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Abstract— Dynamic adaptive streaming addresses user het-
erogeneity by providing multiple encoded representations at
different rates and/or resolutions for the same video content.
For delay-sensitive applications, such as live streaming, there
is however a stringent requirement on the encoding delay, and
usually the encoding power (or rate) budget is also limited by the
computational (or storage) capacity of the server. It is therefore
important, yet challenging, to optimally select the source coding
parameters for each encoded representation in order to minimize
the resource consumption while maintaining a high quality of
experience for the users. To address this, we propose an optimiza-
tion framework with an optimal representation selection problem
for delay, power, and rate constrained adaptive video streaming.
Then, by the optimal selection of source coding parameters for
each selected representation, we maximize the overall expected
user satisfaction, subject not only to the encoding rate constraint,
but also to the delay and power constraints at the server.
We formulate the proposed optimization problem as an integer
linear program formulation to provide the performance upper
bound, and as a submodular maximization problem with two
knapsack constraints to develop a practically feasible algorithm.
Simulation results show that the proposed weighted rate and
power cost benefit greedy algorithm is able to achieve a near-
optimal performance with very low time complexity. In addition,
it can strike the best tradeoff both between the rate and power
cost, and between the algorithm’s performance and the delay
requirements proposed by delay sensitive applications.

Index Terms— Dynamic adaptive video streaming, representa-
tion selection, delay-power-rate-distortion, live video, submodular
function maximization.

Manuscript received June 22, 2016; revised October 26, 2016 and
February 23, 2017; accepted February 26, 2017. Date of publication March 9,
2017; date of current version July 2, 2018. This work was supported in
part by NSFC under Grant 61501293, Grant 61622112, Grant 61472234,
Grant 61529101, and Grant 61425011; in part by the Program of Shang-
hai Academic Research Leader under Grant 17XD1401900; in part by
the China Postdoctoral Science Foundation under Grant 2016T90372 and
Grant 2015M570365; in part by the China Scholarship Council; and in part
by the Swiss National Science Foundation under the CHIST-ERA project
CONCERT, FNS under Grant 20CH21_151569. This paper was recommended
by Associate Editor Y. Wen.

C. Li and P. Frossard are with the Signal Processing Laboratory (LTS4),
Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
(e-mail: chenglin.li@epfl.ch; pascal.frossard@epfl.ch).

L. Toni is with the Electrical and Electronic Department, University College
London, London WC1E 7JE, U.K. (e-mail: l.toni@ucl.ac.uk).

J. Zou is with the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
zoujn@cs.sjtu.edu.cn).

H. Xiong is with the Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
xionghongkai@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2017.2681024

I. INTRODUCTION

With the rapid development and ever-increasing popularity
of mobile devices, users are now capable of requesting and
playing video content anywhere and at any time. Accordingly,
the management of video streaming services has recently
become a much more complex task due to the growing hetero-
geneity of user population in terms of demands for specialized
video contents, devices used to display, and access network
capacity. Dynamic adaptive streaming over HTTP (DASH) has
been proposed as an effective solution to address heterogeneity
and improve the overall user satisfaction by offering several
representations (versions) of the same video content to the dif-
ferent clients [1]. As illustrated in Fig. 1, each representation
is encoded with a pre-defined bitrate and/or resolution by the
DASH server. The users will then select the representation that
better addresses their requirements and the network conditions.
Upon request, streams containing the desired representations
based on the client-side rate adaptation algorithms are then
delivered to the users over certain network architectures, such
as the content delivery network (CDN).

While most of the research community focuses on the client-
side rate adaptation schemes for smoothly downloading pre-
encoded representations, little work has been done to address
the representation selection problem at the server with consid-
erations of the video encoding delay or power consumption.
This representation selection problem becomes more crucial
for delay sensitive applications, e.g., live video streaming.
In live streaming [2], for example, there is a stringent require-
ment on the encoding delay of all the representations, which
requires the frame encoding time to be less than or equal to
the frame interval. In addition, the video encoding process
is generally quite demanding in terms of the computational
complexity, which is related to both the encoding delay and
the power consumption [3]. Although the server is usually
assumed to be very powerful, there still exists a physical
limit in reality. For example, as the total number of encoders
available in the DASH server is constrained and the maximum
clock frequency of the CPUs within each encoder is limited,
the encoding process for all the representations of all the video
streams should be limited by a maximum power budget (i.e.,
the total CPU capacities at the DASH server) [2]. As a result,
the power limitations of the DASH server are definitely a
critical issue in live streaming applications.

Previous server-side representation selection schemes, such
as [4], have demonstrated the gain of the rate-distortion
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Fig. 1. Example of the delay sensitive dynamic adaptive streaming system, and framework of the proposed optimal representation selection scheme.

optimization in the representation selection for different video
types. Due to the diverse content characteristics, it is bene-
ficial to tune the source coding parameters to both the types
of videos and the users’ conditions. These works are rate-
distortion efficient, capable of achieving the best overall video
quality with the minimum cost of total encoding bitrate.
However, they neglect the cost of encoding delay and power
consumption, which nevertheless becomes a key component in
delay sensitive applications. From the perspective of the source
coding, the impact of delay and power consumption constraints
on the rate-distortion behavior is as follows. Ideally, an effi-
cient video compression is preferred to greatly reduce the
encoding bitrate while maintaining the same video quality.
However, the efficient video compression often requires high
computational complexity at the video encoder, which in turn
results in long delay and large power consumption of the
encoder. Such schemes however spend a large amount of
encoding time or power consumption to achieve only a slightly
better improvement in the rate-distortion performance of each
encoded representation, which might furthermore lead to an
outage of the streaming service due to unacceptable latency
or the violation of the total power budget.

With the delay requirement of the live video applica-
tions and the limited power and rate resources, the DASH
server cannot encode as many representations as possible
to individually respond to each user’s request. Instead, the
system resources should be judiciously distributed between
the different videos in order to maximize the overall system
performance. It is therefore worth investigating an effective
selection of the optimal representations encoded for each video
with the corresponding encoder parameters, in order to better
support the users’ requirements and yet to be sustainable with
the delay sensitive applications.

We therefore propose in this paper to develop a server-
side optimization framework for the adaptive video repre-
sentation selection in delay sensitive streaming with limited
resources in terms of storage (or bottleneck link capacity)

and power consumption. Specifically, we formulate a repre-
sentation selection optimization problem for delay sensitive
DASH streaming with proper consideration of the delay-
power-rate-distortion (d-P-R-D) properties of representations
from different videos, under the encoding delay, power and
rate constraints. This representation selection problem is then
re-formulated as an integer linear program (ILP). The proposed
ILP could lead to the optimal tradeoff between the delay-
power-rate-distortion resource constraints and thus provide a
performance upper bound for the server-side representation
selection. However, it is NP-hard and thus too time consuming
to be a practical solution for delay-sensitive streaming. In order
to greatly reduce the execution time, we further convert the
original optimization problem to an equivalent set function
optimization problem, which is shown to be a submodular
maximization problem subject to two knapsack constraints.
A weighted rate and power cost benefit greedy algorithm
is developed in order to obtain a practical yet approximate
solution with low computational complexity and near-optimal
performance. Overall, the contribution of this paper can be
summarized as follows.

1) We formulate a novel representation selection optimiza-
tion framework to find the best set of encoded repre-
sentations that maximizes the expected video distortion
reduction for users under encoding delay, power and
rate constraints. We further propose an ILP formulation
to provide the performance upper bound for the system
design of the server-side DASH representation selection.

2) In order to reduce the additional execution time of
the representation selection algorithm in practice, we
convert the original optimization problem to an equiv-
alent set function optimization problem and show its
submodularity. By using the diminishing return property
of submodular functions, we develop a weighted cost
benefit greedy algorithm for the representation selec-
tion, which has polynomial computational complexity
and offers close-to-optimal performance (approximation
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TABLE I

MAIN NOTATIONS

ratio shown to be above 90% under different simulation
settings in Section VI).

3) We conduct extensive simulations under different system
settings. The simulation results show that the proposed
algorithm can scale very well with the size of the system.
It strikes the best tradeoff both between the rate and
power cost, and between the algorithm’s performance in
terms of the average distortion reduction per user and the
delay aspects, such as the algorithm computation time
and the per-frame encoding time requirements in delay
sensitive applications.

