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Abstract—The rapid growth of web images presents new
challenges as well as opportunities to the task of image under-
standing. Conventional approaches rely heavily on fine-grained
annotations, such as bounding boxes and semantic segmentations,
which are not available for web-scale images. In general, images
over the Internet are accompanied with descriptive texts, which
are relevant to their contents. To bridge the gap between textual
and visual analysis for image understanding, this paper presents
an algorithm to learn the relations between scenes, objects and
texts with the help of image-level annotations. In particular, the
relation between the texts and objects is modeled as the matching
probability between the nouns and the object classes, which can
be solved via a constrained bipartite matching problem. On the
other hand, the relations between the scenes and objects/texts are
modeled as the conditional distributions of their co-occurrence.
Built upon the learned cross-domain relations, an integrated
model brings together scenes, objects and texts for joint image
understanding, including scene classification, object classification
and localization, and the prediction of object cardinalities. The
proposed cross-domain learning algorithm and the integrated
model elevate the performance of image understanding for web
images in the context of textual descriptions. Experimental results
show that the proposed algorithm significantly outperforms
conventional methods in various computer vision tasks.

Index Terms—Scene classification, object classification, object
localization, conditional random field.

I. INTRODUCTION

With the explosive growth of images over the Internet,
it has never been more desirable for intelligent vision sys-
tems that can automatically extract semantics from images,
including how they are composed (image segmentation), what
scenarios they describe (scene categorization), what objects
they embrace (object classification) and where they are (object
localization). In general, to answer these questions is non-
trivial due to the variations of objects in the visual appearance
and the complex interactions among them. Thanks to the
continual efforts of the researchers over the past few decades,
remarkable progress has been made in several fundamental
tasks of computer vision, including object detection [1], scene
categorization [2] and image retrieval [3]. Yet, image under-
standing, as the ultimate goal of computer vision, remains a
challenging task [4], and the performance of the state-of-the-
art algorithms is still inferior to human intelligence.
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As we move towards web-scale image understanding, the
problems become even more difficult. The vast diversity of
web images presents a substantial challenge to the vision com-
munity – we can no longer rely on images with fine-grained
annotations, e.g., bounding boxes and semantic segmentations,
to train the models, because it is too lavish to provide detailed
annotations for millions of images in thousands of classes.
Naturally, challenges come with opportunities. An important
distinction of web images as opposed to those in traditional
datasets is that they are often associated with descriptive texts,
such as captions, keywords and tags, which are highly relevant
to the content of the images. As illustrated in Fig. 1, the words
woman and bicycle in the caption reveal a few aspects about
the image, even if the image is not visible itself. For example,
the image contains at least two object classes: PERSON and
BICYCLE, and it may be taken in the street or sports field.
In this paper, we aim at bridging the gap between the textual
descriptions and the visual analysis of the images for joint
image understanding.

Significant efforts have been made to explore effective ways
to integrate visual and textual analysis [5]–[12]. Li et al.
[13] learned a generative model from the images and tags
for joint scene classification, image segmentation and image
annotations. Farhadi et al. [5] introduced the “meaning space”
as an intermediate representation between images and texts.
Fidler et al. [14] advanced a holistic scene understanding
framework that jointly reasons about semantic segmentation,
the presence of objects and their spatial extent. All of these
methods would require strong supervision to extract object
classes from the textual descriptions in order to obtain proper
representations. To reduce the enormous effort of manual
annotation for the tremendous number of images over the
Internet, we explore an efficient approach for establishing the
link between the textual descriptions and visual concepts.

Some approaches [14, 15] exploit the spatial relations of
objects indicated by the prepositions (e.g., near, behind) for
image understanding. Although the prepositions are claimed
to be effective for object recognition, they suffer from two
limitations in practice. First, the spatial relations defined by
prepositions have to be learned with the bounding boxes
of objects, which are so immoderately difficult to obtain.
Second, the spatial relations from the textual descriptions are
actually very scarce in reality. In most cases, people might feel
redundant to describe the spatial relations of objects, which are
so obvious to the viewers since they can perceive the images.
Statistical analysis on public dataset also supports this idea.
For example, in the UIUC dataset [5], the mean frequency
of effective prepositions of near, in, on and in front of is
about 0.02 per caption. Compared to the prepositions, Part of
Speech (POS) tags are far more robust and abundant in the
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Fig. 1. Massive amount of images over the Internet are associated with textual descriptions, which are highly relevant to the content. The proposed algorithm
learns the cross-domain relations between scenes, objects, and texts with image-level annotations, and jointly performs scene classification, object classification,
prediction of object cardinalities, and object localization.

textual descriptions. In consequence, they serve as the main
source of our textual analysis.

Motivated by these observations, we aim at developing
an algorithm to learn the relations across different domains,
namely, scenes, objects and texts, for image understanding. In
particular, we do not demand fine-grained annotations, such as
bounding boxes, to learn those cross-domain relations. Instead,
only image-level annotations will be involved, which are much
easier to reach, especially for web images. Moreover, an
integrated model will be designed, which utilizes those cross-
domain relations to perform multiple image inference tasks,
including scene classification, object classification (i.e., the
existence of object classes), prediction of object cardinalities
(i.e., the number of object instances), and object localization.

The contribution of this paper is two-fold. First, we propose
an algorithm to learn the cross-domain relations between
scenes, objects and texts. To be specific, the relation between
the texts and the objects is formulated as the matching
probability of the nouns and object classes, which can be
derived by solving a set of instance-level constrained bipartite
matching problems. Furthermore, the relations of scenes and
objects/texts are represented by the relative frequency of
occurrence of the objects/nouns in different scene classes.
The proposed algorithm needs only image-level annotations,
including the scene labels and the object cardinalities, to
learn such relations. Therefore, it makes possible to harness
the sheer wealth of web images without requiring enormous
amount of manual annotations.

Second, an integrated model for image understanding is
developed, which incorporates visual and textual features to
jointly predict: (1) the scene classes of images, (2) the object
classes in images, (3) the cardinalities of object classes,
and (4) the locations of object instances. Various off-the-

shelf object detectors and scene classifiers can be utilized
to provide hypotheses of objects and scenes to the proposed
model. Together with the textual descriptions of images, a
conditional random field graphical model is established. In
particular, two types of unary potentials and three types of
binary potentials are elaborately designed to measure the
compatibility of scenes, objects and texts with regard to the
learned cross-domain relations. Remarkable improvements can
be achieved by the proposed model in various computer vision
tasks with relatively low computational complexity.

To distinguish the objects and the nouns, we use words
in upper case to represent object classes, and words in ital-
ics to represent nouns. For example, PEOPLE is an object
class, while people is a noun in the textual description. The
remainder of the paper is organized as follows: Section II
reviews the related work. Section III describes the algorithm
of learning cross-domain relations. Section IV presents the
integrated model for joint image understanding. Section V
provides experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORK

There is quite a little work using text for image understand-
ing, which generally fall in three categories: feature-based
methods, topic-based methods and CRF-based methods.

Feature-based approaches extract features, respectively,
from the image and the associated text, which are combined
in either feature-level, metric-level, or classifier-level. Li et al.
[16] concatenated the textual and visual features to train an
SVM for image classification. Wang et al. [17] put forward to
learn three SVMs: one over textual features, one over image
features, and one combining the scores from the former two.
Cheng et al. [3] adopted textual feature and visual feature
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in a sequential way, and learned a concept-dependent fusion
strategy to combine them. Guillaumin et al. [18] integrated
textual and visual features with multiple kernel learning. Some
approaches introduce a common space to bridge the textual
and visual features. Iyengar et al. [19] recommended a retrieval
system where visual and textual features are linked via an
intermediate concept layer. Farhadi et al. [5] advocated a com-
mon representation called “meaning space”, to which images
and captions are both mapped. Yeh et al. [20] developed a
domain adaptation framework for cross-domain recognition,
where the canonical correlation analysis is adopted to derive
a joint feature space for associating cross-domain data.

