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Abstract—In this paper, we propose a deformable 3D shape
descriptor learning approach that takes into account the spatial
correlations among local shape descriptors. By constructing a
weighted graph that connects salient points on a shape surface,
local feature descriptors on salient points are considered as
signals defined on graph vertices, incorporating local surface
information into the global graph structure. We then learn a
graph structure-aware dictionary for each category of shapes
with the multi-graph dictionary learning strategy, capturing
similar spectral properties among graph signals generated from
different shapes of the same category. Experiments conducted on
representative 3D shape benchmark datasets demonstrate that
our method improves over the state-of-the-art.
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I. INTRODUCTION

The advancement in visualization technologies has given
rise to an enormous amount of 3D shapes on the Internet.
Moreover, 3D shapes have been widely used in manufacturing,
entertainment, medical imaging and virtual reality, etc. Among
many challenges in 3D shape analysis, we will focus on the
problem of non-rigid 3D shape classification. The increasing
availability of 3D shapes makes designing efficient classifica-
tion approaches an important issue.

Feature descriptors are commonly used in shape recognition
tasks. It assigns each point of the shape a vector in some
single- or multi-dimensional feature descriptor domain rep-
resenting local or global geometric properties of that point.
Shape descriptors should be discriminative while also invari-
ant to intra-class transformations. The non-rigid shapes are
particularly challenging as they include a wide variability of
transformations, such as bending and articulated motion.

Following the trends in the image analysis area, where
learned representations are favored over hand-crafted ones,
learning-based shape descriptors are proposed for the problem
of non-rigid shape analysis [1][2][3]. One of the descriptor
learning approaches that has been used in shape analysis
scenario is dictionary learning and sparse coding [4][5], which
is capable of learning a set of over-complete atoms so a feature
vector can be represented by a sparse linear combination
of dictionary atoms. Dictionaries that take into account the
underlying graph structure of graph signals have also been put
forward [6][7]. In recent years, a large number of dictionary

learning and sparse coding methods have been proposed for
various computer vision tasks. In [1], the dictionary and the
sparse codes are learned in the supervised regime via bi-
level optimization using a task specific objective that promotes
invariance desired in the shape retrieval applications.

In this paper, we propose a 3D shape descriptor learning
approach that describes the spatial correlations among local
descriptors with a weighted graph and employs a graph dic-
tionary learning strategy. We first construct a fully-connected
weighted graph for a shape, where each graph vertex is
associated with a segmented region. Feature vector is com-
puted for each disjointly segmented region and concatenated
into a descriptor matrix. Then each column of the region
descriptor matrix can be considered as a signal living on
the graph. Assuming that shapes from the same category
generate similar graphs and share similar graph signals, a
multi-graph dictionary learning method is used to learn a
dictionary for each category of shapes. Contrary to previous
shape descriptor learning approaches that use sparse coding
and dictionary learning while ignoring the underlying structure
of feature distribution, our approach encodes the prominent
surface structure of a shape with a graph to learn a graph
structure-aware dictionary. The framework of the proposed
method is presented in Fig. 1.

The remainder of the paper is organized as follows. Sec-
tion II presents the overall framework and details of the
graph-based non-rigid 3D shape descriptor learning approach.
Section III provides experiment results on various datasets.
Finally, we conclude the paper in Section IV.

II. THE METHOD

In this section we introduce: i) intrinsic graph generation
and graph signal computation, ii) solving the correspondence
problem for shape regions, and iii) learning class-specific
graph dictionaries.

A. Isometry-Invariant Graph Generation

We employ the method presented in [8] to segment each
shape into disjoint regions. The segmentation approach is
based on persistence-based clustering and is stable under near-
isometric deformations. Given a heat kernel signature function
[9] computed on each vertex of the shape, first a persistence
diagram is computed and then shape vertices are merged,
resulting in a disjoint segmentation which associates each
vertex of the shape to a salient point.
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Fig. 1. The proposed graph-based shape descriptor learning framework. The learned graph words have positive signal values as red bars, and negative values
as blue bars. The lengths of the bars on the graph vertices indicate the absolute signal values and only the graph edges whose weights are over a certain
threshold are depicted.