The rest of this paper is organized as follows. Section II
reviews the related works in literature. In Section III, we
introduce the notations and the d-P-R-D models that are used
throughout this paper. In Section IV, we propose an optimiza-
tion framework and formulate a general optimization problem
for the representation selection in DASH encoding subject
to encoding delay, power and rate constraints. To obtain the
practical algorithms with low time complexity, in Section V,
we transform the general representation selection optimization
problem to an equivalent set function optimization problem,

which is further proved to be a submodular maximization
problem over two knapsack constraints. We describe a practi-
cal approximation algorithm to solve this problem with close
to optimal performance. Section VI presents the experimental
results, and evaluates the gains of the proposed algorithm
compared to existing algorithms. The concluding remarks are
given in Section VII.

II. RELATED WORKS

Different works have been proposed recently to optimize
the multiple representation selection for dynamic adaptive
streaming [2], [4]–[10]. Most of these research efforts focus
on the client-side adaptation algorithms in order to guarantee
the quality of experience (QoE) of users for given encoded
representations at the server, such as the live streaming rate
adaptation method to support a smooth presentation while
maintaining a small buffer size [5], the application layer probe-
and-adapt rate adaptation approach driven by an estimate of the
network dynamics [6], and the online rate adaptation algorithm
in order to minimize the re-buffering phases [7]. Although
Thang et al. [5] highlight the importance of the server-side
representation set optimization and show that the preparation
of representation sets may affect the behaviors of some client-
side adaptation methods, they do not propose any optimization
based guideline on such representation selection.

The server-side representation optimization has been inves-
tigated very recently in [9], where a joint transcoding and
caching allocation scheme in media cloud is proposed to
minimize the total operational cost of delivering on-demand
adaptive video streaming. In [4], the optimal representation set
selection problem of adaptive streaming under the encoding
rate constraint of the DASH server is proposed as an integer
linear program (ILP), revealing the best coding parameter in
terms of the bitrate and resolution for each representation.
In [10], the optimized representations obtained by solving
this ILP are further investigated and validated in a practical
scenario, by generating a 24-hour streaming scenario based
on YouTube traces and device statistics for Hulu and Net-
flix. These two works are rate-distortion efficient, capable of
achieving the best overall video quality with the minimum
cost of total encoding bitrate. However, they neglect the cost
of encoding delay and power consumption, which nevertheless
becomes a key component in delay sensitive applications. For
live video streams, Aparicio-Pardo et al. [2] propose another
ILP formulation by considering the computation resource
constraint. The ILP model in [2] is based on the dataset
obtained by extensive transcoding operations of the target
videos, which means that the finite ground set of the available
representations is pre-encoded with known video qualities,
bitrates and resolutions. However, this assumption is not
feasible in practical live streaming applications where there
is no pre-encoded representation set. Instead, we have to
address a rate control problem, which determines on the
fly the source coding parameters (e.g., the search range, the
quantization step size) to achieve the desired bitrate of each
target representation. Another limitation of the above works is
that these ILP problems are NP-hard. In practice, even with the
latest optimization tools such as the IBM ILOG CPLEX [11],
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they require exponential computational complexity to achieve
optimal solutions. Therefore, a very long execution time will
be consumed for larger system settings, which introduces
an intolerant initial delay and greatly degrades the QoE of
users. In dynamic setups, worse yet, the computation and
storage resources are usually time-varying, which requires
the system to dynamically scale its capacity to reduce the
resource consumption while still respecting the encoding delay
requirement imposed by live streaming. To this end, the works
in [12]–[14] discuss and investigate the dynamic resource
provisioning problem for encoding online videos.

Rate control schemes, on the other hand, aim at providing
a good quality for the encoded video under a given rate
constraint, by appropriate selections of the source coding
parameters. To this end, many works have been conducted
to analyze the complexity, rate and distortion performance
of the hybrid video encoders [15]–[19]. In the rate-distortion
model of [15], both the source coding rate and distortion of
a hybrid video coder with block based coding are revealed to
be closely related to the video statistics and the quantization
step size, and derived as functions of the standard devia-
tion of the transformed residuals under the assumption that
these transformed residuals follow a Laplacian distribution.
He et al. [16] summarize the encoding complexity of the H.263
video encoder as three modules (motion estimation, precoding
and entropy coding), and derive a power-rate-distortion model
to analyze the relationship among these three factors. For
the more advanced H.264/AVC video encoders that use the
tree-structured motion compensation with seven inter-modes,
the work in [17] proposes a delay-rate-distortion model for
both IPPPP and hierarchical-B coding modes. In [18], the
analytical framework for delay-power-rate-distortion modeling
of the hybrid video encoder is proposed and derived as a
function of source coding parameters (specifically, the search
range in motion estimation and the quantization step size).
On the basis of the proposed analytic model, a source rate
control scheme is further formulated to achieve the minimum
encoding distortion for single video representation under the
constraints of maximum encoding delay, rate, and power con-
sumption. This model is also applied in the end-to-end wireless
video communication system to develop an optimization based
rate control scheme that aims at minimizing the end-to-end
distortion (including both video encoding distortion and the
transmission distortion) subject to the transmission rate and
delay constraints [19]. For the single-source, multiple destina-
tion video communication over the lossy Internet, a forward
error correction packet allocation and scheduling framework is
proposed in [20] to trade the transmission delay for the video
distortion.

It should be noted that, however, all the aforementioned rate
control schemes (e.g., [18], [19]) are dedicated to the single
video case, where we only need to determine one pair of the
optimal source coding parameters for one encoded representa-
tion subject to the resource constraint at the encoder. In other
words, all of the encoder’s resources, including rate and power,
are solely used for encoding one single representation. There
is no encoding process of another representation from the
same or a different video, which will compete for such limited

resources at the encoder. Due to the failure in coping with the
fairness and resource competition issue among the multiple
representations, they cannot be straightforwardly extended to
the DASH scenario with multiple coexisting videos, each
of which is further encoded into multiple representations.
In fact, the multiple related representations from the same
or different videos will compete for the shared rate and
complexity resources at the DASH server. However, it is still
unclear how to optimally allocate the rate and power resources
among different videos, and how to choose the optimal source
coding parameters for each specific representation.

In summary, the previous works are limited for delay sensi-
tive DASH streaming since they are either time consuming
or not optimized over the rate/power resource allocations.
Therefore, we propose an optimization framework for DASH
representation selection with limited delay, power and rate
resources, and develop accordingly an efficient algorithm that
is able to achieve near-optimal performance with very low
computational complexity. In general, the differences and
novelty of this work can be summarized as: 1) joint consid-
eration of the delay, power and rate constraints at the server;
2) a representation selection problem integrated with the rate
control scheme; and 3) a practically efficient approximation
algorithm with low computational complexity and theoretical
approximation guarantee.

III. DELAY-POWER-RATE-DISTORTION MODEL FOR

VIDEO ENCODING

In this section, we introduce the notations and the delay-
power-rate-distortion model for general video encoders, which
will later be used for characterizing the corresponding behav-
ior of each single encoded representation.

In [18] and [21], the models of source coding delay, power,
rate and distortion have been derived for IPPPP coding mode
in H.264/AVC. Under the assumption that the transformed
residuals in the motion estimation (ME) module follow an
i.i.d. zero-mean Laplacian distribution [15], [22], both the
source rate and distortion of an inter-coded P-frame are derived
as functions of the standard deviation σ of the transformed
residuals and the quantization step size Q. Specifically, for
a video stream f ∈ F , the source rate is approximated by
the entropy of the quantized transformed residuals, and the
source distortion is only incurred by the quantization error, as
follows:

R f (L, Q) = −P0 log2 P0 + (1 − P0)

×
[

L Q log2 e

1 − e−L Q
− log2(1 − e−L Q)

− L Qγ log2 e + 1

]
, (1)

D f (L, Q) = L Qeγ L Q(2 + L Q − 2γ L Q) + 2 − 2eL Q

L2(1 − eL Q)
, (2)

where L = √
2/σ is the Laplace parameter that is one-to-one

mapping of σ ; γ Q represents the rounding offset and γ is a
parameter between (0, 1), such as 1/6 for H.264/AVC inter-
frame coding [15]; P0 = 1 − e−L Q(1−γ ) is the probability of
quantized transform coefficient being zero. For a specific video
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f ∈ F , the standard deviation σ can be well fitted by a closed
form function of the search range λ in motion estimation and
the quantization step size Q [18], as:

σ f (λ, Q) = a f,1 · e−a f,2·λ + a f,3 + a f,4 · Q, (3)

where a f,1-a f,4 are empirical parameters dependent on the
encoded video sequence f as well as on the encoding
structure. As shown in [19], in order to have a better fitting
result, the whole set of the empirical values with different
configurations of λ and Q should be used to determine
these four parameters. To reduce the complexity in practice,
since the function form of σ f (λ, Q) is already known and
only four fitting parameters are unknown, we could choose
a much smaller subset of empirical values with only a few
configurations of λ and Q as the training set and obtain the
standard deviation model in Eq. (3). Then, integrating L =√

2/σ f (λ, Q) into Eqs. (1) and (2), both the source coding rate
and distortion of video f can be further expressed as functions
of λ and Q, i.e., R f (λ, Q) and D f (λ, Q), respectively.

