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Abstract—The standard compressive sensing (CS) theory can be
improved for robust recovery with fewer measurements under the
assumption that signals lie on a union of subspaces (UoS). However,
the UoS model is restricted to specific types of signal regularities
with predetermined topology for subspaces. This paper proposes
a generalized model which adaptively decomposes signals into a
union of data-driven subspaces (UoDS) for structured sparse rep-
resentation. The proposed UoDS model leverages subspace clus-
tering to derive the optimal structures and bases for the subspaces
conditioned on the sample signals. For multidimensional signals
with various statistics, it supports linear and multilinear subspace
learning for compressive sampling. As an improvement for generic
CS model, the basis which represents the sparsity of sample signals
is adaptively generated via linear subspace learning method. Fur-
thermore, a generalized model with multilinear subspace learning
is considered for CS to avoid vectorization of high-dimensional
signals. In comparison to UoS, the UoDS model requires fewer
degrees of freedom for a desirable recovery quality. Experimental
results demonstrate that the proposed model for video sampling is
promising and applicable.

Index Terms—Structured sparsity, compressive video sampling,
union of data-driven subspaces, tensor subspace.

I. INTRODUCTION

S PARSITY is widely concerned in many areas such as statis-
tics, machine learning and signal processing. A vector ad-

mits a sparse representation over a basis (or dictionary) if it can
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be represented by a linear combination of a few column vectors
from the dictionary. In a certain sense, accompanied by a cor-
responding dictionary, sparsity has a close connection with the
concept subspace spanned by its few column vectors. Recently,
it has been proved that a trained dictionary is more effective
than a predefined one (e.g., wavelets [1]) for many tasks such
as image denoising [2]–[4], compressive sensing [5], [18] and
classification tasks [6], [7]. The dictionary directly learned from
input signals is shown to provide more adaptivity and sparsity
than the off-the-shelf bases.

As an application of sparsity, compressive sensing (CS) is
a desirable framework for signal acquisition [8]–[10]. CS at-
tempts to acquire the dictionary-based sparse representation for
unknown signals by randomly projecting them onto a space
(observation) with much lower dimension. Recently, CS has
been widely adopted in video acquisition and reconstruction
[11]–[18]. In comparison to conventional video acquisition and
compression approaches, CS can relieve the burden of video
encoder by reducing the number of measurements to be sam-
pled. At the decoder side, its recovery quality can be guaranteed
with effective reconstruction methods based on a sparse repre-
sentation with certain basis. Wakin et al. [11] first applied CS
into video acquisition, which jointly made compressive sam-
pling and reconstruction for video sequences with 3-D wavelet
transform. Recognizing that compressive sampling was inade-
quate to the entire frame, a block-based CS (BCS) method [12])
utilized CS for non-overlapping blocks to exploit the local spar-
sity within the DCT domain. Later, temporal correlations were
exploited to improve BCS. The distributed BCS framework [13]
approximated each block by a linear combination of blocks in
previous frames. Liu et al. [14] developed an adaptive CS strat-
egy for blocks in various regions of independent motion and
texture complexity. BCS-SPL framework [15] made smooth
projected Landweber (SPL) reconstruction by incorporating
motion estimation and compensation. Chen et al. [16] combined
multi-hypothesis prediction with BCS-SPL to enhance the re-
construction performance. The approximate message passing
(AMP) reconstruction based on the dual-tree complex wavelet
transform was adopted in [17]. Liu et al. [18] improved
the recovery performance of BCS framework by introducing
Karhunen-Loève transform (KLT) basis in the decoder. To over-
come the deficiency of sampling high-order signals, multidi-
mensional CS techniques [28]–[32] have been developed for
practical implementations. However, these methods assume that
signals live in a single vector or tensor space, which ignore the
structures within the sparse coefficients.
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To capture the underlying structures for recovery, the union of
subspaces model [19]–[21] has been established to significantly
reduce the number of measurements. In [19], a general sampling
framework was studied, where sampled signals lived in a known
union of subspaces with linear operators. Under the notion of
block restricted isometry property (RIP), robust block sparse
recovery with a mixed �2/�1 programming was developed for
the UoS model in [21]. Blumensath [20] demonstrated that pro-
jected Landweber algorithm could recover signals from UoS for
all Hilbert spaces and unions of such subspaces, as long as the
sampling operator satisfied bi-Lipschitz embedding condition.
The UoS model exploits the structural sparsity like tree-sparsity
and block-sparsity [22], [23] to span subspaces with DCT and
wavelet bases. However, it is restricted to signals with varying
signal regularities, especially video sequences.

Furthermore, multi-linear subspaces (tensor subspaces) learn-
ing (MSL [33]–[35], [37]) was adopted under the assumption
that high-dimensional signals live in a tensor product of sub-
spaces. It is due to the fact that a predetermined vectorization of
tensor data can obscure the statistical correlations among sam-
ples and discard important structural information. Tensor sub-
space analysis (TSA [33]) detected the intrinsic local geometric
structures of the tensor space to generate a representation matrix
for images. In the meantime, generalized low rank approxima-
tions of matrices (GLRAM [34]) iteratively made bi-directional
linear projecting transform for feature extraction of images,
which outperformed the traditional SVD-based methods. For
efficient tensor subspace representation, multilinear principal
component analysis (MPCA [35]) framework suggested fea-
ture extraction with dimensionality reduction to model a major
part of input signals. Recently, L1-norm-based tensor analy-
sis (TPCA-L1 [37]) replaced Frobenius norm and L2 norm with
L1-norm to formulate the problem of tensor analysis with the ro-
bustness to outliers. Unfortunately, their performance for video
sequences is degraded, as they failed to consider the temporal
correlations with adaptive basis for each tensor subspace.

This paper proposes a generalized union of data-driven sub-
spaces (UoDS) model based on linear or multi-linear sub-
spaces for compressive sampling of multi-dimensional signals,
especially video sequences. The contribution of this paper is
twofold. Firstly, learning-based linear operators are developed
to adaptively project patches onto a union of low-dimensional
linear subspaces for structured sparse representation. Patches
extracted from reference frames are fully sampled for gen-
eration of UoDS. They are adaptively categorized into finite
clusters as estimation of the underlying subspaces with sparse
subspace clustering. Incorporating linear subspace learning
(LSL), the number and structures of these subspaces (clusters)
are determined directly on the set of patches for learning. The
non-reference frames are sparsely represented and recovered
with the derived UoDS model. Its invertibility and stability
of compressive sampling have been demonstrated under the
block restricted isometric property (RIP) condition. Moreover,
some ingredients, which affect the performance of the proposed
model, are discussed including subspace clustering comparison,
number and dimension of linear subspaces.

Furthermore, the UoDS model is generalized to the multi-
linear (tensor) subspaces to maintain the structural information
of signals by avoiding vectorization. We first extend the CS
theory to higher-order cases with data-driven basis to make
signals compressible. The proposed compressive tensor sam-
pling (CTS) method represents signals with the product of

tensors and adaptively derives the basis for each tensor sub-
space with multilinear subspace learning (MSL). Moreover, it
relieves the large-scale sensing matrices led by vectorization of
high-dimensional signals and preserves the intrinsic structures
in the original signals. Therefore, CTS is efficient and prac-
tical for sampling high-dimensional signals in comparison to
previous schemes in literature.

The rest of the paper is organized as follows. Section II
provides the background and motivation of UoDS. Section III
proposes the UoDS model for compressive video sampling, in-
cluding subspace clustering, linear subspace learning and stable
recovery. Furthermore, the UoDS model is generalized to the
multilinear subspaces in Section IV. Section V provides the
experimental results for validation in terms of SR-PSNR per-
formance and visual quality. Finally, Section VI concludes this
paper.

