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Abstract

Filter bank based convolutional networks (FBCNs) enable efficient separable multiscale and
multidirectional decomposition with a convolutional cascade of 1-D radial and directional
filter banks. In this paper, we propose a two-stage subband coding framework for FBCN
analysis coefficients using a SPIHT-like algorithm and subsequent primitive-based adap-
tive arithmetic coding (AAC). The SPIHT-like algorithm extends spatial orientation tree
to exploit inter-subband dependency between subbands of different scales and directions.
Mutual information is estimated for information-theoretical measurement to formulate such
dependencies. Various primitives are designed adaptively encode the generated bitstream
by fitting its varying lists and passes. Neural networks are leveraged to improve probability
estimation for AAC, where nonlinear prediction is made based on contexts regarding scales,
directions, locations and significance of analysis coefficients. Experimental results show
that the proposed framework improves the lossy coding performance for FBCN analysis
coefficients in comparison to the state-of-the-arts subband coding schemes SPIHT.

1 Introduction

Convolutional neural networks (CNNs) have been widely considered in a wide range
of image processing tasks, including classification and recognition [1–3]. Despite its
superior performance, it is not well understood for theoretical analysis due to cas-
caded non-linearities. Wavelet based convolutional networks like scattering network
[4] are interpretable on well-established mathematical ground using a cascade of con-
volutions with wavelets and modules. Invariant scattering networks [5] were further
extended by [6] into a generalized feature extractor based on semi-discrete frames
and non-linearities. However, their approximation performances are degraded by
high representation redundancies. As an improved alternative, perfect reconstruction
filter banks were adopted to construct convolutional networks [7]. These networks
partition the frequency domain of two-dimensional signals into multiscale and mul-
tidirectional subbands. Furthermore, extended conjugate polar Fourier transform
(ECPFT) [8] enabled a separable realization based on 1-D radial and directional fil-
ter banks. These filter bank based convolutional networks (FBCNs) achieve efficient
directional multiscale representations for image approximation.

Conventional image compression schemes leverage subband coding based on wavelet
transform for compact image representation. Intra- and inter-subband dependencies
are considered to exploit correlations among wavelet coefficients. For example, SPIHT
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Figure 1: Illustration of multiscale directional decomposition provided by FBCN.

[9] emphasizes the inter-subband dependency while EBCOT [10] considers the intra-
subband one. However, the intra- and inter-subband dependency are not sufficiently
exploited in wavelet-based compression algorithms [11, 12]. Recently, end-to-end im-
age compression schemes [13–16] leveraged CNNs to optimize information-theoretic
parameters. Output feature maps are generated to by learned kernels to represent
hierarchical information. Although this hierarchy is similar to subbands derived by
conventional transforms, their dependencies can hardly be modeled. In [14], im-
portant coefficients were aggregated to improve coding performance with enhanced
intra-subband dependency. Mentzer et al. [15] modeled the dependencies between
feature maps with a 3D-CNN to serve as contexts for adaptive arithmetic coding
(AAC). However, these CNN-based methods lack analysis on dependencies between
feature maps and rely heavily on the estimation models.

In this paper, we propose an efficient subband coding framework for FBCN anal-
ysis coefficients, where intra- and inter-subband dependencies are jointly exploited
with a SPIHT-like algorithm and subsequent primitive-based AAC. The SPIHT-like
algorithm extends the spatial orientation tree for dependencies between subbands of
different scales and directions. An information-theoretical measurement is introduced
to formulate such dependencies. Consequently, primitive based adaptive arithmetic
coding is developed to fit varying statistics of the generated bitstream for different
lists and passes. Neural networks are leveraged to facilitate context-based prediction
with non-linear estimation based on features from multiple sources, including scales,
directions, spatial locations and significance of analysis coefficients. Experimental
results show that the proposed framework improves the lossy coding performance
for FBCN analysis coefficients in comparison to the state-of-the-arts subband coding
schemes SPIHT.

The rest of this paper is organized as follows. Section 2 reviews multiscale and
multidirectional image analysis with FBCN. Section 3 proposes the subband coding
framework for the FBCN analysis coefficients, including SPIHT-like coding for inter-
subband dependency and AAC primitives for intra-subband dependency. In Section 4,
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an information-theoretic measurement is provided for the inter-subband dependency.
Section 5 shows the experimental experiments for lossy image compression and Section
6 concludes this paper.