On the other hand, since motion estimation (ME) takes
up the majority of the total encoding time, the encoding
complexity can be approximated by the ME complexity.
Specifically, the ME complexity is derived as the total number
of CPU clock cycles consumed by its SAD (sum of absolute
difference) operations in ME. Thus, for the single-reference
prediction case where only one reference frame is used for
motion estimation of the current frame, the CPU load in clock
frequency for encoding a specific video f ∈ F can also be
expressed as a function of λ and Q, as follows:

C f (λ, Q) = K (2λ + 1)2 · η f (Q) · c0

d f
, (4)

where K is the total number of Macroblocks (MBs) in a frame;
(2λ + 1)2 · η f (Q) is the total number of SAD operations in
the two dimensional search area for each MB, (2λ+1)2 is the
theoretical total number of SAD operations in the search, and
η f (Q) is an empirical and video content dependant parameter
that denotes the ratio of the actual number of SAD operations
in the practical video codec to the theoretical total number of
SAD operations; c0 is the number of clock cycles needed for
one SAD operation over a given CPU; d f denotes the desired
encoding delay of video f , i.e., the time required to encode
one video frame.

In essence, it is the encoding complexity that depends both
on the video file and the target representation. Specifically, in
the encoding complexity model in Eq. (4), the complexity to
encode one video frame is expressed as the total number of
the CPU clock cycles K (2λ+ 1)2 · η f (Q) · c0, which depends
on the video f and the source coding parameter pair (λ, Q)
of the target representation. On the other hand, the encoding
complexity can be also viewed as the product of the encoding
time (delay) and the CPU load in clock frequency. Therefore,
according to different application scenarios, we can either fix
the CPU load in clock frequency at a constant value CC L K and
set the encoding delay as a tunable parameter d f (λ, Q), e.g.,
for the single video encoder with given CPU as in Ref. [18].
Or, we can fix the encoding delay at a desired value d f and

allocate the total CPU load of the server Cmax among different
target representations C f (λ, Q), which is the case in this work.

By using the dynamic voltage scaling model to control the
power consumption of the microprocessor [23], [24], the CPU
load in clock frequency C f (λ, Q) can be further related to the
CPU power consumption:

Pf (λ, Q) = κ · [C f (λ, Q)]3, (5)

where κ is a constant in the dynamic voltage scaling model
and determined by both the supply voltage and the effective
switched capacitance of the circuits [25]. It can been seen
from Eq. (5) that, for a given dynamic voltage scaling model
with known constant κ , there exists a one-to-one mapping
between the CPU clock frequency load C f (λ, Q) and the
CPU power consumption Pf (λ, Q). Therefore, throughout
this paper, these two terms will be interchangeably used to
represent the power consumption level of encoding video f
with source coding parameter pair (λ, Q).

IV. FRAMEWORK AND OPTIMIZATION PROBLEM

FORMULATION

In this section, we propose an optimization framework and
formulate a general optimization problem for representation
selection, subject to encoding delay, power and rate con-
straints. We then formulate the optimization problem as an
integer linear program, which is generally NP-hard.

A. Framework

As illustrated in Fig. 1, we assume that F live video streams,
denoted as the set F = {1, 2, . . . , F}, have to be processed by
the DASH system. Any video f ∈ F can be encoded into at
most M representations by the multiple parallel encoders at the
DASH server. After encoding, all the encoded representations
are made available at the HTTP server for adaptive streaming.
Through the CDN, N users subscribe to the video service
and watch desired video contents with diverse network and
user behaviors. By extracting the first several frames whenever
a scene change occurs [18], the delay-power-rate-distortion
model of Eqs. (1)-(5) can be explicitly derived for each video
stream. The practical derivation process of the d-P-R-D model
is as follows. According to [18], the source rate model in
Eq. (1), the source distortion model in Eq. (2), the encoding
complexity model (revealing the relationship between the CPU
load and the encoding time) in Eq. (4), and the encoding
power model in Eq. (5) are all general models independent
of the video content, while only the standard deviation model
σ f (λ, Q) in Eq. (3) and the parameter η f (Q) in Eq. (4)
are specific to the video content. Therefore, for each video
stream, we can extract the first several frames whenever a
scene change occurs in order to determine the video content
dependent models σ f (λ, Q) and η f (Q). Once these two video
content dependent models are known, the d-P-R-D model in
Eqs. (1)-(5) is also derived.

These d-P-R-D models of different live video streams
will then be used by the representation selection module to
guide the encoding process in the parallel encoders, through
providing the desired bitrate of each representation for each
video by setting the optimal encoder parameters. Here, the
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representation selection module not only addresses the gen-
eral problem of the number of representations needed to be
encoded for each video and their average encoding rate, but
also specifies explicitly by using what encoder parameters
each individual encoder could achieve the desired rate for the
selected representations.

In practice, there are several stringent requirements that
constrain the representations encoded at the DASH server.
For example, in order to enable delay sensitive streaming
without incurring additional delay accumulated over frames,
there is a stringent upper limit for the frame encoding time.
In addition, the sum of bitrates of all encoded representations
may be constrained by the server’s storage capacity or the
bottleneck link of the network, while the total encoding power
consumption is also limited by the total number of encoders
and the maximum CPU load of each encoder. Therefore, the
proposed representation selection module needs to be carefully
optimized, which will be described in detail in the following.

B. Problem Formulation

In accordance with the d-P-R-D models of Section III,
we denote by M = � × Q the set of M = |M| possible
representations. Each element in M corresponds to a specific
source coding parameter pair (λ, Q) with λ ∈ � and Q ∈ Q,
where � is the search range set containing all the possible
search range values (e.g., if the maximum search range is
16, then � = {1, 2, . . . , 16}) and Q denotes the quantization
step size set including all the available quantization step
sizes (e.g., all the quantization step sizes corresponding to
QP from 0 to 51 in H.264/AVC video encoder). Without
loss of generality, we sort the representation set M in an
decreasing order of the encoding bitrate, i.e., R f (λ f,i , Q f,i ) >
R f (λ f, j , Q f, j ),∀i, j ∈ M and 1 ≤ i < j ≤ M .

The optimal representation selection problem for resource
constrained DASH streaming can be summarized as follows.
For a given set of source video streams, with a given video
popularity distribution, and for given users’ downlink band-
width, the problem consists of deciding the encoded represen-
tations for each video (i.e., the number of representations and
the average bitrate of each representation) and the correspond-
ing source coding parameters for each representation such
that the total system utility in terms of the aggregate users’
satisfaction is maximized, subject to the encoding delay, bitrate
and power constraints at the DASH server. Mathematically,
such a problem can be formulated as:

P1: arg max{(λ, Q)},M f

F∑
f =1

M f∑
m=1

N · φ f,m · U f (λ f,m , Q f,m),

(6a)

s.t.
F∑

f =1

M f∑
m=1

R f (λ f,m , Q f,m ) ≤ Rmax, (6b)

F∑
f =1

M f∑
m=1

C f (λ f,m , Q f,m) ≤ Cmax, (6c)

d f ≤ 	T, ∀ f ∈ F , (6d)

(λ f,m, Q f,m ) ∈ M, ∀ f ∈ F ,

∀m = {1, 2, . . . , M f }, (6e)

M f ≤ M, ∀ f ∈ F . (6f)

In the optimization problem P1, the objective in Eq. (6a) is to
maximize the aggregate expected utility function for all users,
where U f (λ f,m, Q f,m ) represents the utility function after
encoding the representation of video f with source coding
parameter pair (λ f,m , Q f,m), N denotes the total number of
users, φ f,m is the probability of users watching the m-th
representation of video stream f and thus N · φ f,m represents
accordingly the number of users. The decision variables are
the source coding parameter pair (λ f,m, Q f,m ) for the m-th
representation of video stream f , and M f that corresponds
to the number of actually encoded representations for video
stream f . The constraint (6b) specifies that the sum of
bitrates of all representations does not exceed the maximum
transmission rate constrained by either the storage capacity of
the server or the bottleneck link of the network. The constraint
(6c) is the power consumption constraint ensuring that the
overall CPU load in clock frequency consumed to encode all
representations is limited by the server’s maximum CPU load
Cmax . The constraint (6d) is the encoding delay requirement
that states that the encoding time for one video frame should
not exceed the desired time interval. For example, when 	T
is set to the frame interval (i.e., the reciprocal of the frame
rate), it becomes the live video encoding constraint. The
constraints (6e) and (6f) define the feasible region of the deci-
sion variables, respectively, specifying that the feasible source
coding parameter pair (λ f,m , Q f,m ) should be an element of
the possible representation set M = �×Q, and the number of
video f ’s representations should not exceed the total number
of possible representations M .