II. DEFINITION AND MOTIVATION

To motivate the proposed UoDS model, we begin with a
review of the compressive sensing models, including both single
subspace model and union of subspace model.

A. Single Subspace Model

Given an orthonormal basis Ψ = {ψi}, an n-dimensional sig-
nal x ∈ Rn has a sparse representation in the form of x = Ψc,
where c is the representation vector with k nonzero components.
This fact implies that x lives in a k-dimension single subspace
spanned by the k basis vectors corresponding to the nonzero
components in Ψ. Under the assumption of simple sparsity, this
single subspace model is widely adopted in traditional compres-
sive sampling. Thus, the measurement y ∈ Rm is obtained by
linear sampling y = Φx based on a sensing matrix Φ ∈ Rm×n
with k < m� n. Here, we definem/n the sampling rate (SR).
Denoting A = ΦΨ, the linear sampling can be explicitly rep-
resented by y = Ac. When A is properly selected, c can be
recovered exactly from m = O(k log (n/k)) random measure-
ments by solving �1-norm minimization problem [8], [10]:

min
c

‖c‖1 , s.t. y = Ac. (1)

B. Union of Subspaces (UoS) Model

Instead of simple sparsity, union of subspaces model supposes
a signal x to be lying on a union of subspaces [19]–[21]

x ∈ U �
⋃

λ∈Λ

Sλ, (2)

where Λ is a list of indices, and Sλ is a subspace of Hilbert space
H spanned by a predefined basis, e.g., DCT and wavelet basis.
The UoS model considers block-sparse structure [22], [23] in the
signals as shown in Fig. 1, where the representation vector cT is
segmented into t blocks [c[1]T , · · · , c[t]T ]. c is called k-block-
sparse, when at most k blocks c[i] ∈ Rdi are nonzero. For a
stable recovery, block restricted isometric property (Block-RIP)
is imposed on A, which guarantees to recover c with the convex
formulation minimizing a mixed �2/�1 norm

min
c

‖c‖2,1 , s.t. y = Ac, (3)

where ‖c‖2,1 �
∑t

i=1 ‖ci‖2 with ‖ci‖2 ≥ 0 for 1 ≤ i ≤ t.
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Fig. 1. The comparison of the single subspace model and union of subspaces
model. As shown in this figure, the basic (simple) sparsity can be induced from
data-driven basis based on single subspaces model. While based on union of
subspaces model, the block (group) sparsity can be induced from predefined
basis.

C. Motivation

High-dimensional signals are characterized by various types
of signal regularities. Taking video sequences for example, their
spatial correlations within a frame are represented by regu-
lar textures and structures, while the temporal correlations are
characterized by the motion trajectory of contents among neigh-
boring frames. Consequently, most standard compressive video
sampling methods treat the processing of video as the processing
of a set of patches with single subspace model.

Instead of assuming high-dimensional signals lying on a sin-
gle subspace, their sparse representation can be improved by
considering intrinsic structures among representation vectors.
Under the independent assumption for c, the single subspace
model obscures the dependencies and structures within the rep-
resentation vector c. Thus, it cannot utilize various types of
prior knowledge for high-dimensional signals to make a sparse
representation and stable recovery.

As an alternative, the UoS model projects such structures
onto a union of low-dimensional linear subspaces while still
preserving its information. It improves the applicability and
efficiency of the single subspace model, especially for signals
with noise and in the presence of under-sampling. However, it
is still rigid to generate the geometry of a union of subspaces
and describe the structure of each subspace with a predefined
basis spanning. Thus, we propose a generalized model which
adaptively endows structures and dependencies to sample high-
dimensional signals with non-stationary statistics, especially for
patch-based video sampling.

III. UNION OF DATA-DRIVEN SUBSPACES (UODS) MODEL

A. The Proposed Framework

Fig. 2 depicts the proposed framework of compressive video
sampling with the UoDS model. For efficient sampling and sta-
ble recovery, a video sequence with group of pictures (GOP) is
decomposed into the selected reference frames (RFs) and the
remaining non-reference frames (NRFs). RFs are fully sam-
pled and recovered with a trivial loss of quality. Therefore, they
are suitable for generating a union of data-driven subspaces

U∗ to recover NRFs with learned structural information. In
Section III-B, the UoDS model incorporates subspace clustering
to adaptively group their patches based on their spatio-temporal
structures. The overcomplete basis Ψ∗ = {Ψ∗[i]} for recovery is
adaptively derived for each subspace with PCA-based learning
methods, as shown in Section III-C.

On the other hand, NRFs are sparsely represented with a
low sampling rate. For stable recovery, NRFs are reconstructed
based on RFs to maintain the spatio-temporal consistency in
video sequences. Hence, the trained overcomplete basis Ψ∗
is adopted to utilize the dependencies and structures within
representation vectors c. For each reconstructed patch x∗, the
block-sparse vector c∗ is recovered by optimizing Eq. (15) in
Section III-D. Consequently, x∗ can be obtained based on the
subspace consisting of patches with similar structures in U∗. A
detailed description of the proposed UoDS model can be found
in Algorithm 1 in Section III-D, which considers both sampling
and reconstruction for the UoDS model.

B. Subspace Clustering for UoDS

Denote X = [x1 , · · · ,xK ] the set of K vectorized patches
extracted from RFs. In this section, we incorporate sparse sub-
space clustering (SSC [26]) to segment X into t clusters that nat-
urally correspond to the underlying subspaces. SSC is suitable
for training-based recovery, as it is rooted on the fact that each
point in the union of subspaces has a sparse representation based
on a trained dictionary constrained by the self-expressiveness
property over the training set. Consequently, the representa-
tion vector ci of the vectorized patch xi ∈ Rn can be obtained
over X

min
ci

‖ci‖1 s.t. xi = Xci , ci [i] = 0. (4)

Here, the extracted patches are overlapped to guarantee the
smoothness of reconstructed frames. The non-zero coefficients
of ci correspond to patches from the same subspace. Fig. 3
provides an example for the generation of representation vector,
where c122 is obtained over X withK = 1505. It shows that the
structure of x122 is similar to those of x34 , x78 , x166 , and x210 ,
which implies that they are lying on the same subspace. Eq. (4)
can be rewritten in matrix form by collecting all the patches
in X

min
C

‖C‖1 s.t. X = XC, diag(C) = 0, (5)

where C � [c1 , · · · , cK ] ∈ RK×K is a matrix of coefficients to
generate the balanced similarity graph.

For a valid representation of the similarity, a weighted bal-
anced similarity graph G = (V, E ,W) is established based
on the normalized columns ci/‖ci‖∞ of C, where V is the
set of vertices corresponding to the K vectorized patches
x1 , · · · ,xK , and E is the set of directed edges (vi, vj )
indicating that xj is one of the vectorized patch in the
sparse representation of xi . Taking Fig. 3 for example,
since x122 = 0.39 x78 + 0.22 x166 + · · ·, there exist two edges
(v122 , v78) and (v122 , v166) with weights c122 [78] = 0.39 and
c122 [166] = 0.22, respectively. To ensure that G is balanced, we
adopt the adjacency matrix W = |C| + |C|T ∈ RK×K with its
elements wij = |ci [j]| + |cj [i]|T . As shown in [24], each con-
nected component in G suggests the vertices representing the
vectorized patches in the same subspace. Fig. 4 provides an ex-
ample of the similarity graph with four connected components
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Fig. 2. The proposed union of data-driven subspaces (UoDS) model for compressive video sampling.