Suppose that a shape is segmented into N regions and
each region is associated with a salient point, by connecting
each pair of salient points, a fully-connected weighted graph
G = (V, E ,W ) with N vertices is constructed for each shape.
V is the vertex set, E denotes the edge set, W is the positive
edge weight matrix computed with the generalized Radial
Basis Function

W̃ij = e−
d(vi,vj)

ρ (1)

where d measures the geodesic distance between a pair of
vertices on the mesh, W̃ij is the weight of the edge connecting
graph vertices vi and vj . Defining edge weights with geodesic
distances ensures the isometry invariance of the constructed
graph.

As graph vertices generated from different shapes of the
same class are in different orders, a permutation of the vertices
of each graph is carried out with W = P̃ W̃ P̃T , where the per-
mutation matrix P̃ is computed as P̃ij = δi,lj , l is the region
label vector of the associated shape with lk ∈ {1, . . . , N} as
the label of the kth region.

A signal f : V → R defined on the vertices of the graph
G can be represented as a vector f ∈ RN , where the ith
component of vector f represents the signal value at the ith
vertex in V . In this paper, we compute a descriptor vector for
each region of the shape and concatenate the descriptors into a
matrix X̃ , where the ith row of X̃ equals the descriptor of the
ith region. In this way, each column of X̃ can be viewed as a
signal defined on G. The rows of descriptor matrix X̃ are also
out-of-order and a permutation is carried out as X = P̃ X̃ .

B. Solving Region Correspondence Problem

To solve the problem of region correspondence in the testing
phase, a random forest is trained for each class of shapes using
the region descriptors during the training phase. Given region
descriptors of training shapes and the associated region labels

{(ys, ls)}s∈R, ys is the descriptor vector of region s in the
region set R, label ls is from a canonical label set {1, . . . , N}.
Each decision tree in the random forest is trained from root to
leaves using the information gain based algorithm, with linear
classifiers as split functions located at the internal nodes. In
the end, each leaf node is assigned a score vector Pm =
[Pm1, . . . , Pml, . . . , PmN ], with Pml measuring the probability
among the subset S reaching the leaf node

Pml =
|{(y, l) ∈ S}|

|S|
(2)

where m = 1, . . . ,M is the index of the decision tree.
In the testing process, each region of a shape is assigned a

label through the trained random forest. Given the descriptor
y of a region, each decision tree in the forest routes the
descriptor from the root to a leaf node according to the trained
split functions of the tree. The prediction of the whole forest
on the probability of a label l is computed by averaging the
distributions of all trees in the random forest

Pl =
1

M

M∑
m=1

Pml (3)

where Pml is the computed score of the retrieved leaf node
in the mth tree. Thus the permutation matrix P̃ of the region
descriptor matrix of a test shape can be computed as P̃ij =
δi,lj , where lj is the label of the jth region in the shape.

C. Graph Dictionary Learning

Given the weight matrix W of the constructed graph G,
the normalized graph Laplacian is computed as L = I −
D−

1
2WD−

1
2 , where D is the diagonal degree matrix whose

ith entry is the sum of weights of all edges incident to
vertex i [10]. As L is a real symmetric matrix, it has a finite
set of nonnegative eigenvalues and orthonormal eigenvectors.



The eigenvectors are denoted by {Xl}l=0,...,N−1, and the
eigenvalues by σ(L) = {0 = λ0 < λ1 ≤ . . . ≤ λN−1 ≤ 2}.

