECIES RECOGNITION PERFORMANCE ON CUB-200-2011. WE LIST
A DETAILED COMPARISON OF OUR METHOD WHEN DIFFERENT

SUB-MODULES ARE ADDED IN, AND REPORT RESULTS BY

STEP IN ORDER TO RECORD HOW DIFFERENT
SUB-MODULES CONTRIBUTE TO THE

FINAL RESULTS. “FT” REFERS

TO FINE TUNE

number in the fused class. The Neighboring Joining method
iteratively fuses similar subcategories into bigger classes, and
the number of subcategories grows as we moves towards the
root of the tree (as an extreme, root node contains all the
subcategories). However, too many subcategories within a
fused class leads to disturbance for classification.

In this experiment, we evaluate how many subcategories are
suitable for FOAF. In order to make a fair comparison, and to
test the maximum recognition capacity of parts for such a task,
the experiment is conducted on CUB-200-2011 with ground
truth object bounding boxes and part annotations available.
Table I shows the classification results of FOAF with different
maximal allowable number in a fused class. The maximal
classification accuracy reaches 80.40% with a fused class
restriction at 15 (dimension around 180 per part). However,
as the number grows, more classes are included in one fused
class and the performance decreases. The number marked as
“All” includes all the fused classes for FOAF learning, which
is 199 dimension per part. For simplicity, we choose the value
of k as 15 for the following experiments.

D. Experimental 2: Fine-Grained Categorization Results

CUB-200-2011 CUB-200-2011 is the most widely used
fine grained dataset, which contains 11, 788 images spanning
200 sub-species. Each image is labeled with its species,
a bounding box for the bird, and the key points of fifteen
parts (which we do not use). Table II shows the experimental
results of our method on CUB-200-2011 when different sub-
modules are added in. The first setting is semi-automatic,
where the object bounding box is provided, as most previous
methods assume. We extract features from the detected head
(Sec. IV-A) as well as the ground truth object bounding box,
which brings an recognition accuracy of 72.92%. Geometric
alignment (Sec. IV-C) introduces extra parts and boosts the
performance to 75.31%. Finally, FOAF (Sec. V) brings about

TABLE III

SPECIES RECOGNITION PERFORMANCE ON CUB-200-2011. “BBOX” AND
“PARTS” REFER TO USING OBJECT BOUNDING BOX AND PART

ANNOTATIONS. “ALEX”, “VGG”, AND “GOOGLE”
REFER TO DIFFERENT CNN MODELS

another improvement around 2%, with an accuracy of 77.27%,
Fine tune improves this result by a large margin, to over 83%.

The second setting is fully automatic where the object
bounding box is unknown at both training and testing time.
We detect the head as well as the object, followed by a
geometric update, the corresponding accuracy is 68.38%.
Geometric alignment and FOAF improve the result to 69.61%
and 72.40%, respectively. We achieve a final accuracy
of 75.98% after network fine tune, which is an encouraging
result considering the difficulty of this task.

There are many previous works reporting results on
CUB-200-2011, Table III shows the comparison results of our
method with some other related works. According to the part
localization techniques, these works can be categorized into
three types of methods. The first type tries to train supervised
detectors for each part [41], [42], which is similar with
our method. However, we do not localize highly deformable
parts by such template-based models. Our method could
achieve an accuracy of 83.08% in semi-automatic setting,
an 28% relative error reduction comparing with the highest
performing method 76.37%. Furthermore, the fully automatic
classification result is 75.98%, even comparable with the best
result (75.7%) when object and part annotations are available
at training time. The second method considers the selective-
ness of CNN filter banks, and tries to find part detectors
automatically by grouping filters [31], [33]. However, such
detectors are not discriminative enough and the returned
detections are cluttered, the highest accuracy is 69.7%
among this kind of method, which is much lower than
our method (75.98%). The third method aligns parts based
on segmentation [26], [40], with corresponding highest
accuracy 74.9%.

Our proposed FOAF is independent of the features.
To verify this, we learn FOAF based on the low-level
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TABLE IV

SPECIES RECOGNITION PERFORMANCE ON STANFORD DOGS

features of [19] and [22], and achieve accuracies of
69.10% and 62.13%, respectively, a noticeable improvement
over the low-level features (66.35% and 59.4%, respec-
tively), which demonstrates the effectiveness and transporta-
bility of our proposed FOAF. Recently, the performance is
boosted again by switching to more powerful CNN models.
To make fair comparisons, we also report results based on
a more deep CNN structure (VGGNet). The accuracies are
86.34% and 84.63% in case of semi-automatic and fully
automatic settings, respectively, which is higher than the
highest performing methods [40] (82.8%) and [34] (84.1%)
under the same level of annotations.