Algorithm 1: UoDS model for compressive video sampling
and reconstruction.

Task: Sample and reconstruct a video with each group of
N frames {Xi}, i = 1, · · · , N .
Initialization: Generate a random Gaussian matrix Φ ∈
Rm×n , set X1 as RF and X2 , · · · ,XN as NRFs.
Sampling: Fully sample non-overlapped blocks x1 in X1 ,
and compressively sample those blocks in X2 , · · · ,XN

with Eq. (13).
Reconstruction:
Step 1: Reconstruct each block x̂1 to obtained recovered

RF X̂1

Step 2: Do SSC to the patches set X of X̂1 and clustering
X into t clusters X1 , · · · ,Xt

Step 3: for j = 1 to t do
Obtain Ψ∗

j for S∗
j by LSL over X[j] with Eq. (8)

or (9);
end for

Step 4: Concatenate Ψ∗
j to form the dictionary Ψ∗ = [Ψ∗

1 ,
· · · ,Ψ∗

t ]
Step 5: for i = 2 to N do

Recover the block-sparse vector c∗ by Eq. (15) and
reconstruct each non-overlapped block of Xi by
x = Ψ∗c∗,
then assemble them back to form the recovered NKF
X̂i

end for
Return X̂1 , · · · , X̂N

for the UoDS model. It shows that vectorized patches in one
connected component have similar structures.

Denote L = D − W the Laplacian matrix of W , where
D is a diagonal matrix with Dii =

∑
j wij . We leverage

Fig. 3. The representation vector c122 of 16 × 16 patch x122 over a training
set X ofK = 1505 patches extracted from the first frame of Foreman sequence.

spectral graph theory to segment X by applying K-means to
the eigenvectors of the Laplacian matrix L. The connected com-
ponents of G can be determined from the eigenspace of the
zero eigenvalue. Based on the t eigenvectors corresponding to t
smallest eigenvalues, X is segmented into t clusters {X[i]}ti=1
with K-means. For X drawn from the underlying subspaces,
each cluster corresponds to a low-dimensional linear subspace
S∗
i , as the similarity graph G has the t connected components

corresponding to these subspaces. Therefore, U∗ is a union of
low-dimensional linear subspaces by collecting all t clusters S∗

i .

x ∈ U∗ �
t⋃

i=1

S∗
i . (6)

Remarkably, the number of the underlying subspaces can be
estimated as the number of zero eigenvalues of L. Thus, an
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Fig. 4. The balanced similarity graph G with four connected components,
where each subspace in U∗ forms one component in G.

Fig. 5. Subspace clustering for the UoDS model. Vectorized patches are
segmented into three low-dimensional linear subspaces, where S∗

1 is a bi-
dimensional plane and the dimension of S∗

2 and S∗
3 are one. For example,

blue points like x1 and x2 live in S∗
1 spanned by basis Ψ∗

1 , and green and red
points like x3 and x4 live in S∗

2 spanned by basis Ψ∗
2 and S∗

3 spanned by basis
Ψ∗

3 , respectively.

adaptive clustering of vectorized patches can be achieved, even
though the number of their underlying subspaces are unknown.
Fig. 5 shows a conceptual diagram for clustering the vectorized
patches into three low-dimensional linear subspaces. We first
solve Eq. (4) to each vectorized patch xi and thus solve Eq. (5) to
X . Later, we can derive a balanced similarity graph G similarly
as shown in Fig. 4 but with three underlying connected com-
ponents. Finally, we employ K-means algorithm with K = 3 to
the eigenvectors of the Laplacian matrixL of the balanced simi-
larity graphG, and we get the final clustering result as shown in
Fig. 5 with blue point x1 , x2 are clustered together into common
underlying data-driven subspace S∗

1 spanned by basis Ψ∗
1 with

two basis vectors, green and red points like x3 and x4 into S∗
2

spanned by Ψ∗
2 with one basis vector and S∗

3 spanned by Ψ∗
3 with

one basis vector, respectively. Because the texture complexity
for patches x1 , x2 is larger than x3 and x4 , the dimension of S∗

1
is larger than S∗

2 and S∗
3 .

1) Subspace Clustering Comparison: We compared SSC
with another popular subspace clustering method, low-rank rep-
resentation (LRR) [25]. Different from SSC, the nuclear norm
‖C‖∗ (sum of singular values) is used to minimize the rank of

Fig. 6. The performance comparison between UoDS-SSC and UoDS-LRR for
Football sequence with various numbers of subspaces t. UoDS-SSC and UoDS-
LRR denote the proposed UoDS incorporated with SSC and LRR, respectively.
SR denotes sampling rate.

C in LRR

min
C

‖C‖∗ s.t. X = XC, diag(C) = 0. (7)

For simplicity, we use UoDS-SSC and UoDS-LRR for the
proposed UoDS incorporated with SSC and LRR, respectively.
Fig. 6 compares UoDS-SSC and UoDS-LRR in terms of re-
covery performance. It is obvious that UoDS-SSC outperforms
UoDS-LRR under different numbers of subspaces. SSC derives
“cleaner” latent matrix C in comparison to LRR. Thus, SSC
can yield more accurate clustering results when t is known,
which performs better to fit the signals with the derived union
of data-driven subspaces U∗.

2) Number of Subspaces Discussion: Furthermore, we stud-
ied the number t of subspaces in the union U∗ for its effect on
the accuracy of the UoDS model. As shown in Fig. 6, when the
number of subspaces increases, the recovery accuracy increases
rapidly at first and then slightly fluctuates around a certain max-
imum value. It is because that t affects the distribution of these
data-driven subspaces in U∗. When t is small, different under-
lying subspaces tend to merge into one cluster, which leads to
a blend of structural information in these subspaces. Thus, this
inaccurate clustering would produce a poor recovery accuracy.
On the other hand, a large t makes these subspaces indepen-
dent as we assume. However, the clustering accuracy will be
suppressed and the computational complexity will increase with
the growth of t.
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Fig. 7. PCA-based learning for bases of 10 clusters. Each cluster corresponds
to a subspace and its dimension is fixed to 5. PCA is performed for each cluster
separately.

Fig. 8. Representation vector c∗ obtained based on bases trained by PCA and
PCA-L1. Dimension of each subspace is 10.

C. Linear Subspace Learning for UoDS

When U∗ is obtained, the basis for its subspaces can be
derived based on the clustered training set X = {X[i]}ti=1 .
Principal component analysis (PCA) is leveraged for each
cluster X[i] to learn the basis Ψ∗

i for corresponding linear
subspace S∗

i independently, as shown in Fig. 7. Therefore,
Ψ∗ = [Ψ∗

1 ,Ψ
∗
2 , . . . ,Ψ

∗
t ] is the derived basis for U∗. This fact

implies that Ψ∗
i ∈ Rn×di spans the di-dimensional subspace

S∗
i . In comparison to the UoS model, dimensions and bases of

these subspaces are conditioned on structures embodied by their
patches. Fig. 5 shows that patches from plain backgrounds lie in
a lower-dimensional subspace than those patches from regions
with dramatic change of details. Furthermore, Ψ∗ is nonlocal,
as it is learned from the complete frame rather than a fixed local
window of pixels.