In this paper, we mainly focus on the server-side represen-
tation selection for live adaptive video streams. Therefore, the
corresponding optimal representation selection problem P1 in
Eq. (6) is mainly constrained by the limited rate and power
resources at the server side. For example, the constraint in
Eq. (6b) specifies the maximum value of the sum of encoding
bitrates of all target representations, Rmax. The physical mean-
ing of Rmax could be either the storage capacity of the server’s
buffer where the violation of constraint (6b) would cause
some representations to overflow and thus to be unavailable
for transmission to the users, or the bottleneck link capacity
of the network that specifies the maximum information flow
allowed to be transmitted from the server to the users. The
network traffic incurred by video streaming would determine
which representation of a video is downloaded and watched
by users upon their requests for that video. This factor is
thus considered in the objective function in Eq. (6a) and
reflected by the probability N ·φ f,m . Here, N denotes the total
number of users, φ f,m is the probability of users watching
the m-th representation of video file f and thus N · φ f,m

represents accordingly the number of users. When the network
traffic is limited, users usually tend to reduce the requested
bitrate in order to cope with the congestion, which causes
the increment of N · φ f,m for larger values of m and vice
versa.
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In the formulation of the optimization problem P1, the
delay and power constraints cannot be introduced as a straight-
forward extension of the traditional rate-distortion optimized
representation selection problem [4], since for a given encod-
ing delay, different quantities (the utility function related to
distortion, the rate and the power) are coupled through the
choices of the source coding parameter pair (λ, Q). Therefore,
it is nontrivial to investigate the selection of the optimal
representations encoded for each video with the corresponding
encoder parameters, under the delay, rate and power con-
straints. However, it can be seen that for a given probability
distribution φ f,m , the optimal number of representations for
each video with the corresponding source coding parameter
pairs can be obtained by solving P1. On the other hand, since
a user will only choose to watch a video representation with
lower encoding bitrate than its download link’s bandwidth, the
probability distribution φ f,m is highly dependent on the source
coding parameter pairs and is thus unknown unless the source
coding parameter sets are determined. Therefore, the practical
algorithm is hindered by this chicken and egg dilemma in
problem P1. To address this issue, in the next subsection, we
will re-formulate problem P1 as an integer linear program
based on certain prior information about the users.

C. Integer Linear Programming Approach
We first denote N = {1, 2, . . . , N} as the set of N users.

Each user n ∈ N requests a video f with probability ρn
f and

downloads a representation of the requested video from the
server with downlink bandwidth Bn , which therefore specifies
the largest bitrate of a representation that could be downloaded
by user n. In the following, we introduce two sets of binary
decision variables:

αn
f,m =

⎧⎪⎨
⎪⎩

1, if user n selects the m-th

representation for video f ;

0, otherwise.

(7)

β f,m =

⎧⎪⎨
⎪⎩

1, if the server encodes the m-th

representation of video f ;

0, otherwise.

(8)

Therefore, we have N · φ f,m = ∑N
n=1 ρn

f · αn
f,m , and problem

P1 can be equivalently converted to the following ILP:

P2: arg max
α,β

F∑
f =1

M∑
m=1

N∑
n=1

ρn
f · αn

f,m

·
[

Dmax − D f (λ f,m , Q f,m )

]
, (9a)

s.t.
F∑

f =1

M∑
m=1

β f,m · R f (λ f,m , Q f,m) ≤ Rmax, (9b)

F∑
f =1

M∑
m=1

β f,m · C f (λ f,m, Q f,m ) ≤ Cmax, (9c)

d f ≤ 	T, ∀ f ∈ F , (9d)

αn
f,m ≤β f,m, ∀n ∈ N , ∀ f ∈ F , ∀m ∈ M, (9e)

αn
f,m · R f (λ f,m , Q f,m ) ≤ Bn, ∀n ∈ N ,

∀ f ∈ F , ∀m ∈ M, (9f)

M∑
m=1

αn
f,m ≤ 1, ∀n ∈ N , ∀ f ∈ F , (9g)

αn
f,m ∈{0, 1}, ∀n ∈ N , ∀ f ∈ F , ∀m ∈ M, (9h)

β f,m ∈ {0, 1}, ∀ f ∈ F , ∀m ∈ M. (9i)

In the ILP problem P2, the objective function and the first
three constraints are equivalent to those in the original prob-
lem P1, where we define the reconstructed video distortion
reduction (or video quality improvement) after decoding the
m-th representation of video f as the utility function, i.e.,
U f (λ f,m , Q f,m ) = Dmax − D f (λ f,m, Q f,m ). Specifically,
Dmax represents a constant maximal distortion when no video
is decoded and thus [Dmax − D f (λ f,m , Q f,m )] denotes the
distortion reduction after successful decoding of the represen-
tation with coding parameter pair (λ f,m , Q f,m). The constraint
(9e) sets up a consistent relationship between the decision
variables α and β, ensuring that the representation selected
by a user is already encoded and available at the server.
The constraint (9f) specifies the possible representations of
all video streams that can be supported by user n’s download
link capacity Bn . The constraint (9g) ensures that at most one
representation of a video f is selected by a user n.

The optimal solution of the ILP problem P2 can be obtained
by the generic solver IBM ILOG CPLEX [11], using a
branch-and-cut search. The branch-and-cut procedure manages
a search tree consisting of nodes, each of which represents a
relaxed LP subproblem to be solved. It then involves running
a branch and bound algorithm to create two new nodes from
a parent node, and adding additional cutting planes to tighten
the LP relaxations and reduce the number of branches required
to solve the original ILP. In general, the branch-and-cut search
requires exponential computational complexity to achieve the
optimal solution. Therefore, the ILP problem P2 is NP-hard.
Specifically, it can be observed that the cardinality of the
decision variables α and β is N F M and F M , respectively.
By using the branch and bound method for the binary decision
variables, in the worst case, the number of nodes observed by
the CPLEX solver would be upper bounded by 2N F M × 2F M

and at each node the solver needs to solve a relaxed LP
problem with the SIMPLEX method. This corresponds to an
exponential computational complexity O(2F ·2M ·2N ) and thus
incurs an incredibly long execution time when the problem
scale becomes large.

To reduce the actual execution time in practical large
scale problem, we can terminate the branch-and-cut procedure
earlier than a completed proof of optimality, e.g., by setting
an error bound (relative optimality tolerance) or a time limit.
Although the relative optimality tolerance can guarantee a
near-optimal solution within a certain percentage of the opti-
mal solution, in the worst case, the number of nodes on the
search tree is still an exponential function of the cardinality of
the decision variables, which still indicates exponential time
complexity. On the other hand, if we set the time limit as an
acceptable value (e.g., several seconds), it is likely that the
CPLEX solver would only obtain a poor objective value since
only a small subset of nodes are searched and processed.
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V. EQUIVALENT SUBMODULAR MAXIMIZATION PROBLEM

AND ALGORITHM DESIGN

In order to efficiently cope with the difficulties of solving
the original problems P1 and P2, in this section, we convert
the general optimization formulation P1 to an equivalent set
function optimization problem. We prove that it is a sub-
modular maximization problem over independence constraints.
By utilizing the diminishing return characteristics of the sub-
modular functions, we finally develop new practically efficient
algorithms with polynomial computational time complexity
and theoretical approximation guarantees.

A. Equivalent Problem Formulation as a Set Function
Optimization

First, the finite ground set of representations in the original
problem P1 can be written as:

E = {e f,m |∀ f ∈ F , ∀m ∈ M}
= {e1,1, · · · , e1,M , . . . , e f,m, . . . , eF,1, . . . , eF,M }. (10)

In Eq. (10), a specific element e f,m exists if the m-th
representation is selected to be encoded for a video stream
f . Therefore, the ground set E denotes the full set of all
representations of all video streams that are encoded by the
DASH server. By integrating Eq. (4), the encoding delay
constraint in Eq. (6d) can be rewritten as:

K (2λ f,m + 1)2 · η f (Q f,m) · c0

C f (λ f,m , Q f,m )
≤ 	T, ∀ f ∈ F , ∀m ∈ M.