Stanford Dogs: This dataset consists of 20, 580 images
with 120 dog species. The default train/test split gives us
around 100 training images and 70 test images per class.
Since Stanford Dogs dataset is extracted from ImageNet,
simply choosing the pre-trained network brings about cross-
dataset redundancy. Considering this issue, we check the
ILSVRC 2012 training data and remove samples that are
used as test in Stanford Dogs dataset, and train a network
from scratch to get the model specific to Stanford Dogs. Our
pretrained network nearly matches the performance of [18],
with a validation accuracy of 55.78%.

Table IV shows the classification results of our method
and some related works. The overall framework achieves
accuracies of 74.49% and 68.66% in semi-automatic and
fully automatic settings, respectively, which is comparable
with the result in [33]. The performance improvement is
less than that on CUB-200-2011, mainly due to a greater
pose variability. At the same time, most dogs have a nice
roundish shape and some parts are occluded, which makes
alignment difficult. Noticeably, FOAF boosts the performance
of [19] with nearly 4% over the low-level features, which
demonstrates the effectiveness of FOAF.

Oxford IIIT Pets: Oxford-IIIT Pets dataset is a collection
of 7, 349 images of cats and dogs of 37 different breeds,
of which 25 are dogs and 12 are cats. All images have an
associated ground truth annotation of breed, head ROI, and
pixel level trimap segmentation. Here, we do not use the head
ROI and segmentation information. Table V shows the results
on this dataset. We achieve an accuracy of 91.39%, which is
higher than the best result [48] (88%).

TABLE V

SPECIES RECOGNITION PERFORMANCE ON OXFORD IIIT PETS

TABLE VI

SPECIES RECOGNITION PERFORMANCE ON COLUMBIA DOGS

Columbia Dogs: This dataset contains 8, 351 real-world
images of 133 American Kennel Club (AKC) recognized dog
breeds. The amount of data is smaller than Stanford Dogs,
but with more sub-categories. Each image is also provided
with head part information, such as eyes, nose, and ears, etc..
However, object bounding box annotations are not provided.
Similarly with the setting in Oxford-IIIT Pets, we do not
use any part level annotations. The results for the dataset
is shown in Table VI. Few works report accuracies on this
dataset. We achieve an accuracy of 87.72%, comparing with
the method in [32], which means an absolute improvement of
more than 20%.

E. Complexity Analysis

In this section, we discuss the computational complexity
of the scheme. For candidate region proposal generations,
we choose selective search’s “fast” mode to produce around
2200 region proposals in average for each image. Each pro-
posal is forward propagated through the CNN to get f c7
features. In current implementation, it takes about 9s (AlexNet)
in average for object and head detection. The time cost is
mainly attributed the feature computation. However, the cost
can be decreased to about 1/40 using recent proposed spatial
pyramid pooling CNN [44], with comparable results. The
number of detection candidates in Eq. (1) is set to 100 for
both object and head, taking both performance and complexity
into consideration. In Eq. (3), the top 1000 pairs are used for
object confidence map generation. Both geometric constraint
and object confidence map generation are fast, with dozens of
images per second.

For features learning, Neighboring Joining method is fast,
which takes less than 5s to construct the “tree of similarity”.
FOAF learning takes about 70s in average per part, and around
560s in total. Classification based on FOAF is fast due to
its low-dimensional (around 1.5k) property, with about 68s.
On the other hand, classification directly based on the extracted
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Fig. 10. Example fully automatic classification results on CUB-200 − 2011. We show some well (top two rows) and poorly (bottom two rows) recognized
subcategories, together with the saliency maps explaining why these birds are recognized as certain subcategories. (a) Parakeet Auklet (100%). (b) European
Goldfinch (100%). (c) Red Bellied Woodpecker (96.7%). (d) Florida Jay (96.7%). (e) American Crow (23.3%). (f) Fish Crow (30.0%). (g) Glaucous Winged
Gull (31.0%). (h) California Gull (36.7%).

low-level features (with dimension 9216 per part and 36864
in total) costs about 297s. It can be seen that FOAF increases
the total time cost about twice as much time as classification
directly based on the low-level features.

VII. DISCUSSION

A. What Makes a Red Bellied Woodpecker Look
Like a Red Bellied Woodpecker?

What makes a Red Bellied Woodpecker look like a Red
Bellied Woodpecker? To answer this question, we need to
investigate the classification process and uncover why success
and failure cases happen. As an illustration, Fig. 10 shows
some ‘easiest’ (accuracy above 95%) and ‘hardest’ (accuracy
below 40%) classes of our fully automatic classification
results on CUB-200-2011. In order to find why these birds
are recognized as certain subcategories, we find distinctive
details which contribute most to the final classification score.
Given a subcategory c and its corresponding classification
model wc, we only reserve the top d (d = 80) dimensional
positive weight values wd

c , and identify patches which give
the strongest activations for classifier wd

c . The CNN features
are extracted from sliding window patches at four scales with
window size w ∈ {16, 24, 32, 40} and stride 8, which is similar
as dense SIFT feature extraction. The top activation pathes are
averaged to obtain the saliency maps, as shown in Fig. 10.