To sufficiently capture the patch-based structures, Ψ∗ ∈ Rn×r

is an overcomplete basis with r =
∑t

i=1 di > n. It is solved
based on singular value decomposition (SVD) X[i] = Ψ∗

iΣVT

Ψ∗
i = arg max

Ψ i

‖ΨT
i X[i]‖2 , s.t. ΨT

i Ψi = Idi . (8)

Instead of classical PCA algorithm, we utilize the PCA-L1 al-
gorithm [27] to obtain a subspace that is robust to outliers as
well as invariant to rotations

Ψ∗
i = arg max

Ψ i

‖ΨT
i X[i]‖1 = arg max

ψi q

li∑

j=1

|ψiqxij |

s.t. ΨT
i Ψi = Ili , q = 1, . . . , di , (9)

where q is the index of vectors in Ψ∗
i = [w∗

i1 , w
∗
i2 , . . . , w

∗
idi

], and
li is the number of patches in X[i]. The (sub-)optimal solution
to Ψ∗

i is obtained by the greedy algorithm. Fig. 8 shows the

representation vectors of the same signal lying in the UoDS
spanned by PCA and PCA-L1 basis, respectively.

1) Subspace Dimension Selection: Since dimensions of lin-
ear subspaces depend on the structures of their patches, they
should be determined adaptively and independently. In the
UoDS model, we employ the average gradient to measure the
texture complexity for patches in each subspace, which is asso-
ciated with the cost of representing the structures like textures
and edges. Linear subspaces are classified into three categories
with refined candidate dimensions for various texture complex-
ity. The classification is based on adaptive calculation of average
gradient gi for X[i]

gi =
1
Ki

Ki∑

j=1

g(xj ), xj ∈ X[i], (10)

where Ki is the number of patches in cluster X[i], and g(xj )
is the average gradient for patch xj . Assuming that x is the
vectorized version of patch F ∈ Ra×a , we can obtain g(x) by

g(x) =
1

(a−1)2

a−1∑

i=1

a−1∑

j=1

√
(Fi,j−Fi+1,j )2 +(Fi,j−Fi,j+1)2

2
.

(11)

Therefore, the dimension of each subspace is selected according
to the three categories.

di =

⎧
⎪⎨

⎪⎩

dh , T2 ≤ gi

dm , T1 ≤ gi < T2

dl , T1 > gi

, (12)

where T1 and T2 are related with the minimum and maximum
of the average gradients.

D. Stable Recovery

Stable recovery is significant for patches with a sparse repre-
sentation in NRFs. Linear sampling in the UoDS model is based
on the block diagonal measurement matrix A∗

y = Φx = ΦΨ∗c∗ = A∗c∗, (13)

where Φ is an i.i.d. random sensing matrix, r =
∑t

i=1 di , and

A∗ =

⎡

⎢⎢⎢⎢⎣

A∗
1 ,

0 A∗
2 ,

. . .
. . .

0 A∗
t

⎤

⎥⎥⎥⎥⎦
.

The UoDS model inherits the merit of UoS model, which
implies that input signals have a block-sparse representation
over Ψ∗. When these subspaces are disjoint or independent,
c∗ is a 1-block-sparse vector that is more sparser than c in
Eq. (3). Fig. 8 shows the sparsity of the proposed model for one
selected block in c∗. For a complete evaluation, the uniqueness
and stability conditions are derived in this section.

Denote S∗
ij = S∗

i

⋃S∗
j the convex hull of a set of two data-

driven subspaces S∗
i and S∗

j and kmax = maxi 	=j dim(S∗
ij ) its

maximum dimension. In Proposition 1, we demonstrate the in-
vertibility of the linear sampling operator Φ : U∗ → Rm .

Proposition 1: Linear sampling operator Φ : U∗ → Rm is
invertible for U∗ if m ≥ kmax .
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Proof: Please refer to Appendix A. �
Proposition 1 provides the minimal number of samples re-

quired to guarantee a stable reconstruction for the UoDS model.
It suggests that kmax samples are required for invertible rep-
resentation based on the UoDS model. Substituting Φ and
x with A∗ and the k-block sparse vector c∗, we can draw
Proposition 2.

Proposition 2: The measurement matrix A∗ is stable for ev-
ery 2k-block sparse vector u if and only if there exists C1 > 0
and C2 <∞ such that

C1‖u‖2
2 ≤ ‖A∗u‖2

2 ≤ C2‖u‖2
2 , (14)

where u = c∗1 − c∗2 .
Proof: Please refer to Appendix A. �
Proposition 2 ensures the stable sampling and recovery of Φ

in the UoDS model. In fact, it imposes the classical conditioning
requirements on Gram matrices A = (< ψi, φj >)1≤i≤m,1≤j≤n
between the sets of vectors Φ = {φi}mi=1 and Ψ = {ψj}nj=1 .
Thus, C1 and C2 are the tightest stability bounds related with
the minimum and maximum singular values of A, respectively.

Under the invertibility of linear sampling, convex optimiza-
tion is considered for efficient exact recovery. Theorem 1 proves
that there exists a unique block-sparse vector c when A satisfies
the block-RIP condition with constant δ + 2k < 1.

Theorem 1: If A∗ satisfies the block-RIP condition with
δ2k ≤ √

2 − 1, the vector c∗ of Eq. (15) can be determined ac-
cording to the convex second-order cone programming (SOCP)
[21].

min
c∗ ‖c∗‖2,I s.t. y = A∗c∗, (15)

where I represents the group index set.
Proof: Please refer to Appendix B. �
Theorem 1 implies that the unique solution to Eq. (15) exists

as long as δ2k is small enough. SOCP determination is desir-
able in comparison to standard CS results, as it considers the
block structure of c explicitly and adaptively. In practice, we
reconstruct the block-sparse vector c∗ by solving Eq. (15) with
group-BP algorithm [39].

IV. TENSOR GENERALIZATION FOR UODS

In Section III-C, PCA utilizes linear subspace learning (LSL)
to deal with the vectorized tensor data (e.g., two-order tensors
like image). For standard compressive sampling, its efficiency
is degraded by the large-scale sampling matrix generated by
the vectorization of high-dimensional signals, e.g., images and
videos. For example, it is less practical to store and transmit the
sampling matrix with size 1000 × 10000 if we sample and re-
construct an image with size 100 × 100 at SR = 0.1. Besides,
reshaping high-order tensors into vectors destroys the intrinsic
structure and correlation in the original tensors, making the rep-
resentation less compact or useful. Therefore, we generalize it to
the compressive tensor sensing (CTS) with the extension from
LSL to MSL. The proposed CTS algorithm directly samples the
tensor (signal) in each of its mode under the assumption that the
tensor lives in a lower-dimensional tensor subspace. The data-
driven basis is obtained by using multilinear subspace learning
(MSL).

Fig. 9. Visual illustration of the n-mode unfolding of Tensor
X ∈ RI1 × I2 × I3 , X(n ) is the n-mode unfolding matrix, n = 1, 2, 3.

A. Generalized Formulation

Given arbitrary tensor X, it can be decomposed according to
standard multilinear algebra.

X = Θ ×1 Ψ(1) ×2 Ψ(2) × · · · ×N Ψ(N ) , (16)

where Θ is the tensor representation for X, Ψ(n) =
(ψ(n)

1 ψ
(n)
2 · · ·ψ(n)

In
) is an orthogonal In × In basis matrix, and

×n denotes the n-mode product of a tensor by a matrix. Given
the matrix Ψ, the n-mode product of X is defined as

Θ = X ×n Ψ ⇔ Θ(n) = ΨX(n) , (17)

where X(n) is the n-mode unfolding matrix of tensor X. Fig. 9
illustrates the n-mode unfolding of tensor X with n ≤ 3.