(11)

Therefore, the feasible region of the allocated CPU load for
encoding the m-th representation of video stream f can be
denoted as:

C f (λ f,m , Q f,m ) ≥ K (2λ f,m + 1)2 · η f (Q f,m) · c0

	T
,

∀ f ∈ F , ∀m ∈ M. (12)

As long as C f (λ f,m , Q f,m) lies within the feasible region
defined by Eq. (12), the encoding delay for any representation
e f,m ∈ E would not violate the live encoding constraints in
Eq. (6d). When the power (CPU load) related constraint in
Eq. (6c) is further taken into account, the optimal solution
would be achieved with the minimum CPU load consumed for
each representation, i.e., [K (2λ f,m + 1)2 ·η f (Q f,m) · c0]/	T .
In other words, all the optimal representations should be
encoded with the maximum encoding time d f = 	T .

For the users, let n denote the set of representations of
all video streams that can be supported by user n’s download
link capacity Bn , i.e.,

n = {e f,m ∈ E |R f (λ f,m , Q f,m ) ≤ Bn,

∀ f ∈ F , ∀m ∈ M} ⊆ E . (13)

Define a specific DASH encoding decision set A ⊆ E with
each element e f,m ∈ A indicating the actual encoding of
the m-th representation for video f . Then, based on A, the

expected average reduction in video distortion for user n can
be derived as:

D̄n(A) =
F∑

f =1

M∑
m=1

[m−1∏
j=1

(1 − 1e f, j ∈(A∩n))

]
· 1e f,m∈(A∩n )

· ρn
f ·

[
Dmax − D f (λ f,m , Q f,m)

]
, (14)

where ρn
f is the probability of user n requesting video stream

f , and 1|x∈X is an indicator function, the value of which is 1
if x ∈ X and 0 otherwise.

Therefore, the original optimization problem P1 can be
reformulated as a constrained set function optimization prob-
lem, as follows:

P3: arg max
A⊆E

D(A) =
N∑

n=1

D̄n(A), (15a)

s.t. A ∈ IR =
{
A′ ⊆ E

∣∣∣∣
F∑

f =1

M∑
m=1

1|e f,m∈A′

· R f (λ f,m , Q f,m) ≤ Rmax

}
, (15b)

A ∈ IC =
{
A′ ⊆ E

∣∣∣∣
F∑

f =1

M∑
m=1

1|e f,m∈A′

· C f (λ f,m , Q f,m) ≤ Cmax

}
, (15c)

C f (λ f,m , Q f,m) = K (2λ f,m +1)2 · η f (Q f,m) · c0

	T
,

∀ f ∈ F , ∀m ∈ M. (15d)

Comparing the original problem P1 with the equivalent set
function optimization formulation P3, it can be seen that the
objective function and the first three constraints in problem
P1 are transformed to Eqs. (15a)-(15d) in problem P3, respec-
tively, while the available source coding parameter constraint
in Eq. (6e) in problem P1 is expressed as the representation
set M = � × Q. It should be noted that in the reformulated
ILP problem P2 and its equivalent submodular maximization
problem P3, the network traffic is reflected by the users’
download link capacity constraint (9f) and the set of repre-
sentations supported by the user’s download link capacity n

in Eq. (13), respectively. Here, a simple assumption is that
we have certain prior information about the users, i.e., the
downlink bandwidth Bn of any user n, and user n can choose
to download a representation only if its bitrate does not exceed
Bn . However, taking into account some more complicated
network architectures and transmission/routing schemes is
beyond the scope of this paper, and will be investigated in
our future work.

We show in the next subsection that the equivalent optimiza-
tion problem P3 is a maximization problem of a submodular
function over general independence constraints, the structure
of which can be further utilized to develop a computationally
efficient solution with provable approximation gaps.
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B. Proof of Submodularity

We show now that the problem P3 is submodular. We first
review and include the definition of independence systems, and
submodular functions according to [26]–[28], respectively.

Definition 1: Independence system: A pair P = (E,I),
where E is a finite ground set and I is a collection of subsets
of E , is an independence system if and only if it satisfies the
following axioms:
(I1) I is nonempty, and ∅ ∈ I.
(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.

Definition 2: Submodularity: Let E be a finite ground set,
and a set function g : 2E → R is submodular if and only if
for any sets X ⊆ Y ⊆ E and for any e ∈ (Y \ X ), we have

g(X ) + g(Y) ≥ g(X ∪ Y) + g(X ∩ Y), (16)

or equivalently

g(X ∪ {e}) − g(X ) ≥ g(Y ∪ {e}) − g(Y), (17)

which captures the diminishing return characteristics such that
the benefit of adding a new element into the set would decrease
as the set becomes larger.

Then, we prove for the problem P3 that the constraints
form an independence system and the objective function is
monotone submodular.

Proposition 1: The DASH server encoding rate and power
constraints in Eq. (15b) and Eq. (15c), respectively, form
an independence system on the ground set E as defined in
Eq. (10).

Proof: Here, we only provide the justification that the
total encoding rate constraint in Eq. (15b) is an independence
system. The proof of the total encoding power constraint in
Eq. (15c) can be obtained in a similar way.

From the definition of IR , it is obvious that it is not empty
and ∅ is an element of IR . For any X ⊆ Y , the total encoding
rate based on X would be smaller than or equal to that based
on Y . If Y ∈ IR , then the total encoding rate based on Y
would not exceed Rmax, which in turn indicates that the total
encoding rate based on X does not exceed Rmax and X ∈ IR .
It is thus checked that both axioms (I1) and (I2) in Definition
1 are satisfied for IR , and the total encoding rate constraint
in Eq. (15b) forms an independence system (E,IR).

Proposition 2: The objective function in Eq. (15a) is a
monotone submodular function over the ground set E as
defined in Eq. (10).

Proof: According to the property of monotonicity and sub-
modularity, the summation over a set of monotone submodular
functions is also monotone submodular. Thus, to prove the
monotone submodularity of

∑N
n=1 D̄n(A), we only need to

prove that the set function D̄n(A) is monotone submodular
for every user n ∈ N .

1) Monotonicity: For any X ⊆ E and any e f,m ∈ E \X , we
have D̄n(X ∪{e f,m}) ≥ D̄n(X ), since encoding and providing
a new representation at the DASH server will at least not
degrade the aggregate video quality (i.e., the average video
distortion reduction will not decrease). Therefore, for any two
placement sets X ⊆ Y ⊆ E , we have D̄n(Y) ≥ D̄n(X ), which
indicates that the objective function in Eq. (15a) is monotone
non-decreasing.

2) Submodularity: Consider any two DASH encoding deci-
sion sets X ⊆ Y ⊆ E , and suppose adding a new element
e f,m ∈ E \ Y to both sets. If e f,m /∈ n , then e f,m is not
feasible and for both sets the marginal values of adding e f,m

is zero. If e f,m ∈ n , we consider the following two cases.
i) There exists e f,y ∈ (Y ∩ n) with y ≤ m, i.e., based

on the encoding decision set Y user n downloads a better
or equal quality representation y of video stream f from the
DASH server. In this case, it can be derived from Eq. (14)
that D̄n(Y ∪ {e f,m}) − D̄n(Y) = 0. On the other hand, due
to the monotonicity, for the decision set X we always have
D̄n(X ∪ {e f,m}) − D̄n(X ) ≥ 0. Therefore, the relationship of
both marginal values is given by D̄n(Y ∪ {e f,m}) − D̄n(Y) ≤
D̄n(X ∪ {e f,m}) − D̄n(X ).

ii) There exists e f,y ∈ (Y ∩ n) with y > m, i.e., based on
the encoding decision set Y user n downloads a worse quality
representation y of video stream f from the DASH server.
In this case, it can be derived from Eq. (14) that D̄n(Y ∪
{e f,m}) − D̄n(Y) = ρn

f [D f (λ f,y, Q f,y) − D f (λ f,m, Q f,m )].
On the other hand, for the encoding decision set X , since
X ⊆ Y , user n can only download representation x of
video stream f with x ≥ y. Thus, the resulting marginal
value is D̄n(X ∪ {e f,m}) − D̄n(X ) = ρn

f [D f (λ f,x , Q f,x ) −
D f (λ f,m , Q f,m)]. Since x ≥ y, we have R f (λ f,y, Qλ,y) ≥
R f (λ f,x , Q f,x ) and thus D f (λ f,y, Qλ,y) ≤ D f (λ f,x , Q f,x ).
Therefore, the relationship of both marginal values is given
by D̄n(Y ∪ {e f,m}) − D̄n(Y) ≤ D̄n(X ∪ {e f,m}) − D̄n(X ).