Consider a graph signal f defined on the vertices of graph
G, its graph Fourier transform can be defined as

f̂(λl) = 〈f,Xl〉 =
N∑
n=1

f(n)X ∗l (n) (4)

The inverse graph Fourier transform is then given by

f(n) =

N−1∑
l=0

f̂(λl)Xl(n) (5)

Following the definition of graph Fourier transform and the
property that convolution in the vertex domain is equivalent
to multiplication in the graph spectral domain, the generalized
translation operator can be defined according to the convolu-
tion with a Kronecker δ function centered at the nth vertex

Tn(g) =
√
N(g ∗ δn) =

√
N

N−1∑
l=0

ĝ(λl)X ∗l (n)Xl (6)

The localization of Tn(g) around the center vertex is controlled
by the smoothness of the kernel ĝ(·) [11]. Defining the
kernel in the graph spectral domain with a smooth polynomial

function of degree K as ĝ(λl) =
K∑
k=0

αkλ
k
l , l = 0, . . . , N−1,

the kernel g can be translated to a vertex n as

Tn(g) =
√
N

N−1∑
l=0

K∑
k=0

αkλ
k
l X ∗l (n)Xl =

√
N

K∑
k=0

αk(Lk)n

(7)
where (Lk)n denotes the nth column of Lk. The concatenation
of N columns gives T (g):

T (g) =
√
Nĝ(L) =

√
N

K∑
k=0

αkLk (8)

The graph dictionary D = [D1,D2, . . . ,DS ] can be defined
with the above polynomial of graph Laplacian as

Ds = ĝs(L) =
K∑
k=0

αskLk (9)

where column n of Ds has its support contained in the K-hop
neighborhood of vertex n. Each subdictionary Ds is capable of
capturing all possible translations of a certain pattern. Given
a signal f defined on V , it can be represented with the
dictionary atoms as f = Dx, where x is the coefficient vector
of linear combination. For efficient representation of a graph
signal, vector x should be sparse and should capture the most
prominent characteristics of the graph signal [6].

The proposed method processes each dimension of the
region descriptor as a graph signal defined on the vertex set V .
Assuming that shapes of the same class generate graph signals
that share similar spectral properties, we learn a dictionary
for each class of shapes with a variation of the multi-graph
dictionary learning approach [7], which is capable of capturing
similar spectral properties among signals on different graphs.

Given training shapes {Mt}Tt=1 from category C, we first
compute the isometry-invariant graph Gt and region descriptor
matrix Xt of each shape, then learn a spectral graph dictionary

Dt = [D1
t ,D2

t , . . . ,DSt ], where Dst =
K∑
k=0

αskLkt , Lt is the

normalized graph Laplacian of graph Gt, S is the number
of subdictionaries. The dictionary learning problem can be
formulated as the following optimization problem

argmin
α∈R(K+1)S ,At∈RSN×q

T∑
t=1

1

q
||Xt −DtAt||2F + µ||α||22

s.t. ||Ait||0 ≤ T0 ∀i ∈ {1, . . . , q}
support(A1

t ) = · · · = support(Aqt )

0 � Dst � c ∀s ∈ {1, . . . , S}
(10)

where q is the dimension of region descriptors, Ait denotes
the ith column of the coefficient matrix At, T0 is the maxi-
mum sparsity level of the coefficients of each training signal,
α = [α1; . . . ;αS ], αs is the polynomial coefficient vector with
K+1 entries, support(Ait) denotes the index set of non-zero
elements in Ait. As different dimensions of region descriptors
are correlated, it is preferable to enforce simultaneous sparse
coding in the optimization process. The constraint on the
spectrum guarantees that the kernels are nonnegative and
uniformly bounded by a given constant c. The norm of α is
penalized to promote smoothness in the kernels.

The objective function (10) is not jointly convex, but it can
be reduced gradually as we alternatively update the sparse
codes and the dictionary. First, when fixing the dictionary, we
solve with respect to the sparse codes using the simultaneous
orthogonal matching pursuit (S-OMP) [12] on each training
signal. In the second step, we fix the sparse codes, and update
the dictionary by solving the quadratic problem with respect
to the parameter vector α.