MSL methods seek a tensor subspace that captures most
of the variation in the original tensor objects and project X
from the original tensor space RI1 ⊗ RI2 ⊗ · · · ⊗ RIN onto the
tensor subspace S̃ = RP1 ⊗ RP2 ⊗ · · · ⊗ RPN , Pn � In . The
projection Θ̃ = X ×1 Ψ̃(1)T ×2 Ψ̃(2)T × · · · ×N Ψ̃(N )T , Ψ̃(n)

is an In × Pn basis matrix for the n-mode linear space RIn . If a
tensor X lies in a tensor subspace S̃ , the vectors corresponding
to its modes admit sparse representation over the basis of cor-
responding modes. The data-driven orthonormal basis matrices
{Ψ̃(n) ∈ RIn ×Pn , n = 1, . . . , N} can be learned based on the
set ofK available tensor objects {X1 ,X2 , . . . ,XK } via MPCA
[35] by solving the following problem.

{Ψ̃(n), n = 1, . . . , N} = arg max
Ψ̃(1 ) ,...,Ψ̃(N )

K∑

i=1

‖Θ̃i − Θ̄‖2
F , (18)

where Θ̃i = Xi ×1 Ψ̃(1)T ×2 Ψ̃(2)T × · · · ×N Ψ̃(N )T and Θ̄ =
(1/K)

∑K
i=1 Θ̃i . The n-mode basis matrix Ψ̃(n) consists of the

Pn eigenvectors corresponding to the largest Pn eigenvalues of
the matrix

Λ(n) =
K∑

i=1

(Xi(n) − X̄(n)) · Ψ̃Λ(n ) · Ψ̃T
Λ(n ) · (Xi(n) − X̄(n))T

(19)
where Ψ̃Λ(n ) = Ψ̃(1) ⊗ · · · ⊗ Ψ̃(n−1) ⊗ Ψ̃(n+1) ⊗ · · · ⊗ Ψ̃(N ) .
The higher-order singular value decomposition (HOSVD)[36]
is used in multilinear principal component analysis.

Later, we define the compressive tensor sampling and recov-
ery for arbitrary signals.

Definition 1 (Compressive Tensor Sampling): Given an N
th-order tensor X ∈ RI1 ×I2 ×···×IN who is K1-K2-. . .-KN -
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Fig. 10. 1, 2, 3-mode compressive sampling by projecting tensor X ∈
R16×10×8 onto tensor Y ∈ R8×5×4 , where Y = X ×1 Φ1 ×2 Φ2 ×3 Φ3
with sampling matrices Φ1 , Φ2 , and Φ3 .

sparse, the compressive tensor sampling (CTS) is defined by

Y = Φ̂X = (Φ1 ⊗ Φ2 ⊗ · · · ⊗ ΦN )X

= X ×1 Φ1 ×2 Φ2 × · · · ×N ΦN , (20)

where ⊗ is the Kronecker product, Y ∈ RM 1 ×M 2 ×···×MN is the
measurement, and Φi ∈ RMi×Ii is the sensing matrix for the
i-mode linear space. Here, Ki < Mi � Ii for 1 ≤ i ≤ N .

Rewriting Eq. (16) in the Kronecker product form, it obtains

X = Ψ̂Θ = (Ψ(1) ⊗ Ψ(2) ⊗ · · · ⊗ Ψ(N ))Θ. (21)

Thus, X can be sampled with Ψ and Φ by combining Eq. (20)
and (21)

Y = Φ̂X = Φ̂Ψ̂Θ

= (Φ1 ⊗ Φ2 ⊗ · · · ⊗ ΦN )(Ψ(1) ⊗ Ψ(2) ⊗ · · · ⊗ Ψ(N ))Θ

= (Φ1Ψ(1) ⊗ Φ2Ψ(2) ⊗ · · · ⊗ ΦNΨ(N ))Θ. (22)

Fig. 10 provides an example for compressive tensor sampling.

B. Stable Recovery

Given the sensing matrix A(n) = ΦnΨ(n) and the differ-
ence u = θ1 − θ2 of two k-sparse column vectors of Θ(n) ,
Proposition 3 provides the conditions for stable recovery.

Proposition 3: The n-mode sensing matrix A(n) is stable
for every 2k-sparse vector u if and only if there exists C1 > 0
and C2 <∞ such that

C1‖u‖2
2 ≤ ‖A(n)u‖2

2 ≤ C2‖u‖2
2 . (23)

Proof: Please refer to Appendix A. �
Definition 2 (n-Mode Recovery): Provided that each column

vector θ of Θ(n) is sparse, θ can be recovered by

min ‖θ‖1 , s.t. y(n) = ΦnΨ(n)θ = A(n)θ. (24)

Here A(n) satisfies the RIP condition with δ2k ≤ √
2 − 1, and

y(n) denotes each corresponding column vector of the n-mode
unfolding matrixY(n) . Fig. 11 illustrates an example forn-Mode
Recovery.

C. Generalized Model for Video Sampling and Recovery

A detailed description of the proposed tensor sampling and
recovery framework is given in Algorithm 2. Taking video se-
quences for example, we decompose each GOP into a set of RFs

Fig. 11. 1, 2, 3 mode recovery of tensor X∗ ∈ R16×10×8 from tensor Y ∈
R8×5×4 , whereY = X ×1 Φ1 ×2 Φ2 ×3 Φ3 with sampling matrices Φ1 , Φ2 ,
and Φ3 , and basis Ψ(1) , Ψ(2) , and Ψ(3) for three modes.

Algorithm 2: Framework of CTS based on a tensor subspace.

Task: Sample and reconstruct the tensor X∈RI1 ×I2 ×···×IN .
Input: Tensor X, training set {X1 , . . . ,XK }, random
Gaussian sampling matrix Φ1 , . . . ,ΦN .
1 Sampling:

for n = 1 to N do
n-Mode Compressive Sampling: Calculate the
n-Mode
measurements Y(n) = ΦnX(n) according to Eq. (20).

end for
2 Training: Apply HOSVD to {X1 , . . . ,XK } and derive
each mode basis Ψ(n) ∈ RIn ×In , n = 1, · · · , N , the whole
basis Ψ̂ = [Ψ(1) ⊗ Ψ(2) ⊗ · · · ⊗ Ψ(N ) ].
3 Recovering:

for n = 1 to N do
n-Mode Recovery: Calculate each column vector θ of
Θn with Eq. (24) and calculate X∗

(n) = (Ψ(n))T Θ(n) .
end for

Output: Recovered tensor X∗.

and the remaining NRFs. We first fully sample RFs while each
of the NRFs cubes X are sampled for each mode according to
Eq. (22). Then, we trainK recovered cubesX1 , . . . , XK of RFs
by MPCA to derive each mode base Ψ(1) ,Ψ(2) ,Ψ(3) whose first
k1, k2, k3 corresponding column vectors span the tensor sub-
space containing most of the variation ofX1 , . . . , XK . Thus,X
can be considered as a “k1-k2-k3-sparse” tensor with respect to
the whole basis Ψ̂ = Ψ(1) ⊗ Ψ(2) ⊗ Ψ(3) . Subsequently, each
of the NRFs cubesX can be recovered for each mode according
to (24).

The proposed algorithm can alleviate the computational and
storage burden in sampling and recovery because of small-scale
sampling matrix utilized for each mode. Moreover, in compar-
ison to existing works [28]–[32], it makes compressible repre-
sentation with sparse tensor based on data-driven basis, so that
it can capture the non-stationarity in high-dimensional signals.