For both cases, the marginal value decreases as the set
becomes larger, which satisfies Eq. (17) in Definition 2. Hence,
the submodularity is proved.

In Proposition 2, we have justified that Eq. (15a) is a
monotone submodular function. Further observing the encod-
ing rate and power constraints in Eqs. (15b) and (15c), each
element e f,m ∈ A has non-uniform rate and power cost
of R f (λ f,m , Q f,m ) and C f (λ f,m , Q f,m), while the DASH
server has the encoding bitrate and CPU load budget of
Rmax and Cmax , respectively. These two constraints can be
viewed as two knapsack constraints on the finite ground set
E . Therefore, the optimization problem P3 is a submodular
maximization problem subject to two knapsack constraints.
Such a problem is generally NP-hard and requires exponential
computational complexity to reach the optimum by either inte-
ger linear programming or other optimization methods [29].
But submodularity ensures that the greedy algorithm provides
an effective approximation to the optimal solution of this
NP-hard problem.

C. Approximation Algorithm

To efficiently solve the constrained submodular maximiza-
tion problem in Eq. (15) with polynomial time complexity and
theoretical approximation guarantees, we develop an (ω, k)-
weighted cost benefit (WCB) greedy algorithm [30]. The two
system parameters, ω ∈ [0, 1] and k = 0, 1, 2, . . . , specify the
relative weight between the rate and the power cost and the
size of the initial set, respectively. Specifically, the proposed
(ω, k)-WCB greedy algorithm considers all feasible initial sets
A0 ⊆ E of cardinality k. Starting from any initial set A0, at
step t , the weighted cost benefit greedy procedure iteratively
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searches over the remaining set E t−1\At−1 and inserts into the
partial solution At−1 an element according to Eqs. (18)-(20),
until the remaining set reduces to an empty set. In other words,
this procedure adds at each iteration an element that maximizes
the weighted marginal benefit D(At−1 ∪ {e f,m}) − D(At−1)
and cost R f (λ f,m , Q f,m ), C f (λ f,m, Q f,m ) ratio among all
elements still affordable with the remaining rate and power
budget until no more element can be added. The proposed
(ω, k)-WCB greedy algorithm then enumerates all initial sets
A0 ⊆ E of cardinality k, augments each of them following
the cost benefit greedy procedure, and selects the initial set
achieving the largest value of the objective function D(A) =∑

n∈N D̄n(A) and determines its solution set as the final
encoded representation set A. We finally note that in some
extreme cases, the algorithm reduces to be pure rate cost
benefit when ω = 1 and pure power cost benefit when ω = 0.
The complete algorithm is described in Algorithm 1.

The proposed algorithm can be implemented in the rep-
resentation selection module in Fig. 1. Afterwards, if there
is no dramatic change of the source videos or the network
conditions, it is only necessary to run the proposed algo-
rithm periodically with a relatively long period (e.g., tens or
hundreds of minutes) in order to adapt to possible changes
in the system; otherwise, the proposed algorithm will be re-
implemented whenever a dramatic change occurs. In terms of
computational complexity, the running time of the proposed
algorithm is O((F M)k+1 N), indicating a polynomial time
complexity and a very short additional implementation delay.
As the value of k increases, the running time of the proposed
algorithm becomes longer while the performance improves.
As shown in [30], when k ≥ 3 and in the case of one active
knapsack constraint, the theoretical worst-case performance
guarantee of the cost benefit algorithm is 1 − 1/e, i.e., its
solution achieves at least the ratio 1 − 1/e ≈ 0.632 of the
optimal objective value. Although there is no such theoretical
guarantee for the case when both knapsack constraints are
active, as will be shown in the simulation results in Section VI,
the algorithm’s performance approximation ratio is generally
above 0.9 in practice.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the DASH
representation selection optimization framework, and derive
simple guidelines for effective content production in adaptive
streaming systems under different simulation settings.

A. Simulation Settings

We implement the proposed framework on a 48-processor
server with 252 GB of RAM using Linux 3.1 kernel, where
each processor is an Intel Xeon CPU E5-2680 at a clock
frequency of 2.50 GHz. We suppose that there are N = 10
users and their download bandwidth Bn is randomly dis-
tributed in the rate range of [1, 10] Mbps. Three test video
sequences (F = 3, Crowd Run, Tractor, and Sunflower) with
1080p resolution (1920×1080) [31] are selected as the source
video streams to be encoded at the DASH server. These three
test video sequences correspond to different content types,
i.e., dense object motion for Crowd Run sequence, camera

Algorithm 1 (ω, k)-Weighted Cost Benefit Greedy Algorithm

For all initial sets A0 ⊆ E such that |A0| = k, implement
the following weighted cost benefit greedy procedure.

Initialization:
1) Set E0 = E and t = 1.

Greedy Search Iteration: (at step t = 1, 2, 3, . . . )
1) Given a partial solution At−1, find

e ft ,mt = arg max
e f,m∈E t−1\At−1

ω · D(At−1∪ {e f,m}) −D(At−1)

R f (λ f,m , Q f,m )

+ (1 − ω) · D(At−1 ∪ {e f,m}) − D(At−1)

C f (λ f,m, Q f,m )
. (18)

Update and Determination:
1) Set At = At−1 ∪ {e ft ,mt }, and E t = E t−1, if

F∑
f =1

M∑
m=1

1|e f,m∈(At−1∪{e ft ,mt }) · R f (λ f,m , Q f,m) ≤ Rmax,

(19)

and
F∑

f =1

M∑
m=1

1|e f,m∈(At−1∪{e ft ,mt }) · C f (λ f,m , Q f,m) ≤ Cmax;

(20)

otherwise, set At = At−1, and E t = E t−1 \ {e ft ,mt }.
2) If E t \At �= ∅, set t = t + 1 and return to the greedy

search iteration; otherwise, stop the iteration.
The solution is obtained and output as A, which has
the largest value of the objective function D(A) =∑

n∈N D̄n(A) over all the possible choices of the initial sets
A0 ⊆ E .

movement and medium object motion for Tractor sequence,
and small object motion for Sunflower sequence, respectively.
Typically, the distortion decreases faster with the rate and
the CPU load when the video content has larger complexity.
We assume that the encoding time of each video frame is
limited by 	T = 0.03 s, and the constant maximal distortion
is set as Dmax = 500. At a frame rate of 30 fps, we further
encode each video sequence f into M = 63 representations
with the coding parameter pair (λ f,m , Q f,m) ∈ � × Q,
where � = {2, 6, 10} and the corresponding QP value ranges
between 30 and 50. We further assume that the popularity of
the three sequences follows a Zipf distribution with parameter
0.56 [32], i.e., the requesting probabilities of Crowd Run,
Tractor, and Sunflower sequences are 0.45, 0.31, and 0.24,
respectively.1

B. Simulation Results of the Proposed Algorithm

In this subsection, we illustrate and analyze the simulation
results of the proposed (ω, k)-WCB greedy algorithm under

1Please not that this popularity distribution is chosen as an illustra-
tive example. The proposed algorithm can be applied to any other pop-
ularity distribution, which is also experimentally justified in Table IV in
Section VI-D.
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Fig. 2. (a) Given Rmax = 30 Mbps, average distortion reduction per user vs.
maximum CPU load constraint Cmax; and (b) given Cmax = 3 THz, average
distortion reduction per user vs. maximum encoding bitrate constraint Rmax.

different maximum bitrate and power (CPU load) constraints,
and investigate the impact of the algorithm parameters ω and
k on the overall performance. The optimal solution of the ILP
P2 obtained by the generic solver IBM ILOG CPLEX [11] is
also given as the benchmark.

In Fig. 2(a), we set the maximum bitrate capacity at the
server to Rmax = 30 Mbps, vary the value of the maximum
CPU load Cmax , and illustrate the average distortion reduction
per user under different parameter settings of the proposed
(ω, k)-WCB greedy algorithm. The optimal solution of the
ILP P2 obtained by the IBM ILOG CPLEX solver [11] using
a branch and bound method with a very high (i.e., exponential)
time complexity O(2F ·2M ·2N ) is given as a performance upper
bound. It confirms that the proposed algorithm achieves a
good approximation performance but with a lower (i.e., poly-
nomial) time complexity O((F M)k+1 N). Two observations
can be made from the curves in Fig. 2(a). Given a weight
ω, enlarging the size of the initial set k from 0 to 2 incurs
higher average distortion reduction per user for all values of
Cmax, but the computational complexity also increases from
O(F M N) to O((F M)2 N). On the other hand, when k is
fixed, the algorithm performance is affected by the values of
the maximum CPU load Cmax and the relative cost weight ω.
Obviously, the average distortion reduction per user improves
if we increase the maximum CPU load Cmax at the server.
In addition, it can also be seen that when the maximum CPU
load is small (e.g., Cmax = 1 THz), the algorithm with the min-
imum weight ω = 0 (power cost benefit, e.g., 1-approximation
ratio for k = 2) outperforms the weight assignment of ω = 1
(rate cost benefit, e.g., 0.971-approximation ratio for k = 2),
and vice versa. The reason is as follows. For small Cmax, the
power (CPU load) becomes a scarcer resource compared to the
rate, which causes the CPU load constraint to be active while
the encoding bitrate constraint remains inactive. In this case,
the power cost benefit greedy algorithm that adds an element
maximizing the marginal benefit and power cost ratio at each
iteration step would achieve better performance.