Topic models are also used to model texts and images. In the
seminal work by Barnard et al. [21], LDA models [22], formu-
lated upon images and text respectively, are coupled to form
a joint distribution. Later, Blei et al. [23] suggested Corr-LDA
to capture the correlation between images and corresponding
captions, assuming one-to-one correspondence between visual
and textual topics. Putthividhy et al. [24] brought an extension
that is able to exploit correlations across multiple topics.
Recently, more sophisticated multi-modal topic models using
MRF [25], neural networks [26] and relational models [27],
have been studied. Overall, both feature-based and topic-based
methods generally consider the textual descriptions as a whole,
and do not exploit the links of finer granularity to connect texts
and objects, which is a key aspect in our approach.

Graphical models, which are increasingly popular, have
been investigated in joint image-text analysis. For image
retrieval, Gao et al. [28] represented the image features and
the textual features with a bag-of-visual-words and a bag-
of-textual-words, respectively. A hypergraph is generated to
model the relevance of images where the edges are the
shared visual and textual words. Fidler et al. [14] incorporated
the nouns, the cardinality of nouns, and four prepositions
to construct a conditional random field for image segmen-
tation, object detection and scene classification. However,
their approach manually specifies the correspondence between
nouns and object classes, while the proposed method learns
such correspondence automatically. Moreover, their approach
requires bounding boxes to learn the spatial relations implied
by the propositions, while the proposed method demands only
image-level annotations.

Weakly supervised object detection methods have also been
proposed, which require no bounding boxes but image-level
labels that indicate the presence of object classes. Cinbis
et al. [29] designed a multi-fold multiple instance learning
approach that iteratively trains the detector and infers the
object locations in the images. Bilen et al. [30] collected a
set of exemplars, which best describe the training data, by
enforcing “soft” similarity between each possible location in
the image. Shi et al. [31] modeled the object classes and image
backgrounds together in a single Bayesian latent topic model,
which can be learned by a mixture of weakly labeled and
unlabeled data. Although the aforementioned methods are able
to learn the object models in the absence of bounding boxes,
the performance of the weakly supervised object detection
methods is often inferior to their supervised counterparts
[1, 32].

III. WEAKLY-SUPERVISED LEARNING OF CROSS-DOMAIN
RELATIONS

The relations between scenes, objects and texts are mod-
eled in two levels. Specifically, on the one hand, the re-
lation between the objects and texts is represented by the
matching probability of the object classes and the nouns.
On the other hand, the relations between the scenes and
objects/texts are represented by the frequency of occurrence of
the objects/nouns in different scene classes. In the following,
we describe how to obtain those cross-domain relations with
image-level annotations in detail.

To begin with, some notations will be introduced. A sample
is comprised of an image I and a textual description, which is
summarized by the cardinalities of nouns b = (b1, · · · , bN ).
Here, N is the number of noun classes, and bu is the
cardinality of the u-th noun class. If a noun is not in the
textual description, its cardinality is zero; otherwise, it is a
positive integer.

As in [14], two types of cardinalities of nouns are extracted
from the textual descriptions by the Stanford parser [33]: the
exact ones and the uncertain ones. The exact cardinalities can
be obtained by retrieving the nouns either in singular form
or with numerical modifiers. For example, we can extract 3
kids (noun with numerical modifier) and 1 river (noun in
singular form) from the sentence “three kids are swimming
in the river”. In the other case, the uncertain cardinalities
are characterized by nouns in plural form without numerical
modifiers. For example, “some cars” implies that the number
of cars is at least 2.

In this way, the observation of a sample can be denoted
by (I, b). In the training set, the annotations of the samples
will be provided, including the scene labels {st}Kt=1 and the
cardinalities of the object classes {ct}Kt=1, where K is the
number of samples in the training set. st ∈ {1, 2, · · · , S} is
the scene label of the t-th sample, where S is the number
of scene classes. ct = (ct1, · · · , ctM ) is the vector of object
cardinalities of the t-th sample, where M is the number of
object classes, and ctv is the cardinality of the v-th object class
in the t-th sample.

A. Relation Between Texts and Objects

The relation between the noun classes and the object classes
is modeled with their matching probability P (v|u) : 1 ≤ v ≤
M, 1 ≤ u ≤ N , which depicts the semantic relevance of the
nouns and the object classes. For example, P (PERSON|boy)
is supposed to be large, and P (CAR|bird) is supposed to
be small. To derive such matching probability, the learning
algorithm is composed of two steps: (1) resolve the instance-
level matching of the nouns and objects for each training
sample by solving a constrained bipartite matching problem,
and (2) estimate the conditional matching probabilities P (v|u)
based on the resulting correspondence.

The instance-level correspondence of the nouns and the
objects of a sample is represented by a matching matrix
X ∈ {0, 1}N×M . X(u, v) = 1 if the u-th noun class is
matched to the v-th object class for this sample; otherwise,
X(u, v) = 0. Given the cardinalities of nouns and objects of
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the sample, namely, b = (b1, · · · , bN ) and c = (c1, · · · , cM ),
X can be obtained by solving the following constrained
optimization problem:

X̂ = argmax
X

N∑
u=1

M∑
v=1

buX(u, v)P0(v|u),

s.t.



N∑
u=1

buX(u, v) ≤ cv,∀ 1 ≤ v ≤M,

M∑
v=1

X(u, v) ≤ 1(bu > 0),∀ 1 ≤ u ≤ N,

(1)

where 1(statement) is a boolean function, which is equals to 1
if the statement is true, and 0 otherwise. P0(v|u) is the initial
matching probability of the nouns and the objects, which can
be estimated from {bt}Kt=1 and {ct}Kt=1 by

P0(v|u) =
∑K
t=1 1(b

t
u = 1)1(ctv = 1)∑K

t=1 1(b
t
u = 1)

, (2)

Obviously, P0 is the relative frequency of co-occurrence of the
nouns and objects in the training set. Although P0 is a coarse
estimate of the relevance of the nouns and objects, empirically
it is good enough as a prior guide to the matching problem,
because highly relevant objects and nouns are very likely to
co-occur in the samples.

The goal of Eq. (1) is to match as many pairs of nouns and
objects as possible, and two constraints are enforced to the
optimization problem. The first constraint ensures that the total
cardinalities of the nouns that are mapped to an object class
must not exceed cardinality of that object class. For example,
the textual description is “two boys and a girl are playing
in the garden”, and the annotation indicates that there are 3
instances of PERSON in the image. In this case, this constraint
requires that no more than 3 instances from 2 boys, 1 girl and
1 garden can be mapped to the object PERSON.

The second constraint ensures that a noun can be mapped
to one object class at most. In reality, the mapping between
the nouns to the object classes is many-to-many. In other
words, multiple nouns can refer to the same object class,
and one noun can also refer to multiple object classes. It is
well recognized that people tend to be more specific when
they describe images, so that they rarely use one noun to
represent multiple object classes. For example, in the UIUC
dataset [5], there are only three nouns that can represent mul-
tiple object classes, i.e., furniture (DININGTABLE, CHAIR,
SOFA), vehicle (BUS, CAR) and animal (BIRD, CAT, DOG,
COW, HORSE, SHEEP), and their frequencies of occurrence
are extremely low (0.0072, 0.0034 and 0.0026 per caption,
respectively). Without loss of generality, a many-to-one map-
ping from the nouns to the objects is established here. Note
that if a noun does not exist in the text (i.e., 1(b > 0) = 0),
it will not be mapped to any object class.

Eq. (1) is a binary integer linear programming problem,
which can be solved efficiently. One simple way to solve
it approximately is to relax the problem into a real-valued
linear programming problem and then threshold the resulting
solution.

Furthermore, we consider a weaker form of annotation,
where only the existence of object classes is available, and
the object cardinalities are unknown. Such annotations are
also abundant over the Internet, such as tags and keywords.
The existence of object classes is denoted by a binary vector
z = (z1, · · · , zM ), where zv = 1 if the v-th object class exists
in the image, and zv = 0 otherwise. As the cardinalities of
objects are not present, the nouns will be encoded in similar
fashion by q = (q1, · · · , qN ), where qu = 1 if the u-th noun
class exists in the text, and qu = 0 otherwise. With z and q,
the instance-level matching of nouns and objects can also be
obtained by solving a slightly different version of Eq. (1):

X̂ = argmax
X

N∑
u=1

M∑
v=1

X(u, v)P0(v|u),

s.t.