V. EXPERIMENTAL RESULTS

A. Implementation

In this subsection, the UoDS model is employed on a variety
of video sequences with multiple resolutions, including CIF
(352 × 288), DVD (720 × 480), and 1080 p (1920 × 1080).
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Fig. 12. Sampling-rate-distortion curves for the proposed UoDS-PCA and UoDS-MH-PCA, BCS-DCT, BCS-KLT, MC-BCS-SPL, MH-BCS-SPL, and UoS-
BCS-DCT under 8 × 8 patches (n = 64) and dimension d = 6, respectively.

Fig. 13. Sampling-rate-distortion curves for the proposed UoDS-PCA and UoDS-MH-PCA, BCS-DCT, BCS-KLT, MC-BCS-SPL, MH-BCS-SPL, and UoS-
BCS-DCT under 16 × 16 patches (n = 256) and dimension d = 10, respectively.

Commonly, the size of each non-overlapping block is 8 × 8
and 16 × 16, thereby n = 64 and 256, respectively. As an ex-
ception, the block size for Park Scene is fixed to 32 × 32.
The sampling matrix Φ ∈ Rm×n is an i.i.d. Gaussian random
matrix with zero-mean and unit-variance. The sampling rate
SR ∈ {0.1, 0.2, . . . , 0.6}. The maximal value of SR is set to
0.6, as it can already guarantee perfect recovery. Each GOP con-
tains 10 grayscale frames. Without loss of generality, the first
frame of each GOP is set as the RF, while NRFs for the remain-
ing nine frames. The training set of patches for SSC1 consists of
overlapping blocks with a step of 1

2
√
n pixels along both rows

and columns. For example, the training set for CIF sequences
contains 1505 blocks, when block size is 16 × 16 and step is 8.
Thus, representation matrix C ∈ R1505×1505 . In SSC, 50 clus-
ters are adopted for spectral clustering of vectorized patches
from RFs.

The basis of UoDS is learned for each cluster by PCA and
PCA-L1, respectively. The dimension of each subspace di se-
lects from {2, 4, 6, 8, 10, 20}. The proposed models (UoDS-
PCA and UoDS-PCAL1) are compared with five state-of-the-art
sampling methods, including one UoS model UoS-BCS-DCT
and four BCS based methods, e.g. BCS-DCT [12], BCS-KLT
[18], BCS-MC-SPL [15], and BCS-MH-SPL [16]. Here, BCS
based methods are single subspace models with adaptive KLT
basis for BCS-KLT and predefined basis for BCS-DCT, BCS-
MC-SPL and BCS-MH-SPL. To be concrete, BCS-MC-SPL
incorporates motion compensation and BCS-MH-SPL utilizes
multihypothesis prediction. For a fair comparison, we also in-
corporate multihypothesis prediction for an improved version
MH-UoDS-PCA and MH-UoDS-PCAL1 of the UoDS model.

1Available at http://www.cis.jhu.edu/∼ehsan/

The proposed models are implemented with the The PGL1 Mat-
lab solver [39] under the configurations of 3.2-GHz CPU and
12-GB RAM.

B. Results for Linear Subspaces

In this section, the UoDS model is evaluated for the union
of data-driven linear subspaces. Figs. 12 and 13 show the dis-
tortion curves obtained under various sampling rates and block
sizes for video sequences of various resolutions. We can see that
the proposed UoDS model with multihypothesis prediction is
competitive with BCS-based methods and the UoS model in the
low SR region, and outperforms them when the sampling rate is
high. The UoDS model can be sampled for a desirable recovery
quality under a high sampling rate, as dependencies between
RFs and NRFs can be exactly learned. Table I summarizes the
results for six video sequences under various configurations of
block sizes, dimensions and sampling rates, where the proposed
model is shown to perform better than benchmark methods in
most cases. The fact implies that the UoDS model can adap-
tively deal with structures with varying signal singularities to
significantly decrease the necessary measurements for recovery
in comparison to the single subspace and UoS models. Further-
more, the proposed model is suitable for a wide range of reso-
lutions. Fig. 14 provides the comparative results for Park Scene
sequence with a resolution of 1920 × 1080, where UoDS-MH-
PCA still maintains its sampling and recovery performance.

Figs. 15–17 present the reconstructed fourth NRF in Foot-
ball, Whale Show, and Park Scene sequences obtained by
the proposed model, BCS-based models and the UoS model,
respectively. These reconstructed frames are obtained under
sufficient sampling and proper block sizes to contain local
structures, i.e., n = 256, SR = 0.6, d = 10 for CIF and DVD
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TABLE I
AVERAGE PSNR (dB) FOR RECONSTRUCTED VIDEO SEQUENCES WITH VARIOUS BLOCK SIZES n AND DIMENSIONS d

Fig. 14. Sampling-rate-distortion curves for Park Scene sequence obtained
by the proposed UoDS-PCA and UoDS-MH-PCA, BCS-DCT, BCS-KLT,
BCS-MC-SPL, BCS-MH-SPL, and UoS-BCS-DCT under 32 × 32 blocks
(n = 1024) and dimension d = 40, respectively.

sequences, and n = 1024, SR = 0.6, d = 40 for 1080 p se-
quence. In overall, the proposed model achieves better visual
quality in comparison to BCS-based models and the UoS model,
especially in the texture regions like “grass”, “water” and “tree”
in the three video sequences. PSNR performance of the re-
constructed frames is also provided for validation. The pro-
posed model is shown to achieve best visual quality under such
benchmark. These results are consistent with the sampling and
recovery performance, which validates the UoDS model.

Moreover, Table I shows that 16 × 16 patches can achieve
better recovery performance in comparison to 8 × 8 ones. It
means that c∗ can be exactly reconstructed with a high prob-
ability when n grows. The dimension of each subspace d also
affects the performance of the UoDS model, as shown in Fig. 18.
In the region of low SR, recovery performance for small d, e.g.,
d = 2, and SR = 0.1, is superior to the large d at a high SR,
e.g., d = 20 and SR = 0.1. Since reconstructed RFs are de-
composed into 50 clusters, we can obtain from Eq. (13) that
m = 6, r = 100 for t = 50, d = 2, SR = 0.1, n = 64, while
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Fig. 15. Reconstructed frames for Football sequence under n = 256, SR = 0.6 and d = 10. (a) the 4th NRF; (b) BCS-DCT; (c) BCS-KLT; (d) BCS-MC-SPL;
(e) BCS-MH-SPL; (f) UoS-BCS-DCT; (g) UoDS-PCA; (h) UoDS-MH-PCA.

Fig. 16. Reconstructed frames for Whale Show sequence under n = 256, SR = 0.6 and d = 10. (a) the 4th NRF; (b) BCS-DCT; (c) BCS-KLT; (d) BCS-MC-SPL;
(e) BCS-MH-SPL; (f) UoS-BCS-DCT; (g) UoDS-PCA; (h) UoDS-MH-PCA.

m = 6, r = 200 for d = 4, SR = 0.1, n = 64. Therefore, c∗ is
more accurate for lower dimensions. However, Fig. 18(b) and (d)
suggest that larger d can improve the recovery performance at
a high SR, as enough measurements are provided for subspaces
with larger dimension. For example, r = 1000,m = 614, when
t = 50, d = 20, SR = 0.6, n = 1024. Consequently, it is desir-
able to properly select n and d for an exact recovery. For ex-
ample, r = 1000,m = 38 for d = 20, SR = 0.6, n = 64 would
fail to recover c∗ with necessary measurements.