The maximum CPU load at the server is then fixed at
Cmax = 3 THz, while the value of maximum encoding bitrate
varies from 10 Mbps to 50 Mbps. In this case, it can be seen
in Fig. 2(b) that for the same initial set seize k, the two curves
corresponding to ω = 0 and ω = 1 intersect at a certain point
of maximum encoding bitrate. To the left of this intersecting

point, the encoding bitrate is a scarcer resource and the rate
cost benefit greedy algorithm with ω = 1 would achieve a
better performance, and vice versa.

Then, the average distortion reduction per user versus
weight ω is shown in Fig. 3 for the cases of Rmax = 30 Mbps,
Cmax = 2, 3, 4 THz, and k = 0, 1, 2, respectively, when
both the encoding bitrate and CPU load constraints become
active. Again, for a given value of ω, larger k indicates
higher average distortion reduction. In addition, for all values
of k, there exists an optimal weight (e.g., ω∗ = 0.001 in
Fig. 3(b)) achieving the peak average distortion reduction
(0.988, 0.995, and 0.998-approximation ratio for k = 0, 1
and 2), which indicates the best tradeoff between the rate
and power cost when both resources are limited. Through
comparison of Figs. 3(a)-3(c), it can be concluded that such
optimal weight value ω∗ is affected by the allocation of Rmax

and Cmax . Since the maximum encoding bitrate constraint
Rmax is fixed in Fig. 3, ω∗ would become larger with the
increment of the maximum CPU load Cmax . We show the
average distortion reduction per user versus weight ω curves
for the cases of Cmax = 3 THz and Rmax = 20, 30, 40 Mbps
in Fig. 4, where the similar conclusion can be drawn.

In terms of system design, the messages that can be con-
cluded from the above observations of the proposed (ω, k)-
WCB greedy algorithm are in the following. 1) The size of the
initial size k adjusts the tradeoff between the average distor-
tion reduction performance and the computational complexity.
A larger number of k improves the algorithm’s performance,
but at the cost of a longer execution time. 2) The relative
weight ω controls the tradeoff between the rate and power
cost. Comparing the rate and power resources, when the rate
resource is scarcer, a larger weight value should be allocated
to make the proposed algorithm more rate efficient; and vice
versa.

C. Performance Comparison

In this subsection, the performance of the proposed (ω, k)-
WCB greedy algorithm is compared with the other four base-
line schemes: 1) the optimal solution of the ILP P2 solved by
the generic solver IBM ILOG CPLEX [11], which provides a
performance upper bound; 2) the power only solution, i.e., the
solution of the ILP P2 without the maximum encoding bitrate
constraint; 3) the rate only solution, i.e., the solution of the ILP
P2 without the maximum power (CPU load) constraint; and
4) the popularity based allocation algorithm, which allocates
both the encoding bitrate and the encoding CPU load budgets
for videos in proportion to their popularity, and then greedily
adds encoded representations for each video until either the
maximum bitrate or the maximum CPU load of that video is
reached.

The relationship between these baseline schemes and the
existing works on server-side DASH representation selection
is as follows. Fundamentally, the ILP formulation proposed
in [2] can be viewed as a special case of problem P2
without the maximum encoding delay and bitrate constraints.
Therefore, the corresponding algorithm performance is upper
bounded by the baseline scheme 2). On the other hand,
Ref. [10] validates the optimized representations obtained by
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Fig. 3. Given Rmax = 30 Mbps, average distortion reduction per user vs. weight ω when maximum CPU load constraint Cmax is set to (a) 2 THz,
(b) 3 THz, and (c) 4 THz.

Fig. 4. Given Cmax = 3 THz, average distortion reduction per user vs. weight ω when maximum encoding bitrate constraint Rmax is set to (a) 20 Mbps,
(b) 30 Mbps, and (c) 40 Mbps.

solving the ILP in [4] in a practical scenario, by generating a
24-hour streaming scenario based on YouTube traces and
device statistics for Hulu and Netflix. Since the ILP formu-
lation proposed in [4] and [10] can be viewed as a special
case of problem P2 without the maximum encoding delay and
power constraints, its performance is upper bounded by the
baseline scheme 3). In addition, there are two remarks. First,
the ILP formulations in [2], [4], and [10] do not include the
rate control consideration. To make a “fair” comparison, we
assume that the ground set of all possible representations is
already pre-encoded with known bitrates, qualities and power
consumptions when solving these ILPs. Second, in practice,
the algorithm running time is another performance metric that
has the same or even greater importance than the average
distortion reduction per user. The computational complexity
of the baseline schemes 1)-3) is all exponential since they
all have to solve a large scale ILP. We will show later the
advantage of the proposed algorithm over the ILP solution in
terms of the algorithm running time.

First, we fix the constraint of the maximum encoding bitrate
at the server as Rmax = 30 Mbps, vary the value of the
maximum CPU load Cmax from 1 THz to 5 THz, and show
the comparison of the average distortion reduction per user,
the actual total encoding bitrate, and the actual total encoding
CPU load achieved by different algorithms in Figs. 5(a), 5(c),
and 5(e), respectively. Compared with the optimal solution,
the proposed (ω, k)-WCB greedy algorithm with the optimal
weight ω = ω∗ can achieve a good approximation performance
for the representation selection at the DASH server in terms

of the largest average distortion reduction per user, while both
the maximum encoding bitrate and the maximum encoding
CPU load constraints are satisfied. For all different values
of Cmax , for example, the proposed (ω∗, 0)-WCB greedy
algorithm can achieve a 0.955-approximation ratio. Since the
optimal distortion reduction per user in MSE is around 400,
this approximation ratio means a near-optimal performance
that is only less than 20 lower in MSE than the optimal one.
When k is enlarged to 2, this worst case approximation ratio
would be improved to 0.993, which indicates a very good
approximation of the optimal solution. It can be further seen
that the proposed (ω∗, k)-WCB greedy algorithm outperforms
the popularity based allocation algorithm. The reason is that,
in addition to the popularity, the video content information
is also a very important factor in accordance with which both
the encoding bitrate and CPU load budgets should be properly
allocated among different videos. When Cmax is small (e.g.,
1 and 2 THz) and becomes the only active constraint, the
power only solution (the solution of the ILP P2 without
maximum encoding bitrate constraint) achieves similar average
distortion reduction per user to the optimal solution of the
ILP P2. In this case, even though there is still some encoding
bitrate budget remaining for more video representations, the
actual total encoding CPU load of the ILP P2 with/without
maximum encoding bitrate constraint reaches the maximum
CPU load Cmax , which prevents from encoding any additional
representation due to the lack of CPU capacity. On the other
hand, when Cmax is larger (e.g., 3, 4, and 5 THz) and the
bitrate becomes a scarcer resource, the power only solution
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Fig. 5. (a) Average distortion reduction per user, (c) total encoding bitrate,
and (e) total encoding CPU load vs. maximum CPU load constraint Cmax
curves when maximum encoding bitrate Rmax is fixed at 30 Mbps; and
(b) average distortion reduction per user, (d) total encoding bitrate, and
(f) total encoding CPU load vs. maximum encoding bitrate Rmax when
maximum CPU load constraint Cmax is fixed at 3 THz.

outperforms the optimal solution of the ILP P2. However,
it should be noted that the total encoding bitrate exceeds
the maximum encoding bitrate constraint Rmax = 30 Mbps.
The rate only solution (the optimization based representation
selection algorithm in [4]) achieves a stable average distortion
reduction per user for different values of Cmax , since the
maximum CPU load constraint is not taken into account. When
Cmax is large and Rmax becomes the only active constraint,
its performance is similar to the optimal solution of the ILP
P2. However, when Cmax is reduced, since it is not power
optimized, the total CPU load consumed by such representa-
tion selection algorithm exceeds the maximum affordable CPU
load Cmax , i.e., its solution is infeasible in practical power
constrained system design. Similar observation can be made
from Figs. 5(b), 5(d), and 5(f), where the maximum CPU load
at the server is fixed at Cmax = 3 THz, while the value of
maximum encoding bitrate varies from 10 Mbps to 50 Mbps.