N∑
u=1

X(u, v) ≤ zv,∀ 1 ≤ v ≤M,

M∑
v=1

X(u, v) ≤ qu,∀ 1 ≤ u ≤ N.

(3)

In this case, the first constraint requires that an object class,
if present, can be mapped to no more than one noun class.

Once the matching matrices {X̂t}Kt=1 are computed for all
training samples, the matching probability between the nouns
and the objects can be re-estimated by

P (v|u) =
∑K
t=1 b

t
uX̂t(u, v)∑K
t=1 b

t
u

, (4)

where the denominator is the number of matched instances
of the u-th noun class, and the numerator is the number of
instances of the u-th noun class that are mapped to the v-th
object class in the training set. Later, experiments in Section
V will show that the matching probability obtained by Eq. (4)
is very accurate even without the cardinalities, while better
results can be achieved using the cardinalities.

B. Relations Between Scenes-Objects and Scenes-Texts

The relations between scenes-objects and scenes-texts are
defined in similar fashion, i.e., the frequency of occurrence of
the object/noun classes in different scene classes.

To be specific, given the scene labels {st}Kt=1 and the object
cardinalities {ct}Kt=1 in the training set, the frequency of object
class v ∈ {1, · · · ,M} in scene s ∈ {1, · · · , S} is defined as

FO(s, v) =

∑K
t=1 1(c

t
v > 0)1(st = s)∑K

t=1 1(st = s)
. (5)

Here, the denominator is the number of samples in scene class
s, and the numerator is the number of samples in scene class
s containing object v.

Likewise, given the scene labels {st}Kt=1 and the noun
cardinalities {bt}Kt=1 in the training set, the frequency of
noun u ∈ {1, · · · , N} in the textual description of scene
s ∈ {1, · · · , S} is

FN (s, u) =

∑K
t=1 1(b

t
u > 0)1(st = s)∑K

t=1 1(st = s)
. (6)
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Again, the denominator is the number of samples in scene
class s, and the numerator is the number of samples in scene
class s with noun u in the textual description.

IV. INTEGRATED MODEL FOR JOINT IMAGE ANALYSIS

With the cross-domain relations learned by the proposed
method, an integrated model brings together the scenes, ob-
jects and texts to jointly predict: (1) the scene classes of im-
ages, (2) the object classes in the images, (3) the cardinalities
of object classes, and (4) the locations of object instances.

As illustrated in Fig. 2, the proposed model comprises three
types of vertices from different domains, namely, the scene
vertex, the object vertices, and the text vertices. Specifically,
the model contains only one scene vertex with a random
variable s ∈ {1, · · · , S}, which encodes the scene class of the
image. Moreover, there are M object vertices in the model,
which encode the existence of the M object classes. The v-th
object vertex is associated with a random variable zv ∈ {0, 1},
denoting the presence (zv = 1) or absence (zv = 0) of the v-
th object class. Consequently, the presence of object classes
can be indicated by z = (z1, · · · , zM ). Finally, there are N
text vertices in the model, which encode the existence of N
distinctive nouns in the textual descriptions. Similar to the
object vertices, the u-th text vertex is associated with a random
variable qu ∈ {0, 1}, denoting the presence (qu = 1) or
absence (qu = 0) of the u-th noun in the textual description.
Likewise, q = (q1, · · · , qN ) is the indicator of the presence
of the noun classes.

To measure the probability of the labeling of the vertices
in the model, two unary potentials and three binary potentials
are carefully designed. The unary potentials include the scene
potential fS and the object potentials fO. They evaluate the
labeling of the scene vertex and the object vertices based on
the visual appearance of the image. To establish the relations
between scenes, objects and nouns, three types of edges are
introduced to link the vertices from different domains to form
a unified graphical model. Each type of edge is associated
with a distinct binary potential function, which measures the
compatibility of the labeling of the two vertices based on the
learned cross-domain relations. In total, there are three types
of binary potentials, namely, the text-object potentials fTO,
the scene-object potentials fSO, and the scene-text potentials
fST .

A. Unary Potentials

Defined over the scene vertex, the scene potential measures
the likelihood with which the image belongs to each scene
class based on the predictive scores of a set of off-the-
shelf scene classifiers. In particular, the off-the-shelf scene
classifiers take the image as input and produce a set of
classification scores {Ds}Ss=1, where Ds ∈ R is the predictive
score of the s-th scene class. Various image classification
algorithms, such as SPM [2] and Object Bank [34], can be
validated in the proposed model. In turn, the scene potential
fS over the scene vertex s is defined as

fS(s) = Ds, 1 ≤ s ≤ S. (7)

Obviously, fS favors the scene class with the high predictive
score.

A distinct object potential is defined for each object vertex
to measure the likelihood that the image contains the object
class. First, a set of off-the-shelf object detectors are used to
generate object hypotheses, e.g., bounding boxes, from the im-
age. For example, DPM [1] and exemplar SVM [35] perform
the object classification over the sliding windows in a greedy
manner and eliminate redundant detections via non-maximum
suppression. In particular, Barinova et al. [36] developed a
probabilistic framework based on Hough transform, which
permits detection of multiple objects without invoking non-
maximum suppression heuristics.

Each object hypothesis is associated with a classification
score, indicating the confidence of the hypothesis, Naturally,
the largest classification score of an object class is chosen as
the predictive score of the existence of the object class in the
image. Finally, the object potential fO over the object vertex
zv is defined as

fO(zv) = zv(dv − Lv), ∀ 1 ≤ v ≤M. (8)

Here, Lv is introduced as the bias of the v-th object class
to calibrate the predictive scores, since the distribution of the
predictive scores varies across classes.

If the predictive score is large enough (i.e., dv > Lv), the
object potential implies that the object class exists in the image
(i.e., fO(zv = 1) > fO(zv = 0)). Otherwise it favors that
the object class does not exist in the image (i.e., fO(zv =
1) < fO(zv = 0)). Thus, fO is a reasonable estimator of
the existence of the object classes based on image features,
whose discriminative capability depends on the off-the-shelf
object detectors.

B. Binary Potentials

The binary potentials reflect the relations between the
vertices from two different domains. Thus, three types of
binary potentials are defined in the model: the text-object
potentials fTO, the scene-object potentials fSO and the scene-
text potentials fST . It is worth mentioning that the binary
potentials are defined with the learned cross-domain relations
as described in Section III.

The text-object potential, linking a text vertex and an object
vertex, captures the compatibility of the existence of the noun
and the object. Specifically, the binary potential between the
u-th text vertex and the v-th object vertex is defined as

fTO(qu, zv) = max(P (v|u)− T, 0)quzv, (9)

where P (v|u) is the matching probability of the u-th noun
class and the v-th object class, and T is a threshold. The
underlying rationale is that if the relevance between a noun and
an object is sufficiently large, then the existence of the noun in
the text strongly indicates the presence of the corresponding
object in the image. On the other hand, if the relevance
between the noun and the object is small, fTO is always zero
regardless of qu and zv , meaning that the labeling of one vertex
will not affect the labeling of the other one because they are
not relevant.



6

A cat is sitting in 
between two bikes.

object
detection

text
parsing

z1 z2 zM

q
1

q
2

q
N

...

scene
classification

scene-specific
frequency

s

FO

FN

SGD w

P(v|u)

Annotations:

...

CRF

max-
product

Fig. 2. The framework of the proposed model. A set of off-the-shelf object detectors and scene classifiers provide hypotheses of the objects and the scenes to
the underlying model. Together with the learned cross-domain relations among scenes, objects and texts, a conditional random field is constructed to jointly
predict the scene classes, presence of objects, the cardinalities of objects, and the locations of objects. The solid path shows the training procedure and the
dashed path shows the testing procedure.