C. Results for Multilinear Subspaces

For further validation, we employ CTS in video sampling and
reconstruction. In this subsection, experiments are conducted on
a variety of video sequences with CIF (352 × 288) (i.e., Bike,

Bus, Football, NBA) and DVD (720 × 480) resolution (i.e., Driv-
ing, Whale Show). We compare the proposed CTS method with
the state-of-the-art GTCS [31], [32], which utilizes DCT basis to
make video compressible in DCT domain. Video sequences are
represented by a 352 × 288 × 16 tensor. For CTS, we choose
the first 3 frames and split them into overlapping 32 × 32 × 3
tensors to generate the training set. MPCA is applied to this
training set to derive 1-mode and 2-mode basis, which is adap-
tive and makes the tensors compressible. We use DCT ba-
sis for the 3-mode basis. For both methods, we sample each
32 × 32 × 16 non-overlapping sub-video cube of the following
16 frames by i.i.d. random Gaussian matrix Φ1 ,Φ2 ∈ R32SR×32

with zero-mean and unit-variance for 1-mode and 2-mode sam-
pling, respectively, and set Φ3 ∈ R16×16 to an identity matrix for
3-mode full sampling. Thus, the total number of measurements
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Fig. 17. Reconstructed frames for Park Scene sequence under n = 1024, SR = 0.6 and d = 40. (a) the 4th NRF; (b) BCS-DCT; (c) BCS-KLT; (d) BCS-MC-SPL;
(e) BCS-MH-SPL; (f) UoS-BCS-DCT; (g) UoDS-PCA; (h) MH-UoDS-PCA.

Fig. 18. The performance of the proposed scheme (UoDS-PCA) with various dimensions d and patch sizes.

Fig. 19. Average PSNR performance (dB) of the 16 recovered frames with
SR from 0.4 to 0.9. Tensor sizes 32 × 32 × 16 and 64 × 64 × 16 are adopted
for CIF and DVD test sequences, respectively.

of each sub-video cube is SR2 · 16384. We also test tensor
size of 64 × 64 × 16 for Driving and Whale Show sequences
with similar settings. CTS and GTCS are compared under SR
ranging from 0.4 to 0.9. For the recovery of each mode, we
apply the SPGL1 Matlab solver[38] for both schemes. Besides,
a MATLAB Tensor Toolbox [40] is used in this experiment.

Fig. 19 shows the recovery performance for CTS and GTCS,
where the proposed CTS outperforms GTCS in five out of six

Fig. 20. The experimental result of sampling rate allocation for the CTS model
over four sequences.

test sequences. In comparison to DCT basis adopted by GTCS,
CTS is more flexible to fit the non-stationary statistics of video
sequences with the adaptive basis of each mode of tensors to be
sampled.

D. Sampling Rate Allocation

Moreover, we discuss the rate allocation for the spatial and
temporal sampling to obtain optimal overall performance. In-
stead of full sampling along the temporal dimension, the pro-
posed CTS varies the temporal sampling rates SR3 from 0.5
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TABLE II
AVERAGE RECOVERY SPEED (SEC/FRAME) FOR VIDEO SEQUENCES Bike, Bus, Football, NBA, Driving AND WhaleShow OBTAINED UNDER BLOCK SIZE n = 256,

DIMENSION d = 10 AND SAMPLING RATE SR = 0.6

to 0.9 to exploit the compressible temporal components. Un-
der the fixed overall sampling rate SR = 0.5, Φ3 ∈ R16·SR3 ×16

and Φ1 ,Φ2 ∈ R32·SR1 ×32 are adopted for temporal and spatial
sampling with the rates SR1 = SR2 =

√
SR/SR3 .

Fig. 20 provides the sampling-rate-distortion curves obtained
by CTS, where recovery performance is obtained under tem-
poral sampling rates varying from 0.5 to 0.9 with a step of
0.05. It shows that the optimal sampling rate allocation is dis-
tinguishing for different test sequences. Specifically as shown
in Fig. 20, lower temporal sampling rate is required for test
sequences with smooth motion trajectories, e.g., Bike and Bus.
On the contrary, recovery performance would be improved with
higher temporal sampling rate for test sequences with sharp
variation of corresponding pixels along motion trajectories, e.g.,
Football. As mentioned in Section III-C, the dimensions of sub-
spaces are determined by the texture complexities, which serve
as the measure of patch based structures. Thus, the distribution
of sparsities would affect the sampling rate allocation, as block
sparsities are related with the number of basis (dimensions).
These facts imply that the allocation of sampling rates for dif-
ferent dimensions tends to follow the distribution of sparsity to
guarantee the quality of reconstruction.

E. Computational Complexity

The computational complexity of the proposed UoDS method
comes from training and recovery process. For each group of pic-
tures (GOP), the training process (Step 1-4 in Algorithm 1) uti-
lizes the patches from recovered fully-sampled RF to derive the
union of data-driven subspaces. Thus, the training speed is re-
lated to the subspace clustering and learning conditioned on the
RF. In recovery process (Step 5 in Algorithm 1), the efficiency
of UoDS depends on the recovery of NRFs, where second-order
cone programming (SOCP) determination is leveraged to recon-
struct the block-sparse vector c∗ and multihypothesis prediction
can be introduced to improve motion compensation.

The experiments for compressive video sampling and recon-
struction are implemented with Matlab on a PC with 3.2 GHz
CPU and 12 GB RAM. The complexity for the proposed UoDS
model is evaluated in terms of recovery speed (sec/frame) and
training speed (sec/GOP). Table II provides the recovery speeds
for the proposed UoDS model and benchmarks for block CS,
i.e., BCS-DCT, BCS-KLT, BCS-MC-SPL, BCS-MH-SPL and
UoS-BCS-DCT, under block size n = 256, dimension d = 10
and sampling rate SR = 0.6. In comparison to UoS-BCS-DCT,
the UoDS models UoDS-PCA and UoDS-PCAL1 require ap-
proximately 1.4 to 1.7 times the complexity of UoS-BCS-DCT,
due to the SOCP determination that optimizes coefficients for
data-driven subspaces. When compared with BCS-KLT, mo-
tion compensation leads to a 30% to 50% excess time cost in

Fig. 21. Average training speed (sec/GOP) for video sequences Bike, Bus,
Football, NBA, Driving and WhaleShow obtained by UoS and UoDS under SR
= 0.6.

UoDS-PCA and UoDS-PCAL1. Moreover, it would require an
additional 70% to 90% time cost to introduce multihypothe-
sis compensated prediction in the UoDS model. These facts
demonstrate that the recovery efficiency would be affected by
the SOCP determination and motion compensation.

Furthermore, we evaluate the computational complexity for
the training process. Fig. 21 compares the training speed
(sec/GOP) for UoDS and UoS over the six video sequences.
Here, subspace clustering and basis derivation are not required
for the other benchmarks, as they are based on single subspace
(simple sparsity). Fig. 21 shows that the proposed UoDS model
is competitive with UoS in terms of training speed, but achieves
a better reconstruction performance with the data-driven sub-
spaces and corresponding bases. It should be noted that the
training of union of subspaces and their bases is only performed
once on the RFs for each GOP. It is also promising to leverage
low-rank representation (LRR) to balance the complexity and
performance of training process. Fig. 6 shows that the UoDS-
LRR can significantly reduce the complexity (about 70%–90%)
for the training process with a slight loss (up to 0.5 dB) of recon-
struction performance, when the number t of subspaces ranges
from 10 to 100.