In order to gain further insight into the difference between
the algorithms, in Table II, we list the comparison of
the representation selection results, in terms of the coding

Fig. 6. Running time vs. (a) number of representations and (b) number of
users.

Fig. 7. (a) Running time and (b) approximation ratio vs. number of
representations, under different error bound settings for the ILP solver.

parameter pair (λ f,m , Q f,m) and the corresponding encoding
bitrate R f,m and CPU load C f,m , when Rmax = 30 Mbps
and Cmax = 3 THz. It can be seen that the representations
selected by the proposed (ω∗, 2)-WCB greedy algorithm do
not deviate much from the optimal representations of the ILP
P2, while a 0.998-approximation ration is achieved with both
the maximum encoding bitrate and CPU load constraints satis-
fied. The fundamental reason why the proposed (ω∗, 2)-WCB
greedy algorithm outperforms the popularity based allocation
algorithm is the following. In addition to the consideration of
the video popularity and the bandwidth distribution of different
users, the representation selections for different videos can be
further adapted by the proposed algorithm according to the
video content information. For video sequences with small
motion (e.g., Sunflower), the proposed algorithm only encodes
one basic representation with a relatively small bitrate at the
DASH server, while for video sequences with larger motion
(e.g., Crowd Run), a much greater number of representations
with various bitrate allocations are encoded in order to gain
larger distortion reduction. For the rate only solution in [4]
without the maximum encoding CPU load constraint, almost
all the selected representations are encoded with larger search
ranges λ such that a smaller encoding bitrate is required
for the same distortion reduction but at the cost of a much
larger power consumption. By doing so, the maximum CPU
load constraint is violated. Similarly, the power only solution
without maximum encoding bitrate constraint allocates more
total encoding bitrate than the maximum budget Rmax .

The algorithm running time is another performance metric
which has the same or even greater importance than the
average distortion reduction per user. In Fig. 6, we compare
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TABLE II

REPRESENTATION SELECTIONS OF DIFFERENT ALGORITHMS WITH GIVEN Rmax = 30 Mbps AND Cmax = 3 THz

the actual running time of the proposed (ω∗, 0)-WCB greedy
algorithm and the optimal solution of the ILP P2 solved by the
generic solver IBM ILOG CPLEX [11], and show the impact
of the number of representations F × M and the number of
users N on the running time. Through the fitted curves in
Fig. 6, the previous theoretical analysis of the computational
complexity is well justified. That is, the ILP solution has a
very high exponential time complexity O(2F ·2M ·2N ), while
the proposed (ω∗, 0)-WCB greedy algorithm achieves a linear
time complexity O(F M N). In other words, the proposed
algorithm has a much lower increasing rate and scales better
than the ILP solution. Considering a practical video streaming
system with a large number of videos, representations and
users, the long waiting time for the IBM ILOG CPLEX solver
to obtain the optimal representation selection is intolerant and
thus infeasible in practice. In contrast, the proposed algorithm
is suitable for such delay sensitive applications since it is
capable of achieving a near-optimal solution within a short
period of time.

Fig. 7(a) illustrates the comparison of the running time
versus the number of representations achieved by the proposed
algorithm, and the generic solver IBM ILOG CPLEX [11]
under different settings of error bounds (relative optimality
tolerances). In Fig. 7(b), we accordingly show the algorithm
performance after spending the corresponding running time, in
terms of the approximation ratio to the optimal solution. The
running time of the generic solver can be greatly reduced by
enlarging the relative optimality tolerance (from 0.01 to 0.1 in
Fig. 7(a)), which comes at the cost of the reduction of approxi-
mation ratio (the green curve is generally below the blue curve
in Fig. 7(b)). However, the curves of the running time versus
the number of representations illustrate that even by setting
an error bound, the computational complexity of the generic
solver is still exponential. In contrast, the proposed algorithm
can achieve a comparable approximation ratio (mostly larger
than the green curve in Fig. 7(b)), while the running time is lin-
ear with the number of representations and significantly shorter
than the generic solver under different error bound settings.
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TABLE III

INDICES AND NAMES OF THE TEST VIDEO SEQUENCES

D. Performance Evaluation for Larger System Settings

Finally, we conduct simulations for larger scale settings.
In total, F = 15 test video sequences with 1080p resolution
(1920 × 1080), available at [31], are selected as the source
video streams to be encoded at the DASH server. They
correspond to different motion and video types (such as, sport,
documentary, cartoon and movie). The indices and names of
these video sequences are listed in Table III. The encoding
time of each video frame is still limited by 	T = 0.03 s,
and the constant maximal distortion Dmax = 500. At a frame
rate of 30 fps, each video sequence f is encoded into M = 63
representations with the coding parameter pair (λ f,m , Q f,m) ∈
� × Q, where � = {2, 6, 10} and the corresponding QP
value ranges between 30 and 50. For the video popularity,
we investigate three different popularity distributions, i.e.,
the Zipf distribution with parameter 0.96 and 0.56, and the
uniform distribution. The number of users is also enlarged
to N = 100, where each user’s download bandwidth Bn is
randomly distributed in the range of [1, 10] Mbps.

In Table IV, we compare the average video quality in
PSNR obtained by different representation selection algo-
rithms under the three different popularity distributions, when
Rmax = 250 Mbps and Cmax = 25 THz. Although the
system settings scale with a larger number of videos and
users, it is again verified that for all popularity distributions
the proposed (ω, k)-WCB greedy algorithm outperforms the
popularity based allocation algorithm and achieves a higher
PSNR value. This PSNR performance is very close to the
performance upper bound guided by the optimal solution of
the ILP P2 that is solved by the CPLEX [11], but the actual
running time is much shorter. On the other hand, the power
only solution without maximum encoding bitrate constraint
and the rate only solution in [4] without maximum CPU load
constraint would achieve a PSNR value at least no worse
than the optimal solution of the ILP P2. However, these two
schemes are either not rate-efficient or not power-efficient, in
the sense that they actually need to consume more bitrate
or CPU load resources than the server can afford in order
to achieve only slight performance improvement. Therefore,
the proposed algorithm is suitable for delay sensitive DASH
streaming, since it could strike a tradeoff between the algo-
rithm’s performance and running time while satisfying the
delay, rate and power constraints at the server.

In practice, the results shown in Fig. 5 and
Tables II and IV could further provide some design guidelines
for selecting the representations with corresponding encoder
parameters, as follows. 1) In a typical delay sensitive streaming
scenario, the rate and power (CPU load) allocation among
videos is not only dependent on the popularity distribution,
but also affected by the video content information. For the

TABLE IV

COMPARISON OF AVERAGE VIDEO QUALITY IN PSNR UNDER DIFFERENT

POPULARITY DISTRIBUTIONS

same video type, straightforwardly, a larger amount of rate
or power budget needs to be allocated for more popular
videos. While for different video types, a larger amount of
rate or power budget needs to be allocated for videos with
larger motion or more complex content. 2) The number of
representations and the corresponding encoder parameters
per video should also be content-aware: a larger number
of representations with more QP configurations needs to be
dedicated to videos with larger motion or more complex
content. 3) When the rate resource is scarcer than the power
resource, a larger search range λ should be selected for each
representation in order to reduce the encoding bitrate while
achieving the same video distortion but with larger power
consumption; and vice versa. Overall, the proposed algorithm
complies well with these design guidelines and scales well
with the size of the system. Since it could further strike the
optimal tradeoff both between the rate and power cost, and
between the algorithm’s performance in terms of the average
distortion reduction per user and the delay requirements, it is
therefore useful for practical system design.

VII. CONCLUSION

This paper has studied an encoding delay, rate and power
constrained representation selection problem for delay sen-
sitive DASH streaming in order to maximize the expected
aggregate video distortion reduction. Based on this opti-
mization problem, we have provided an ILP formulation to
achieve the performance upper bound but with exponential
time complexity, and an equivalent constrained submodular
maximization that is used to develop an approximate algorithm
with polynomial time complexity. Simulation results have
justified that the proposed weighted rate and power cost
benefit greedy algorithm could achieve a near-optimal per-
formance without introducing a long additional computation
delay, which is therefore suitable for delay sensitive video
streaming. Our future work will study the online adaptation
algorithms for dynamic resource provisioning in the server-
side representation selection when taking into account the
dynamics of networks and users, and the power consumption
of the mobile devices [33] while transcoding the received
DASH streams to support device-to-device communication.
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