The scene-object potential fSO measures the likelihood that
an object class exists in different scenes. Specifically, the
binary potential between the scene vertex and the v-th object
vertex is defined as

fSO(s, zv) = FO(s, v)zv + (1− FO(s, v))(1− zv), (10)

where FO(s, v) is the frequency of occurrence of object v in
the scene class s, which is defined in Eq. (5). As the scene
label and the object indicator are both to be inferred, fSO
favors the most likely combination of the existence of the
object class and the scene class.

The scene-text potential captures the dependency of the
nouns on scene classes. Thus, the binary potential between
the scene vertex and the u-th text vertex is defined as

fST (s, qu) = FN (s, u)qu + (1− FN (s, u))(1− qu), (11)

where FN (s, u) is the frequency of occurrence of noun u in
scene s, which is defined in Eq. (6). Eq. (11) demonstrates
that if noun u exists in the textual description, the scene-text
potential favors the scene class in which the noun is most
likely to appear.

C. Joint Inference of Objects and Scenes

With the unary potentials and the binary potentials, the joint
probability of the labeling of the object vertices z and the
scene vertex s conditioned on the image I and the text q can

be factorized in terms of the graphical model:

p(z, s|I, q) = 1

Z(I, q)
exp

[
w1fS(s) + w2

M∑
v=1

fO(zv)

+ w3

M∑
v=1

fSO(s, zv) + w4

N∑
u=1

fST (s, qu)

+ w5

N∑
u=1

M∑
v=1

fTO(qu, zv)
]
.

(12)

Here, w = [w1, w2, w3, w4, w5] are the weights that balance
the contribution of different potentials, and Z(I, q) is the
normalizing parameter.

To predict the object classes in the image and the scene
class of the image, the maximum-a-posteriori (MAP) estimate
of Eq. (12) will be computed

[s∗, z∗] = argmax
s,z

p(s, z|I, q). (13)

As the labeling of text vertices can be observed from the
textual description, the graphical structure among s and z
reduces to a tree. Hence, the optimal solution can be achieved
using the max-product algorithm.

D. Cardinalities of Object Classes

Once the object indicator z = (z1, · · · , zM ) is inferred by
the proposed model, the cardinalities of object classes can be
predicted by

ĉv = zv(λ
T
v ĉ

T
v + λIv ĉ

I
v), v = 1, · · · ,M, (14)

where ĉTv is the cardinality of the v-th object class predicted
from the textual description, and ĉIv is the cardinality of the
v-th object class predicted from the image.
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If the proposed model infers that the object class does
not exist, its cardinality is zero. Otherwise, the predicted
cardinality of the object class is the linear combination of
the text-based prediction and the image-based prediction. λTv
and λIv are the coefficients of the v-th object class. Next,
we describe how to obtain the text-based prediction and the
image-based prediction of the object cardinality, as well as the
optimal coefficients.

Given the cardinalities of the nouns extracted from the
text b = (b1, · · · , bN ), the text-based prediction of object
cardinality is

ĉTv =

N∑
u=1

buP (v|u), v = 1, · · · ,M, (15)

which is the “expectation” of the cardinalities of the nouns
based on their matching probability with the object class. For
example, if 2 boys and 1 bike are extracted from the text, and
assuming that the matching probability of PERSON with boys
and bike is 0.9 and 0.1, respectively, the predicted cardinality
of PERSON is 2× 0.9 + 1× 0.1 = 1.9.

Considering that predicting the object cardinality with only
text is not sufficient in case there are objects which are
not mentioned in the textual description. The image-based
prediction of the object cardinality is devised, which is equal
to the number of object instances found by the off-the-shelf
object detectors. For example, if the detector of the v-th object
class returns 3 instances, typically in the form of bounding
boxes, the image-based prediction of the object cardinality is
ĉIv = 3.

Provided with the cardinalities of nouns {bt}Kt=1 and the
ground truth cardinalities of objects {ct}Kt=1 in the training
set, the optimal coefficients λT and λI can be determined by
minimizing the mean squared error of the predicted object
cardinalities and the ground truth cardinalities:

min
λT
v ,λ

I
v

1

K

K∑
t=1

(λTv Ĉ
T
v + λIvĈ

I
v − Ctv)2,

s.t. 0 ≤ λTv , λIv ≤ 1.

(16)

The coefficients are lower bounded by zero and upper bounded
by one, because in the extreme case where the objects referred
by the text and the detectors are complementary. The true
cardinality of the object in the image is the sum of the text-
based prediction and the image-based prediction. Note that
Eq. (16) is a least squares estimation problem with linear
constraints, which can be solved efficiently.

E. Localization of Objects

Once the cardinalities of the object classes are predicted, ob-
ject detection can be refined to generate more confident object
hypotheses. Concretely, the object hypotheses from a certain
object detector are sorted in descending order according to
their classification scores, so that the first hypothesis is the
most confident one. Given the predicted object cardinality ĉ,
the top dĉe initial hypotheses are chosen as the final object
hypotheses, and other hypotheses will be discarded. If the
number of initial hypotheses is smaller than dĉe, all of them

will be reserved. In this way, a large number of false positive
detections can be removed based on the predicted cardinalities
of the object classes.

V. EXPERIMENTS

We mainly evaluate the proposed method on the UIUC
dataset [5], and also report its performance on the TSU
dataset [13]. As the UIUC dataset, which contains 1000 images
from the PASCAL VOC 2008 dataset, is not scene-oriented,
we extract a subset of 630 images, whose scene classes
can be unambiguously determined. The images are manually
categorized into eight well-defined scene classes, namely,
airport, dining room, farm, living room, railway, racing, street,
and water. Each image is accompanied with five descriptive
captions collected from the human annotators on Amazon
Mechanical Turk. In sum, the dataset has 630 × 5 = 3150
samples, each of which is an image-caption pair. Table I
summarizes the number of samples in the scene classes, and
Fig. 3 displays some example images. In addition, the number
of instances in the object classes is presented in Table II.
Since there are not sufficient instances of BIRD, CAT and
DOG, the remaining 17 object classes will be evaluated in
the experiments. We randomly select 60% of the samples for
training and the rest for testing. Note that if an image is
grouped into the training set, all five samples containing this
image will be used for training as well, so that the training
set and the testing set can be totally disjoint in both images
and textual descriptions. It is worth mentioning that all off-
the-shelf object detectors are trained upon the PASCAL VOC
2007 dataset, which has no overlap with the UIUC dataset.

TABLE I
SCENE CLASSES AND NUMBER OF SAMPLES

scene airport dining room farm street
#samples 250 351 580 395

scene racing living room railway water
#samples 440 365 260 505

TABLE II
NUMBER OF OBJECT INSTANCES IN THE DATASET

PLANE BICYCLE BIRD BOAT BOTTLE BUS CAR
270 240 55 265 195 285 460
CAT CHAIR COW TABLE DOG HORSE MOTOR

0 345 245 285 65 145 280
PERSON PLANT SHEEP SOFA TRAIN MONITOR

1205 135 240 255 260 155

A. Matching of Nouns and Objects

To evaluate the accuracy of the noun-object matching algo-
rithm, the matching probability P (v|u) is computed with all
5000 samples in the UIUC dataset. Each noun is hard-assigned
to the object class of the largest matching probability. We
manually labeled the ground truth mapping from the nouns
to the object classes. By varying the threshold, a precision-
recall curve can be sketched to measure the accuracy of the
proposed algorithm. With regard to three conditions:
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    airport        dining room          farm           living room        railway            racing             street              water

Fig. 3. Image examples of 8 scene classes in the subset of the UIUC dataset.

1) the initial matching probability, i.e., Eq. (2);
2) the matching probability without the constraint of object

cardinalities, i.e., Eq. (3);
3) the matching probability with the constraint of object

cardinalities, i.e., Eq. (1).

the precision-recall curves are shown in Fig. 4.
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Fig. 4. Precision-recall curves of the noun-object matching.