VI. CONCLUSION

This paper proposes an explicit sampling scheme to recover an
unknown signal from a union of data-driven subspaces (UoDS).
It investigates neighboring data structures by clustering to form
classified signal series. Subsequently, the union of subspaces
is learned uniquely from the classified signal series by a linear
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subspace learning method thereby deriving an adaptive basis
and enhancing the structured sparsity representation. Besides,
the general sampling model which is based on tensor is also
proposed. With the proof of stable reconstruction, the proposed
scheme is fulfilled in video acquisition where the UoDS is
learned from decoded reference frames. Experimental results
show that the proposed method gets better performance in com-
parison to the other compressive video sampling methods. Ad-
ditionally, we extend tradition CS to its tensor form for signals
lying in a tensor subspace.

APPENDIX A
PROOF OF PROPOSITION 1—PROPOSITION 3

Proof of Proposition 1: The proof is similar with that of
Proposition 3 in [19]. Since the UoDS model inherits the merit of
the UoS model, U∗ still follows the property of predefined UoS.
Thus, Φ is one-on-one on each S∗

ij with dim(S∗
ij ) = dim(Φ) ≤

m. As a result, m ≥ kmax = maxi 	=j dim(S∗
ij ). �

Proof of Proposition 2: Firstly, we obtain from Eq. (13) that
A∗ = ΦΨ∗. Since PCA-based learning methods generate an
orthornormal basis Ψ∗

i for each linear subspace S∗
i and Φ is

an i.i.d. random matrix, Proposition 2 is obtained according to
Proposition 4 and 5 in [19]. �

Proof of Proposition 3: Eq. (22) shows thatA(n) = ΦnΨ(n)

for the orthonormal basis Ψ(n) of S̃(n) obtained by HOSVD
and the i.i.d. random matrix Φn . According to Proposition 4
and Proposition 5 in [19], we can easily obtain Proposition 3.

�

APPENDIX B
PROOF OF THEOREM 1

According to Proposition 1, δ2k < 1 makes c∗ unique. First,
we assume that c = c∗ + b is a solution of Eq. (15). To prove
c∗ is the true solution of Eq. (15), we just need to prove b = 0.
We know that c∗ is a k-block sparse vector, so let I0 denote the
indices for c∗ where the coefficients are nonzero, bI0 denotes
the restriction of b to these blocks. Then we can decompose b as

b =
t−1∑

i=0

bIi (25)

where bIi is the restriction of b to the set Ii which comprises of
k blocks, selected such that the norm of bIc0 over I1 is largest,
the norm over I2 is the second largest, and so on. Therefore, we
can prove that

‖b‖2 = ‖bI0 ∪I1 + b(I0 ∪I1 )c ‖2 ≤ ‖bI0 ∪I1 ‖2 + ‖b(I0 ∪I1 )c ‖2

Because our goal is to prove b = 0, the work below is to prove
both ‖bI0 ∪I1 ‖2 = 0 and ‖b(I0 ∪I1 )c ‖2 = 0.

Part 1: ‖b(I0 ∪I1 )c ‖2 ≤ ‖bI0 ∪I1 ‖2 .
First we have

‖b(I0 ∪I1 )c ‖2 = ‖
t−1∑

i=2

bIi ‖2 ≤
t−1∑

i=2

‖bIi ‖2 (26)

which bounds ‖bIi ‖2 for i ≥ 2. Then

‖bIi ‖2 ≤ k1/2‖bIi ‖∞,I ≤ k−1/2‖bIi−1 ‖2,I (27)

where we defined ‖a‖∞,I = maxi ‖a[i]‖2 . For there are at most
k nonzero blocks, k‖bIi ‖∞,I ≤ ‖bIi−1 ‖2,I . Therefore, combine
Eq. (26) and (27), we have

‖b(I0 ∪I1 )c ‖2 ≤ k−1/2
t−2∑

i=1

‖bIi ‖2,I ≤ k−1/2
t−1∑

i=1

‖bIi ‖2,I

= k−1/2‖bIc0 ‖2,I (28)

To bound ‖b(I0)c‖2,I , we use the fact that c = c∗ + bI0 + bIc0 ,
c∗ is support on I0 , c is the solution of Eq. (15), ‖c∗‖2,I ≥
‖c‖2,I , we have

‖c∗‖2,I ≥ ‖c∗ + bI0 ‖2,I + ‖bIc0 ‖2,I

≥ ‖c∗‖2,I − ‖bI0 ‖2,I + ‖bIc0 ‖2,I (29)

thereby we have

‖bIc0 ‖2,I ≤ ‖bI0 ‖2,I ≤ k1/2‖bI0 ‖2 . (30)

Combine Eq. (30) and (28), we have

‖b(I0 ∪I1 )c ‖2 ≤ ‖bI0 ‖2 ≤ ‖bI0 ∪I1 ‖2 . (31)

Part 2: ‖bI0 ∪I1 ‖2 = 0.
Since y = A∗c∗ = A∗c, A∗b = 0. Besides, we have the fact

that b = bI0 ∪I1 +
∑

i≥2 bIi .

‖A∗bI0 ∪I1 ‖2
2 = −

t−1∑

i=2

〈A∗(bI0 + bI1 ),A
∗bIi 〉. (32)

From the block-RIP and the parallelogram identity, we have

|〈A∗c1 ,A∗c2〉| ≤ δ2k‖c1‖2‖c2‖2 (33)

for any two-block k-sparse vectors with disjoint support. There-
fore we have

|〈A∗bI0 ,A
∗bIi 〉| ≤ δ2k‖bI0 ‖2‖bIi ‖2 (34)

also similarly for 〈A∗bI1 ,A
∗bIi 〉. Thereby, Eq. (32) becomes

‖A∗bI0 ∪I1 ‖2
2 ≤

t−1∑

i=2

(|〈A∗bI0 ,A
∗bIi 〉| + |〈A∗bI1 ,A

∗bIi 〉|)

≤ δ2k (‖bI0 ‖2 + ‖bI1 ‖2)
t−1∑

i=2

‖bIi ‖2 . (35)

From the Cauchy–Schwartz inequality, we have

‖bI0 ‖2 + ‖bI1 ‖2 ≤
√

2 (‖bI0 ‖2
2 + ‖bI1 ‖2

2) =
√

2‖bI0 ∪I1 ‖2

where the last equality is a result of the fact that bI0 and bI1

have disjoint support. Combine Eq. (27), (28), (30), and (35),
we have

‖A∗bI0 ∪I1 ‖2
2 ≤

√
2k−1/2δ2k‖bI0 ∪I1 ‖2‖bIc0 ‖2,I

≤
√

2δ2k‖bI0 ∪I1 ‖2‖bI0 ‖2

≤
√

2δ2k‖bI0 ∪I1 ‖2
2 (36)

where the first inequality is obtained by Eq. (27) and (28),
the second follows from Eq. (30), and the last from ‖bI0 ‖2 ≤
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‖bI0 ∪I1 ‖2 . Then with the Block-RIP, we have

(1 − δ2k )‖bI0 ∪I1 ‖2
2 ≤ ‖A∗bI0 ∪I1 ‖2

2 ≤
√

2δ2k‖bI0 ∪I1 ‖2
2 .
(37)

Since δ2k <
√

2 − 1, Eq. (37) can only hold if ‖bI0 ∪I1 ‖2 = 0,
which completes the second part of the proof.

Since ‖b(I0 ∪I1 )c ‖2 ≤ ‖bI0 ∪I1 ‖2 which part 1 has proved,
therefore ‖b(I0 ∪I1 )c ‖2 = 0, ‖b‖2 = 0 which means c = c∗ and
we complete the whole proof.
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