2 Multiscale Multidirectional Analysis with FBCNs

Multiscale decomposition is prevailing in lossy image compression [12, 17] for efficient
progressive representations of images. To effectively capture the image contours, a
series of directional filter banks have been developed to incorporate with multiscale
decomposition. Filter bank based convolutional networks (FBCNs) [7, 8] achieve re-
fined and efficient image analysis by cascading perfect reconstruction filter banks with
convolutions along scale and direction dimension. FBCNs can be constructed by cas-
cading layers of 1-D radial and directional filter banks in a flexible convolutional
manner in the extended conjugate polar Fourier transform (ECPFT) domain. Here,
the number of layers of radial and directional filter banks are denoted by l1 and l2.
In fact, outputs would only depend on l1 and l2, but not affected by the orders of
radial and directional decomposition. Thus, FBCNs are able to decompose an image
into 2l1+l2 subbands by separately performing l1-layer radial and l2-layer directional
analysis. In this paper, we utilize pairs of labels (r, d) to specify these subbands with
scales r = 1, · · · , 2l1 and directions d = 1, · · · , 2l2 . In summary, FBCN-based image
compression methods can be distinguished from the CNN-based ones in the sense of
learned kernels, nonlinear units and coefficient dependencies.

• FBCNs utilize manufactured filters for universal image analysis, while CNNs
train localized kernels for specific tasks.

• FBCNs leverage orthogonal filters for complete representations, while CNNs
employ nonlinear units (ReLU) for overcomplete ones.

• FBCNs allow explicit formulation of dependencies between coefficients of dif-
ferent subbands, while CNNs generate implicit feature maps.

3 Subband Coding Framework for FBCN Analysis Coefficients

Fig. 2 depicts the subband coding framework for FBCN analysis coefficients. Given
FBCN analysis coefficients, a SPIHT-like algorithm is leveraged to model inter-
subband dependencies with extended spatial orientation tree. Its generated bistream
is composed of various lists of elements, which is adaptively encoded using well-
designed primitives. Context-based prediction for arithmetic coding is improved with
nonlinear estimation from neural networks, where multidimensional features are in-
corporated for enriched interdependencies in addition to correlations between neigh-
boring bits. In the following subsections, we elaborate the SPIHT-like algorithm and
primitive-based AAC.

SPIHT-like Algorithm for Inter-Subband Dependency

SPIHT algorithm contains two passes - significance pass and refinement pass. The
inter-subband dependency is used in the significance pass by spatial orientation tree
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Figure 2: The proposed subband coding framework for FBCN analysis coefficients. A
SPIHT-like algorithm is developed to formulate inter-subband dependencies with extended
spatial orientation tree (SOT). Various lists of elements are generated based on the ex-
tended SOT for subsequent adaptive arithmetic coding. Multiple primitives are designed
specifically for corresponding lists. Neural networks are leveraged to improve probabil-
ity estimation with nonlinear prediction over multidimensional features indicating scales,
directions, locations and significance of coefficients.

to transit the significant coefficients firstly. Since the FBCN analysis provides a di-
rectional multiscale representation, the inter-subband dependency is considered both
in scales and directions. Thus, we extend the spatial orientation tree (SOT) to rep-
resent the dependencies between associated subbands with different frequencies and
directions. Let us denote O(i, j, r, d) the set of offsprings of the analysis coefficient
with the coordinate (i, j, r, d). Here, (i, j, r, d) means that this coefficient at the i-th
row and j-th column in the subband of r-th scale and d-th direction. In Definition 1,
we construct the extended SOT from the lowest subband with r = 1 and d = 1 in a
recursive manner.

Definition 1 (Extended Spatial Orientation Tree) Given FBCN with R radial
layers and D directional layers, for arbitrary coefficient with coordinate (i, j, r, d), its
set of offsprings O(i, j, r, d) in the extended spatial orientation tree is generated in a
recursive manner.