Upon Fig. 4, the average precision (AP) can be attained
for each curve by computing the area under the curve, which
measures the overall performance. The AP of the initial
matching probability is 0.578. Without the cardinalities of
the nouns and the objects, the proposed algorithm increases
the AP to 0.731, which obtains a 26.5% improvement over
the initial guess. By incorporating the cardinalities, the AP
reaches 0.750, which is a 29.7% improvement over the initial
guess. On the one hand, the matching probability constrained
by the cardinalities is more accurate. On the other hand, the
gain brought by the cardinalities is small (2.6%), because most
of the samples in the dataset contain only one instance of a
specific object or noun, which leads to many identical instance-
level matchings with or without cardinalities. Table III lists
part of the detailed matching results, which are obtained when
the threshold is 0.5. In particular, the last row of the table lists
the nouns that are determined to be unmatched.

The experimental results clearly demonstrate that the pro-

TABLE III
EXAMPLES OF MAPPING OF NOUNS AND OBJECTS

Object Correct Wrong
AEROPLANE plane, airplane, jet runway
BICYCLE bicycle, bike cyclist
BIRD bird, hummingbird, seagull, duck beak
BOAT boat, ship, cruise, sailboat shore
CAR car, SUV traffic
CAT cat, kitten
COW cow, bull, calf
DOG dog, puppy, pug, chihuahua
HORSE horse, foal, pony carriage
MOTORBIKE motorbike, scooter, motorcycle
PERSON man, woman, girl, people, guy,boy family
SHEEP sheep, lamb, goat
SOFA couch, sofa
TRAIN train, engine, locomotive railroad
TVMONITOR computer, screen, television, monitor
Unmatched table, room, front, field, water, road mother

posed matching algorithm effectively establishes the corre-
spondence between the nouns and the object classes. Taking a
close look, even the “wrong” matches, which are not directly
related to the matched object classes, are semantically relevant,
and will also help reduce the ambiguities arising in object and
scene classification.

B. Scene Classification

To evaluate the proposed algorithm in scene classification,
we fix the object detector and test various scene classifiers. The
popular deformable part-based model (DPM) [1] is utilized as
the object detector to compute the unary potentials of the ob-
ject vertices. Three scene classification algorithms are adopted
in the proposed model: spatial pyramid matching (SPM) [2],
sparse coding SPM (SC) [37], and locality-constrained linear
coding (LLC) [38]. Initially, a bag of C-SIFT descriptors [39]
are densely collected for each image. Then, a codebook of
1024 visual words is trained over these descriptors by the k-
means algorithm. Consequently, a three-level (1×1, 2×2, 4×4)
spatial pyramid representation is validated for each image with
different encoding schemes depending on the underlying scene
classifiers. Finally, a linear SVM classifier is trained for each
scene class using the one-versus-the-rest scheme.

For each scene classifier, the proposed model is tested under
four conditions to evaluate respective effects of scenes, objects,
and texts for scene classification.

1) The model consists of only the scene vertex;
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2) The model consists of the scene vertex and the object
vertices;

3) The model consists of the scene vertex and the text
vertices;

4) The full structure of the model is enabled, consisting of
the scene vertex, the object vertices and the text vertices.

Fig. 5 compares the mean accuracy of different combinations
of scene classifiers and model structures. Table IV displays
the class-specific accuracy of each scene class.
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0.9

1

SPM SPM SPM SPM LLC LLC LLC LLC SC SC SC SC
+ obj. + text + obj. +obj. + text + obj. + obj. + text + obj.

+ text + text + text

0.446

0.729

0.88
0.921

0.565

0.729

0.889
0.914

0.51

0.721

0.888
0.916

Fig. 5. Mean accuracy of scene classification using SPM, LLC, and SC as
the scene classifier.

Several conclusions can be drawn from this experiment. Re-
markably, the incorporation of text can significantly improve
the accuracy of image-based scene classification. When only
the scene classifiers are validated, the use of text improves
the mean accuracy of SPM, LLC and SC by 97%, 57%
and 74%, respectively. When the scene classifiers and the
object detectors are both enabled, the use of text improves
the mean accuracy of SPM, LLC and SC by 26%, 25%
and 27%, respectively. It can be derived from the fact that
textual descriptions are more robust and informative in char-
acterizing scene classes, while image features are sensitive
to illumination, deformation and noise. Also, texts provide a
wider range of real-world concepts than objects of interest,
which are helpful in determining the scene classes of images.
Moreover, object detection also plays a key role in scene
classification. Without the text, object detection improves the
mean accuracy by 63%, 29% and 41% for SPM, LLC and
SC, respectively. After incorporating the text, object detection
improves the mean accuracy by 5%, 3% and 3% for SPM,
LLC and SC, respectively. It can be understood that object-
based image features, e.g., Classemes [40] and Object Bank
[34], provide mid-level semantic representations of image
contents, which are discriminative for image classification.
Although most of the objects in images can be covered by the
textual descriptions, those non-salient objects, which are not
mentioned in the text, can be discovered by object detectors,
resulting in marginal improvements over the joint scene-text
inference. Furthermore, the proposed model is robust against
different types of scene classifiers, because consistent gains
are obtained with SPM, LLC and SC.

Furthermore, we also compare the performance of the pro-
posed method with TSU [13] in scene classification. Similar
to the proposed method, TSU also utilizes images and texts

(tags) for joint image analysis, including scene classification,
image annotation, and image segmentation. Experiments are
conducted upon the dataset used in [13], which consists of
eight scene classes. Each scene class contains 800 images
crawled from Flickr, and 600 images are randomly selected
for training and the rest for testing. Since the object labels are
not available in the dataset, we use the “scene classifier + text”
version of the proposed method for comparison, where SPM is
used as the off-the-shelf scene classifier. The result is displayed
in Table V. Clearly, the proposed method outperforms TSU
in every scene class, and the mean accuracy of the proposed
method is 63% higher than TSU.

C. Object Classification
To evaluate the proposed model in object classification,

we adopt the classic SPM as the scene classifier, and test
three object detectors: the classic deformable part based model
(DPM) [1], the exemplar-SVM (ESVM) [35], and the state-
of-the-art RCNN [32]. Similar to the scene classification, the
proposed model is tested under four conditions to evaluate the
impact of objects, texts and scenes for object classification:

1) The model consists of only the object vertices, which
measures the performance of the object detector;

2) The model consists of the object vertices and the text
vertices, so that the existence of objects are inferred using
both visual cues and the textual cues, which are linked
by the matching probability of the nouns and the objects;

3) The model consists of the object vertices and the scene
vertex. In other words, this configuration evaluates the
influence of visual context in predicting the presence of
objects.

4) The full version of the proposed model is used, consisting
of the object vertices, the scene vertex and the text
vertices.

Considering the relation between the nouns and the object
classes, a text-only baseline is also tested, which uses only
the text vertices to predict the objects.

The class-specific average precision (AP) of object classi-
fication is displayed in Table VI, and the mean AP over the
17 object classes is illustrated in Fig. 6, where the mean AP
of the text-only baseline appears with the dash line.
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Fig. 6. Mean average precision of object classification using DPM and
Exemplar-SVM as the object detector.

Table VI demonstrates that the proposed model gets the
highest AP in 16 out of 17 classes when DPM and ESVM
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TABLE IV
ACCURACY OF SCENE CLASSIFICATION USING SPM, LLC AND SC AS THE SCENE CLASSIFIERS

scene airport dining room farm living room railway racing street water
SPM .450 .393 .804 .552 .086 .143 .648 .375
SPM + obj. .750 .679 .891 .724 .714 .619 .849 .469
SPM + text .880 .821 .991 .876 .857 .876 .869 .819
SPM + obj. + text .980 .871 .996 .883 .943 .933 .935 .806
LLC .600 .357 .761 .759 .429 .190 .673 .531
LLC + obj. .700 .714 .870 .828 .714 .571 .874 .406
LLC + text .960 .800 .987 .890 .874 .886 .869 .825
LLC + obj. + text .970 .850 .991 .890 .926 .924 .930 .806
SC .600 .393 .783 .655 .286 .048 .724 .312
SC + obj. .650 .750 .891 .759 .714 .619 .849 .375
SC + text .930 .800 .991 .883 .874 .895 .869 .825
SC + obj. + text .960 .893 .991 .897 .920 .914 .925 .806

TABLE V
SCENE CLASSIFICATION ACCURACY OF TSU AND THE PROPOSED METHOD

badminton bocce croquet polo rockclimbing
TSU .67 .41 .68 .56 .56

Proposed .98 .89 .90 .98 .84
rowing sailing snowboarding avg.