We make several observations from the saliency maps.
It appears that successfully recognized subcategories activate
on consistently parts. For European Goldfinch, the distinctive
parts are red forehead and yellow and black wings. For
Florida Jay, it has sapphire long tail. An interesting case is
Parakeet Auklet, besides red beak, the most distinctive part is

mossy rocks, the findings are reasonable since Parakeet Auklet
usually inhabits on mossy rocks, which is rare for other sub-
categories. Now we can answer that a Red Bellied Woodpecker
is best recognized by its red patches around crowns.

However, the least successful classes are due to the existence
of confusing counterparts, such as Fish Crow and American
Crow, California Gull and Herring Gull. It is hard to tell them
apart merely from appearance. In fact, through the description
of Wiki, the main difference between Fish Crow and American
Crow is their voice, the call of Fish Crow has been described
as a nasal “ark-ark-ark”, while American Crow is a distinct
“caw caw”. This suggests that recognizing these confusing
subcategories needs human intervention such as questions
posed to the user.

B. Does Part Localization Really Count?

A large number of preceding works have declared that their
part-based models are effective for fine-grained categorization.
However, they did not test these representations on a common
ground. As noted by Chatfield et al. [14] in their compari-
son of visual encoding, the performance of computer vision
systems depends significantly on implementation details.
In this section, we compare different part localization methods
under the same baseline on Birds dataset, which has extensive
part annotations available apart from object bounding boxes.
Given these extra annotations, we evaluate what would be
achieved under different part-based models and when moving
away from coarse alignments to accurate alignments.

For fair comparison, we extract features part by part with
“AlexNet” model, and concatenating all the part features as
well as object features after normalization. The “ground truth”
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TABLE VII

CLASSIFICATION ACCURACY COMPARISONS WITH DIFFERENT PART LOCALIZATION METHODS FROM COARSE TO FINE ORDER, ALL THE RESULTS
ARE BASED ON THE SAME BASELINE FEATURES FOR FAIR COMPARISONS. WE RE-IMPLEMENT [42] TO OBTAIN HEAD AND OBJECT

LOCALIZATION RESULTS, WHILE THE PART LOCALIZATION RESULTS OF [19] AND [26] ARE PROVIDED

BY THE CORRESPONDING AUTHORS. “GT” REFERS TO GROUND TRUTH

method using the ground truth annotations as part regions.
There are 15 part locations annotated per image which include
beak, eyes, feet, etc., since there are few images with all fifteen
parts visible. In particular, most birds have only one eye and
one wing visible. In order to enable better correspondences
between parts, we combine the features of left and right eyes
(if visible, and the same with wings and legs) via max pooling.
Thus we have 12 parts in total for “ground truth”
method.

The classification accuracies are listed in Table VII. The
results show that the performance could be improved after
introducing better alignment methods [19], [26], [42], and
our alignment method outperforms the others noticeably.
Specifically, [42] also makes use of CNN features for part
localization, which localizes all parts with template-based
model, without considering the deformation degree of parts.
In contrast, we only detect the stable parts with template-
based model and localize other highly deformable parts with
simple geometric alignment. The classification accuracy of our
alignment method is 75.31%, which is higher than the method
in [42] (73.91%). Intuitively, the performance could be further
improved if the ground truth part annotations are available.

Moreover, we order the classification accuracies by part and
disregard the parts which are the least discriminative (back,
legs, and tails), and the accuracy reaches 80.61% (denoted
as ground truth subset), which is better than using all the
parts. The results are intuitive since the least discriminative
parts such as tails and legs are mostly overwhelmed by
the background and sometimes invisible. Thus we conclude
that part localization counts for fine-grained visual catego-
rization only when these parts are discriminative enough
themselves.

VIII. CONCLUSION

In this paper, we propose a novel method for fine-grained
visual categorization. First, we combine semantic prior with
geometric information for part alignment. The stable, less
deformable regions are firstly detected with template-based
method, and geometric alignment is performed to localize
highly deformable parts. Secondly, we learn one-vs-all fea-
tures, which are dimension friendly and entry meaningful. The
dimension of one-vs-all features scales with the number of
classes and is far less than that of the low-level ones. Each
entry of the learned features represents the signed distance
from current part to the target one. Furthermore, we fuse
similar subcategories and learn Fused One-vs-All Features
for classification. Combining all the techniques we achieve
superior performance on several fine grained animal dataset
for semi-automatic and fully automatic classification.
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