O(i, j, r, d) =

⎧⎪⎨
⎪⎩

{(i, j, r, d + 1), . . . , (i, j, r, D), (i, j, r + 1, d)}, r = d = 1

{(i, j, r + 1, d)}, r = 1, d > 1

{(i, j, 2r, d), (i, j, 2r + 1, d)}, otherwise

(1)

According to Definition 1, parent-child pairs in the extended SOT represent varied
mutual information between coefficients in subbands of different scales and direc-
tions. The recursive formulation in Eq. (1) is derived non-uniformly based on the
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(a) (b) (c) (d)

Figure 3: (a) Conventional spatial orientation tree of wavelet coefficients adopted in SPIHT;
(b) Frequency partitioning in the Fourier transform domain corresponding to (a); (c) Ex-
tended spatial orientation tree of FBCN analysis coefficients. Subbands are associated ac-
cording to their scales and directions; (d) Frequency partitioning in the Fourier transform
domain corresponding to (c).

information-theoretic measurement of inter-subband dependency shown in Section 4.
Specifically, subbands of the coarsest scale are organized by establishing the first di-
rection as the parent of other directions. When the parent lies in the coarsest scale
with d = 1, its 2l2 children consist of one in the adjacent coarser scale with d = 1
and the ones for remaining 2l2 − 1 directions in the coarsest scale. However, there are
only two children in the finer scales for the parent lying in the subband with r > 1.
Fig. 3 illustrates the conventional SOT for wavelet coefficients and extended SOT for
FBCN analysis coefficients. Since FBCN achieves a full decomposition on the radial
and direction dimension, the extended SOT considers associations of subbands with
different scales and directions.

Similar to SPIHT coding, list of insignificant signs (LIS) and list of insignificant
pixels (LIP) are adopted to code the extended spatial orientation tree. Here, LIS
and LIP are initialized with the coefficients of subband with (r, d) = (1, 1). Thus,
MN elements are required to initialize LIS/LIP for the subband of M -by-N FBCN
analysis coefficients. Figure 4 illustrates the coarsest subbands of FBCN analysis co-
efficients for Lena, Barbara and Baboon. It shows that the significant coefficients are
clustered in certain columns of these subbands. This fact would arise from the non-
linear transformation in preprocessing which contains oversampling of low frequency
regions. The regular distribution of important coefficients implies that significant co-
efficients mainly appear in subbands with lower scale and their position information
can be used in prediction and coding.

Primitive-based Adaptive Arithmetic Coding

Adaptive arithmetic coding is introduced to facilitate the coding performance of
SPIHT-like algorithm for FBCN analysis coefficients, especially in low-bit rate region.
Inspired by [17], five primitives are developed for context-based prediction of differ-
ent elements in the two passes of binary code-stream generated by the SPIHT-like
algorithm, e.g. the sign of significant coefficients and the value of encoding elements.
For the significant pass, “LIS-A”, “LIS-B” and “LIP” primitives are used to encode
LIS and LIP, while “Sign” primitive is adopted for the sign of significant coefficients.
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(a) (b)

Figure 4: Illustrative examples for neural network based context modeling. (a) Distribution
of coefficients in lower-scale subbands of Lena, Barbara and Baboon; (b) Contexts for the
bit to be encoded in current bit-plane.

The remaining “LSP” primitive is introduced in the refinement pass. Distinguishing
contexts are derived during adaptive binary arithmetic coder for different primitives.

Furthermore, neural networks are adopted for context-based probability estima-
tion in primitives for significant coefficients, i.e. “LIS-A”, “LIS-B” and “LIP”. It is
rooted from the regular distribution of significant coefficients, as shown in Fig. 4(a).
For each bit to be encoded, the proposed neural networks incorporates the varying
information including its coordinate, significance of neighboring coefficients and en-
coded bits in the bit-plane to improve context-based prediction. To achieve nonlinear
prediction and suppress overfitting, the neural networks are composed of a fully con-
nected layer with ReLU activation function, a dropout layer and an activation layer
using sigmoid function. Their parameters can be pretrained based on online available
image datasets like ImageNet for a warm start.