III. EXPERIMENTS

We use the datasets of SHREC’ 10 and SHREC’ 11 non-
rigid 3D shape retrieval tracks for evaluation of the proposed
approach. The SHREC’ 10 dataset consists of 200 selected
articulated models evenly divided into 10 classes based on
their semantic meanings. Each class of the dataset consists
of shapes in different poses deformed from one shape. The
names of the classes are ant, crab, hand, human, octopus, plier,
snake, spectacle, spider and teddy. SHREC’ 11 contains 600
watertight mesh models evenly divided into 30 classes based
on their semantic meanings. Each class of the dataset consists
of shapes in different poses deformed from a canonical shape.
The names of the shape classes are alien, ant, armadillo, bird1,
bird2, camel, cat, centaur, dinoskel, dinosaur, dog1, dog2,
flamingo, glasses, gorilla, hand, horse, lamp, man, octopus, pa-
per, pliers, rabbit, santa, scissor, shark, snake, spider, twoballs
and woman.

The proposed algorithm was compared with state-of-the-
art methods including GPS-embedding [13], shape-DNA [14],
compact shape-DNA [15], and F1-, F2-, and F3-features [16].



Fig. 2. Dissimilarity matrix SHREC’ 10 dataset demonstrating generative
errors of different classes of learned graph dictionaries to each class of shapes.
Cold colors represent lower values while hot colors represent higher values.

The classification results are averaged over 10 runs. For both
datasets, we randomly select 30% of the shapes for testing and
the rest for training in each run. The number of segmented
regions of each shape is set to 16 for both datasets. The
wave kernel signature [17] of dimension 100 and weightedly
averaged by areas of vertices in each region is used as the
region descriptor. Each shape is classified into the class of
the learned dictionary that gives the smallest generative error
for the shape’s region descriptor matrix. The classification
results of different approaches are given in Table I and Table
II, showing that the proposed method outperforms the other
approaches on both benchmark datasets. The dissimilarity
matrices computed for the datasets are given in Fig. 2 and
Fig. 3. Note that the matrix is not a classical dissimilarity
matrix, each column represents a class of shapes and each
row shows the mean generative errors of a class-specified
dictionary for different classes of shapes. Aside from the
diagonal values being the lowest, the low values between
octopus and pliers and between octopus and ants also indicate
the similarity property of the proposed descriptor. The higher
diagonal value of teddy shows that the proposed method is less
effective with shapes that have more flat areas than protruding

TABLE I
CLASSIFICATION ACCURACY RESULTS ON THE SHREC’10 DATASET.

Method Average accuracy %
GPS-embedding 88.33 ± 0.54
Shape-DNA 90.10 ± 0.86
cShape-DNA 91.67 ± 0.93
F1-features 85.16 ± 1.33
F2-features 83.33 ± 0.78
F3-features 86.67 ± 1.05
Proposed 95.83 ± 1.26

Fig. 3. Dissimilarity matrix of SHREC’ 11 dataset demonstrating generative
errors of different classes of learned graph dictionaries to each class of shapes.

TABLE II
CLASSIFICATION ACCURACY RESULTS ON THE SHREC’11 DATASET.

Method Average accuracy %
GPS-embedding 87.78 ± 0.62
Shape-DNA 92.22 ± 0.67
cShape-DNA 93.56 ± 0.85
F1-features 91.11 ± 0.79
F2-features 88.35 ± 1.12
F3-features 91.57 ± 0.91
Proposed 94.17 ± 0.97

areas, where the extracted regions associated to prominent
points are less stable.

IV. CONCLUSION

In this paper, we present a novel approach for non-
rigid 3D shape descriptor learning. By constructing a graph
connecting segmented regions of a shape and considering
region descriptors as signals defined on graph vertices, the
multi-graph dictionary learning approach can be employed to
train a dictionary for each category of shapes. The proposed
approach achieves state-of-the-art performances on standard
shape benchmark datasets.
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