TSU .35 .57 .54 .54
Proposed .84 .78 .88 .88

are the object detector, and in 14 out of 17 classes when
RCNN is the object detector. Fig. 6 shows that the object
detectors often obtain poor performance on their own. When
scene classification is performed, the mean AP of object
classification is improved by 35%, 33% and 4% for DPM,
ESVM and RCNN, respectively, because there is a distinct
distribution of object classes in each scene class, which, in
return, helps determine the objects in the image based on the
information about the scene. Moreover, when the texts are
used, the mean AP is be improved by 32%, 25% and 3%
for DPM, ESVM and RCNN, respectively, because the scene
classes can be well characterized by the nouns in the textual
description. Eventually, the best performance is obtained by
jointly modeling objects, scenes and texts, which improves
the performance of the object detectors by 48%, 49% and 6%
for DPM, ESVM and RCNN, respectively. Overall, RCNN
obtains the best performance among the three object detectors,
showing the effectiveness of the deep networks in object
classification.

D. Cardinalities of Object Classes

To evaluate the accuracy of the prediction of object cardinal-
ities, SPM is selected to classify the scene classes of images,
and the best-performing RCNN in Section V-C detects the
objects in the image. Here, we use the mean absolute error
to measure the accuracy of object cardinality prediction. The
class-specific mean absolute error is displayed in Table VII.

Overall, the predicted object cardinality is very accurate, and
the mean absolute error over the 17 object classes is 0.140.
In detail, Table VII suggests that the performance of object
cardinality prediction mainly relies on two factors: (1) the
number of instances in the image, and (2) the number of nouns
referring to the object class. To be specific, the three object
classes of the lowest mean absolute error are MONITOR,

HORSE and TABLE. Usually, there are less than 2 instances
of these object classes in an image, and the nouns referring
them are also limited. On the other hand, the three object
classes of the largest mean absolute error are PERSON, CAR,
and CHAIR, which often have multiple instances in an image
and various aliases in nouns.

E. Localization of Objects

For object detection, the initial bounding boxes from the ob-
ject detector are refined by the proposed scheme as in Section
IV-E. We also test three object detection algorithms: DPM,
ESVM and RCNN. Following the criterion of the PASCAL
VOC Challenge, a detected bounding box is correct only if
its intersection-over-union ratio with the ground truth is larger
than 0.5. To evaluate the performance of the proposed scheme,
we compare the average precision of the initial bounding boxes
and refined bounding boxes of the three object detectors, and
the class-specific average precision is displayed in Table VIII.

For the three object detectors, the average precision of the
refined bounding boxes is higher than the initial bounding
boxes from the object detectors for all object classes. By
applying the proposed scheme, the mean average precision is
improved by 38%, 56% and 9% for DPM, ESVM and RCNN,
respectively, over the 17 object classes.

F. Impact of the Number of Nouns

In this experiment, we further evaluate the influence of the
number of nouns to the performance of scene classification
and object classification. Likewise, DPM is used as the object
detector and SPM is used as the scene classifier. The nouns are
sorted in descending order by their frequency of occurrence in
the training set, and the top n nouns are used in the proposed
model. We change n from 0 to 260, and derive the relations
of the mean accuracy of scene classification and the mean AP
of object classification with respect to the number of nouns,
which is shown in Fig. 7.

Fig. 7 shows that the accuracy of scene classification
increases as more nouns are used in the model, and almost
converges when the number of nouns is larger than 200. For
object classification, the mean AP also increases with the
number of nouns, and converges when the number of nouns
is larger than 50. As the UIUC dataset is object-oriented, the
nouns used to describe the objects often have high frequency
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TABLE VI
AVERAGE PRECISION OF OBJECT CLASSIFICATION USING DPM, ESVM AND RCNN AS OBJECT DETECTORS

PLANE BICYCLE BOAT BOTTLE BUS CAR CHAIR COW TABLE
Text only .581 .313 .552 .076 .720 .419 .330 .804 .638
DPM .696 .523 .209 .567 .633 .903 .633 .343 .546
DPM + text .917 .686 .656 .611 .845 .914 .584 .852 .786
DPM + scene .950 .632 .784 .804 .783 .922 .770 .459 .854
DPM + scene + text .985 .720 .903 .813 .887 .922 .619 .876 .866
ESVM .552 .347 .188 .185 .589 .656 .422 .390 .441
ESVM + text .686 .485 .538 .190 .763 .667 .451 .657 .759
ESVM + scene .744 .413 .546 .270 .650 .673 .468 .440 .758
ESVM + scene + text .838 .522 .756 .273 .802 .682 .496 .678 .872
RCNN .872 .825 .834 .755 .894 .971 .920 .848 .908
RCNN + text .932 .918 .887 .754 .916 .978 .937 .948 .909
RCNN + scene .912 .849 .953 .755 .890 .958 .925 .838 .926
RCNN + scene + text .958 .925 .967 .756 .915 .980 .935 .950 .924

HORSE MOTORBIKE PERSON PLANT SHEEP SOFA TRAIN MONITOR
Text only .775 .396 .749 .090 .758 .695 .590 .137
DPM .428 .753 .909 .088 .522 .343 .765 .596
DPM + text .891 .840 .944 .094 .830 .801 .900 .631
DPM + scene .509 .838 .929 .160 .660 .733 .976 .723
DPM + scene + text .978 .892 .952 .163 .962 .804 .991 .856
ESVM .161 .676 .805 .190 .636 .202 .601 .487
ESVM + text .365 .759 .833 .190 .833 .636 .754 .489
ESVM + scene .185 .765 .809 .197 .706 .491 .822 .498
ESVM + scene + text .397 .829 .839 .202 .864 .798 .895 .497
RCNN .868 .912 .977 .684 .908 .771 .902 .901
RCNN + text .911 .945 .985 .716 .944 .872 .937 .921
RCNN + scene .872 .925 .979 .696 .919 .866 .957 .918
RCNN + scene + text .911 .953 .986 .724 .953 .910 .975 .934

TABLE VII
MEAN ABSOLUTE ERROR OF OBJECT CARDINALITY PREDICTION

PLANE BICYCLE BOAT BOTTLE BUS CAR CHAIR COW TABLE
.098 .085 .098 .084 .067 .371 .217 .083 .060

HORSE MOTORBIKE PERSON PLANT SHEEP SOFA TRAIN MONITOR
.055 .129 .577 .073 .195 .064 .067 .054

TABLE VIII
AVERAGE PRECISION OF OBJECT DETECTION USING DPM, ESVM, AND RCNN AS OBJECT DETECTORS

PLANE BICYCLE BOAT BOTTLE BUS CAR CHAIR COW TABLE
DPM (all) .392 .333 .018 .349 .439 .531 .320 .120 .351
DPM (refined) .481 .491 .067 .420 .530 .585 .384 .226 .692
ESVM (all) .163 .148 .001 .026 .147 .215 .143 .089 .029
ESVM (refined) .208 .293 .006 .122 .212 .316 .248 .164 .046
RCNN (all) .867 .696 .436 .490 .655 .625 .468 .613 .857
RCNN (refined) .889 .793 .482 .532 .676 .651 .504 .728 .882

HORSE MOTORBIKE PERSON PLANT SHEEP SOFA TRAIN MONITOR
DPM (all) .343 .492 .627 .034 .176 .207 .523 .677
DPM (refined) .567 .564 .674 .108 .241 .634 .668 .883
ESVM (all) .127 .336 .145 .013 .224 .004 .236 .341
ESVM (refined) .223 .398 .191 .064 .325 .028 .310 .564
RCNN (all) .750 .757 .629 .434 .583 .535 .729 .628
RCNN (refined) .851 .803 .637 .540 .630 .646 .753 .676

of occurrence in the captions, thus, the curve of mean AP
converges quickly as the number of nouns increases. However,
in addition to the nouns that refer to the objects of interest,
scenes can be characterized by a wider range of nouns. Hence,
the curve of mean accuracy of scene classification converges
until the number of nouns reaches 200.