In this paper, a 11-tuple vector is constructed as input features for each bit. For
example, the coordinate (i, j, r, d, b) is selected to encode the b-th bit-plane of the
(i, j)-th FBCN analysis coefficients in the (r, d)-th subband. Moreover, the signifi-
cance of its four neighboring coefficients are adopted due to the smoothness in lower-
scale subbands. To guarantee the causality of encoder, the upper and left neighbors
of current bit are also leveraged to serve as contexts, as the scanning process is im-
plemented in columns. Here, quantization is naturally achieved with the threshold
T = 2b gradually varying with b to transit the significant coefficients into bit-planes.
However, its can be further improved with sophisticated scheme like vector quantiza-
tion.

4 Information-theoretic Measurement of Inter-subband Dependency

This section elaborates inter-subband dependencies between FBCN analysis coeffi-
cients, as the coding performance based on extended SOT tends to rely on the rep-
resentation of inter-subband dependency. As mentioned in Definition 1, subbands
are associated by jointly considering their scales and directions. This fact suggests
that the inter-subband dependency can be evaluated in the sense of inter-scale and
inter-direction correlations. To accurately formulate inter-subband dependencies, we
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measure the mutual information of FBCN analysis coefficients in the pairs of associ-
ated subbands to evaluate their inter-scale and inter-direction correlations.

Definition 2 (Inter-subband Dependency) Given the (r, d)-th subband X of FBCN
analysis coefficients, its inter-subband dependency with subband Y is represented by
their mutual information I(X;Y ).

I(X;Y ) =
∑

1≤x≤LX

∑
1≤y≤LY

PX,Y (x, y) log
PX,Y (x, y)

PY (y)PX(x)
(2)

Here, PX(x) is the distribution of logarithms of coefficient values in X and the range
of X is partitioned into Lx uniform intervals. PX,Y (x, y) is the joint distribution for
X and Y .

According to Definition 2, when Y = PX is the (r−1, d)-th subband, I(X;PX) mea-
sures the inter-scale correlation, and I(X;CX) for inter-direction correlation with
subband Y = CX with scale r. In practice, we estimate these correlations using
Î(X;PX) and Î(X;CX) based on the empirical distributions of subband coefficients
for given images. It is worth mentioning that I(X;CX) is estimated with a sufficient
statistic, as multiple subbands with the same scale would lead to “dilution” prob-
lem due to no sufficient number of samples. Thus, we estimate I(X;T ) instead of
I(X;X1, X2, . . . , XN) with the sufficient static T = 1

N

∑N
i=1 |Xi| of X1, X2, . . . , XN .

Table 1 compares the mutual information Î(X;PX) and Î(X;CX) by varying the
scales and directions of subbands. It shows that the inter-scale and inter-direction
correlations are comparable for subbands with lowest scales, while inter-direction
correlations decrease with the growth of scale r. Consequently, we formulate the
inter-subband using Eq. (1) and construct the extended spatial orientation tree.

5 Numerical Results

This section validates the proposed subband coding framework on natural images. We
begin with the evaluation of inter-subband dependencies and primitive-based AAC for
the proposed framework. Table 1 presents the estimated mutual information of sub-
bands with r = 1, 2, 7, 8 and d = 1, · · · , 8 in Barbara and Lena. Here, we only provide
evaluation results of two test images due to the limitation of spaces, but similar re-
sults can be obtained for others. Table 1 shows that the inter-direction and inter-scale
dependencies are significant for textured images, while the inter-directional dependen-
cies descrease for higher scales in comparison to the inter-scale ones. Subsequently,
we validate the primitives adopted for AAC. Table 2 shows that the proposed primi-
tives improve code performance by about 16.24% and 9.09% in bit rates for Barbara
and Lena, when compared with AAC using cumulative probability. Remarkably, the
gains are consistent, especially in low bit-rate regions. Furthermore, rate-distortion
performance is evaluated for lossy image compression, as shown in Figure 5. The pro-
posed framework is compared with the state-of-the-art subband coding algorithms
- SPIHT and SPIHT-AC (with AAC). For FBCNs, l1 and l2 are set 6 and 3. The
dropout rate for neural networks is 0.5. In Fig. 5, rate-distortion curves in the low