G. Computational Complexity

To evaluate the computational complexity of the proposed
method in the training phase and the testing phase, we conduct

the experiments on a PC with 2.27GHz Intel Xeon E5520
CPU, 4GB RAM, and Ubuntu 14.04 LTS operating system.
The algorithm is implemented with Matlab. The time for
object detection and scene classification varies significantly
with different off-the-shelf algorithms, and is not measured
consequently. In the training phase, the extraction of nouns
and the frequency of the objects and nouns in different scene
classes can be fulfilled in few seconds. The computation of
the matching probability and the optimization of the potential
weights take about 3 minutes and 3.5 minutes, respectively. In
the testing phase, the inference of the CRF model takes about
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Fig. 7. The influence of the number of nouns to the mean accuracy of scene
classification and the mean AP of object classification.

2 minutes over the 1260 testing samples. It can be seen that
the proposed algorithm is highly efficient, although the off-
the-shelf object detection and scene classification may take
quite a long time.

VI. CONCLUSION

This paper proposes an integrated model to jointly recog-
nize scenes and objects by leveraging the associated textual
descriptions, and presents a learning algorithm to estimate the
model efficiently. The learning process requires only coarsely
labeled images without instance-level annotations. The key to
the learning algorithm lies in that it can automatically infer the
instance-level correspondence over the training set by solv-
ing a constrained bipartite matching problem. The proposed
method can leverage the vast number of web images that
come with textual descriptions, without requiring enormous
amount of efforts to annotate them. By taking advantage of
the cross-domain relations, comprehensive experiments on a
real world dataset show that the proposed model can obtain
remarkable performance improvement in comparison with the
classifiers in isolation. However, the textual descriptions from
the annotators are quite different from what people might

actually use to describe images in real scenarios. For example,
the image descriptions from social media only emphasize on
one or two objects of interest in a more specific way, while
the image annotators tend to describe everything in the image
in plain language. Therefore, it would be a promising future
work to develop text-aided image understanding algorithms on
real-world basis.

REFERENCES

[1] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI), vol. 32, no. 9, pp. 1627–1645,
Sept. 2010.

[2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR’06), New
York, NY, USA, June 2006, pp. 2169–2178.

[3] E. Cheng, F. Jing, and L. Zhang, “A unified relevance feedback frame-
work for web image retrieval,” IEEE Trans. Image Processing (TIP),
vol. 18, no. 6, pp. 1350–1357, June 2009.

[4] M. Everingham, S. Eslami, L. Gool, C. Williams, J. Winn, and A. Zis-
serman, “The pascal visual object classes challenge - a retrospective,”
Int’l J. Computer Vision (IJCV), 2014.

[5] A. Farhadi, M. Hejrati, M. Sadeghi, P. Young, C. Rashtchian, J. Hocken-
maier, and D. Forsyth, “Every picture tells a story: Generating sentences
from images,” in Proc. European Conf. Computer Vision (ECCV’10),
Heraklion, Crete, Greece, Sept. 2010, pp. 15–29.

[6] Y. Wang and G. Mori, “A discriminative latent model of image region
and object tag correspondence,” in Advances in Neural Information
Processing Systems (NIPS’10), Vancouver, BC, Canada, Dec. 2010.

[7] R. Socher and L. Fei-Fei, “Connecting modalities: Semi-supervised
segmentation and annotation of images using unaligned text corpora,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’10),
San Francisco, CA, USA, June 2010, pp. 966–973.

[8] W. Lu, J. Li, T. Li, W. Guo, H. Zhang, and J. Guo, “Web multimedia
object classification using cross-domain correlation knowledge,” IEEE
Trans. Multimedia (TMM), vol. 15, no. 8, pp. 1920–1929, Dec. 2013.

[9] X. Benavent, A. Serrano, R. Granados, J. Benavent, and E. Ves, “Mul-
timedia information retrieval based on late semantic fusion approaches:
Experiments on a wikipedia image collection,” IEEE Trans. Multimedia
(TMM), vol. 15, no. 8, pp. 2009–2021, Dec. 2013.

[10] V. Ordonez, J. Deng, Y. Choi, A. Berg, and T. Berg, “From large scale
image categorization to entry-level categories,” in Proc. IEEE Int’l Conf.
Computer Vision (ICCV’13), Sydney, NSW, Australia, Dec. 2013, pp.
2768–2775.

[11] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embeddings
for bidirectional image sentence mapping,” in Advances in Neural
Information Processing Systems (NIPS’14), Montreal, Quebec, Canada,
Dec. 2014.

[12] M. Katsurai, T. Ogawa, and M. Haseyama, “A cross-modal approach
for extracting semantic relationships between concepts using tagged
images,” IEEE Trans. Multimedia (TMM), vol. 16, no. 4, pp. 1059–1074,
June 2014.

[13] L. Li, R. Socher, and L. Fei-Fei, “Towards total scene understanding:
Classification, annotation and segmentation in an automatic frame-
work,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR’09), Miami, FL, USA, June 2009, pp. 2036–2043.

[14] S. Fidler, A. Sharma, and R. Urtasun, “A sentence is worth a thousand
pixels,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR’13), Portland, OR, USA, June 2013, pp. 1995–2002.

[15] A. Gupta and L. Davis, “Beyond nouns: Exploiting prepositions and
comparative adjectives for learning visual classifiers,” in Proc. European
Conf. Computer Vision (ECCV’08), Marseille, France, Oct. 2008, pp.
16–29.

[16] Y. Li, D. Crandall, and D. Huttenlocher, “Landmark classification in
large-scale image collections,” in Proc. IEEE Int’l Conf. Computer
Vision (ICCV’09), Kyoto, Japan, June 2009, pp. 1957–1964.

[17] G. Wang, D. Hoiem, and D. Forsyth, “Building text features for object
image classification,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’09), Miami, FL, USA, June 2009, pp. 1367–1374.

[18] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-
supervised learning for image classification,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR’10), San Francisco,
CA, USA, June 2010, pp. 902–909.



13

[19] G. Iyengar, P. Ircing, M. Krause, D. Petkova, P. Duygulu, S. Khudanpur,
R. Manmatha, B. Pytlik, S. Feng, D. Klakow, H. Nock, and P. Virga,
“Joint visual-text modeling for automatic retrieval of multimedia docu-
ments,” in Proc. ACM Int’l Conf. Multimedia (ACMM’05), Singapore,
Nov. 2005, pp. 21–30.

[20] Y. Yeh, C. Huang, and Y. Wang, “Heterogeneous domain adaptation
and classification by exploiting the correlation subspace,” IEEE Trans.
Image Processing (TIP), vol. 23, no. 5, pp. 2009–2018, March 2014.

[21] K. Barnard, P. Duygulu, D. Forsyth, N. Freitas, D. Blei, and M. Jordan,
“Matching words and pictures,” J. Machine Learning Research (JMLR),
vol. 3, pp. 1107–1135, March 2003.

[22] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” J. Machine
Learning Research (JMLR), vol. 3, pp. 993–1022, March 2003.

[23] D. Blei and M. Jordan, “Modeling annotated data,” in Proc. 26th Annual
Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval (SIGIR’03), Toronto, Canada, July 2003, pp. 127–134.

[24] D. Putthividhy, H. Attias, and S. Nagarajan, “Topic regression multi-
modal latent dirichlet allocation for image annotation,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR’10), San Fran-
cisco, CA, USA, June 2010, pp. 3408–3415.

[25] Y. Jia, M. Salzmann, and T. Darrell, “Learning cross-modality similarity
for multinomial data,” in IEEE Int’l Conf. Computer Vision (ICCV’11),
Barcelona, Spain, Nov. 2011, pp. 2407–2414.

[26] H. Larochelle and S. Lauly, “A neural autoregressive topic model,” in
Advances in Neural Information Processing Systems (NIPS’12), Lake
Tahoe, NV, USA, Dec. 2012, pp. 2717–2725.

[27] Z. Niu, G. Hua, X. Gao, and Q. Tian, “Semi-supervised relational topic
model for weakly annotated image recognition in social media,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’14),
Columbus, OH, USA, June 2014, pp. 4233–4240.

[28] Y. Gao, M. Wang, Z. Zha, J. Shen, X. Li, and X. Wu, “Visual-textual
joint relevance learning for tag-based social image search,” IEEE Trans.
Image Processing (TIP), vol. 22, no. 1, pp. 363–376, Jan. 2013.

[29] R. Cinbis, J. Verbeek, and C. Schmid, “Multi-fold mil training for
weakly supervised object localization,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR’14), Columbus, OH, USA, June
2014, pp. 2409–2416.

[30] H. Bilen, M. Pedersoli, and T. Tuytelaars, “Weakly supervised object
detection with convex clustering,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR’15), Boston, MA, USA, June 2015, pp.
1081–1089.

[31] Z. Shi, T. Hospedales, and T. Xiang, “Bayesian joint topic modelling
for weakly supervised object localisation,” in IEEE Int’l Conf. Computer
Vision (ICCV’13), Sydney, Australia, Dec. 2013, pp. 2984–2991.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’14),
Columbus, OH, USA, June 2014, pp. 580–587.

[33] D. Klein and C. Manning, “Fast exact inference with a factored
model for natural language parsing,” in Advances in Neural Information
Processing Systems (NIPS’03), Whistler, BC, Canada, December 2003.

[34] L. Li, H. Su, E. Xing, and L. Fei-Fei, “Object bank: A high-level image
representation for scene classification & semantic feature sparsification,”
in Advances in Neural Information Processing Systems (NIPS’10),
Vancouver, BC, Canada, Dec. 2010, pp. 1378–1386.

[35] T. Malisiewicz, A. Gupta, and A. Efros, “Ensemble of exemplar-SVMs
for object detection and beyond,” in IEEE Int’l Conf. Computer Vision
(ICCV’11), Washington, DC, USA, Nov. 2011, pp. 89–96.

[36] O. Barinova, V. Lempitsky, and P. Kholi, “On detection of multiple
object instances using hough transforms,” IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI), vol. 34, no. 9, pp. 1773–1784, Sept. 2012.

[37] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR’09), Miami, FL,
USA, June 2009, pp. 1794–1801.

[38] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR’10), San Francisco,
CA, USA, June 2010, pp. 3360–3367.

[39] A. Abdel-Hakim and A. Farag, “CSIFT: A SIFT descriptor with color
invariant characteristics,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR’06), New York, NY, USA, June 2006, pp.
1978–1983.

[40] L. Torresani, M. Szummer, and A. Fitzgibbon, “Efficient object category
recognition using classemes,” in Proc. European Conf. Computer Vision
(ECCV’10), Heraklion, Crete, Greece, Sep. 2010, pp. 776–789.

Botao Wang received the B.S. degree in electronic
engineering, in 2010, from Shanghai Jiao Tong
University, Shanghai, China, where he is currently
working toward the Ph.D. degree. His main research
interests include object detection, scene classifica-
tion, and image understanding.

Dahua Lin received his Ph.D. from the department
of EECS at Massachusetts Institute of Technology
in 2012. He received his M.Phil. from the depart-
ment of Information Engineering at the Chinese
University of Hong Kong in 2007, and B.Eng.
from the department of Electrical Engineering and
Information Science at the University of Science and
Technology of China in 2004. He was a research in-
tern at Microsoft Research Silicon Valley, Microsoft
Research Redmond, and Microsoft Research Asia,
respectively in 2010, 2009, and 2004. He received

the Best Student Paper Award at NIPS 2010, and the Outstanding Reviewer
Awards at ICCV 2009 and ICCV 2011.

His research spans multiple areas in machine learning, data science, and
computer vision. In particular, he is interested in developing new probabilistic
models and machine learning techniques for large-scale data analysis, as well
as their applications in image and text understanding. He has also worked on
a variety of topics in computer vision and pattern recognition before joining
CUHK.

Hongkai Xiong (M’01-SM’10) received the Ph.D.
degree in communication and information system
from Shanghai Jiao Tong University (SJTU), Shang-
hai, China, in 2003. Since then, he has been with
the Department of Electronic Engineering, SJTU,
where he is currently a distinguished Professor. From
December 2007 to December 2008, he was with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University (CMU), Pittsburgh, PA,
USA, as a Research Scholar. From 2011 to 2012,
he was a Scientist with the Division of Biomedical

Informatics at the University of California (UCSD), San Diego, CA, USA.
His research interests include source coding/network information theory,

signal processing, computer vision and machine learning. He has published
over 140 refereed journal/conference papers. He is the recipient of the Best
Student Paper Award at the 2014 IEEE Visual Communication and Image Pro-
cessing (IEEE VCIP’14), the Best Paper Award at the 2013 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (IEEE
BMSB’13), and the Top 10% Paper Award at the 2011 IEEE International
Workshop on Multimedia Signal Processing (IEEE MMSP’11).

In 2014, he was granted National Science Fund for Distinguished Young
Scholar and Shanghai Youth Science and Technology Talent as well. In 2013,
he was awarded a recipient of Shanghai Shu Guang Scholar. From 2012,
he is a member of Innovative Research Groups of the National Natural
Science. In 2011, he obtained the First Prize of the Shanghai Technological
Innovation Award for Network-oriented Video Processing and Dissemination:
Theory and Technology. In 2010 and 2013, he obtained the SMC-A Excellent
Young Faculty Award of Shanghai Jiao Tong University. In 2009, he was
awarded a recipient of New Century Excellent Talents in University, Ministry
of Education of China. He served as TPC members for prestigious conferences
such as ACM Multimedia, ICIP, ICME, and ISCAS. He is a senior member
of the IEEE (2010).



14

Yuan F. Zheng (F’97) received the MS and Ph.D.
degrees in Electrical Engineering from The Ohio
State University, in Columbus, Ohio in 1980 and
1984, respectively. His undergraduate education was
received at Tsinghua University, Beijing, China in
1970. From 1984 to 1989, he was with the De-
partment of Electrical and Computer Engineering
at Clemson University, Clemson, South Carolina.
Since August 1989, he has been with The Ohio State
University, where he is currently Professor and was
the Chairman of the Department of Electrical and

Computer Engineering from 1993 to 2004. From 2004 to 2005, Professor
Zheng spent sabbatical year at the Shanghai Jiao Tong University in Shanghai,
China and continued to be involved as Dean of School of Electronic,
Information and Electrical Engineering until 2008. Professor Zheng is an IEEE
Fellow.

Professor Zheng’s research interests include two aspects. One is in wavelet
transform for image and video, and object classification and tracking, and
the other is in robotics which includes robotics for life science applications,
multiple robots coordination, legged walking robots, and service robots.
Professor Zheng was and is on the editorial board of five international
journals. Professor Zheng received the Presidential Young Investigator Award
from Ronald Reagan in 1986, and the Research Awards from the College
of Engineering of The Ohio State University in 1993, 1997, and 2007,
respectively. Professor Zheng along with his students received the best
conference and best student paper award a few times in 2000, 2002, and 2006,
and received the Fred Diamond for Best Technical Paper Award from the Air
Force Research Laboratory in Rome, New York in 2006. In 2004, Professor
Zheng was appointed to the International Robotics Assessment Panel by the
NSF, NASA, and NIH to assess the robotics technologies worldwide in 2004
and 2005.