29



Table 1: Mutual Information among Subbands

Barbara, Î(X;PX)

r
d

1 2 3 4 5 6 7 8 average

1 - - - - - - - - -
2 0.4221 0.3962 0.3264 0.3815 0.3706 0.3641 0.3512 0.3323 0.3681
7 0.3345 0.2935 0.3342 0.3187 0.3319 0.3075 0.2931 0.3088 0.3153
8 0.3483 0.3213 0.2860 0.2762 0.3405 0.2984 0.2428 0.3095 0.3029

Barbara, Î(X;CX)

r
d

1 2 3 4 5 6 7 8 average

1 0.4081 0.3993 0.3894 0.3847 0.3835 0.3858 0.3763 0.3807 0.3885
2 0.3695 0.3629 0.3264 0.3747 0.3481 0.3575 0.3700 0.3345 0.3555
7 0.3606 0.3167 0.2956 0.3163 0.3077 0.2856 0.2608 0.3219 0.3082
8 0.3147 0.2816 0.2793 0.2686 0.3534 0.3170 0.2462 0.2718 0.2916

Lena, Î(X;PX)

r
d

1 2 3 4 5 6 7 8 average

1 - - - - - - - - -
2 0.4032 0.3915 0.3357 0.3735 0.3982 0.3647 0.3103 0.313 0.3221
7 0.2929 0.3361 0.2465 0.2791 0.3718 0.3227 0.1813 0.1954 0.2538
8 0.2431 0.3081 0.2358 0.2695 0.3663 0.3013 0.2088 0.1978 0.2416

Lena, Î(X;CX)

r
d

1 2 3 4 5 6 7 8 average

1 0.4018 0.3945 0.3766 0.3885 0.3931 0.3845 0.3968 0.377 0.3420
2 0.3648 0.3778 0.3536 0.3576 0.3656 0.3524 0.2976 0.3278 0.3087
7 0.2795 0.2638 0.258 0.2851 0.2948 0.2745 0.2238 0.2447 0.2349
8 0.2669 0.2523 0.2628 0.2715 0.3017 0.2644 0.2481 0.2347 0.2335

bit-rate region are provided for Lena, Barbara, Peppers and Plane. It shows that
the proposed framework outperforms other frameworks. The rate is measured by bit
per pixel while the distortion is evaluated by Peak Signal-to-Noise Ratio (PSNR) of
recovered images and original ones.

6 Conclusions

In this paper, we proposed a coding frame for a kind of manufactured convolutional
network for the first time. The estimated inter-subband dependency inspired a spatial
orientation tree for the SPIHT-like coding algorithm, and the probability involving
intra-subband modeling promotes the performance of AAC.
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Table 2: Performance Comparison with/without Primitives

Barbara Lena

w/(bpp) w/o(bpp) PSNR Gain w/(bpp) w/o(bpp) PSNR Gain
0.0113 0.0130 15.30 -12.97% 0.0138 0.0152 15.66 -8.84%
0.0222 0.0267 15.58 -16.79% 0.0329 0.0373 21.24 -11.58%
0.0504 0.0617 18.53 -18.30% 0.0589 0.0658 22.86 -10.39%
0.0592 0.0726 18.75 -18.44% 0.0894 0.0978 23.54 -8.59%
0.0854 0.1048 19.44 -18.52% 0.1252 0.1400 24.29 -10.56%
0.1136 0.1387 19.93 -18.12% 0.1690 0.1861 25.03 -9.18%
0.1528 0.1863 20.25 -17.99% 0.1957 0.2143 25.64 -8.70%
0.1966 0.2317 20.38 -15.14% 0.2220 0.2416 26.08 -8.11%
0.2123 0.2519 21.08 -15.72% 0.2588 0.2794 26.40 -7.37%
0.2238 0.2692 21.36 -16.86% 0.2946 0.3191 26.53 -7.70%
0.2504 0.2985 21.72 -16.12% 0.3331 0.3688 26.81 -9.67%
0.2821 0.3302 21.87 -14.55% 0.3692 0.4049 27.15 -8.81%
0.3168 0.3669 21.92 -13.65% 0.4091 0.4463 27.41 -8.34%
0.3555 0.4224 22.35 -15.84% 0.4443 0.4920 27.54 -9.71%
0.3954 0.4625 22.61 -14.52% 0.4847 0.5318 28.01 -8.86%
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Figure 5: Rate-distortion curves for Lena, Barbara, Peppers and Plane.
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