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Abstract—Dimension reduction is widely regarded as an
effective way for decreasing the computation, storage, and
communication loads of data-driven intelligent systems, leading
to a growing demand for statistical methods that allow analysis
(e.g., clustering) of compressed data. We therefore study in
this paper a novel problem called compressive robust subspace
clustering, which is to perform robust subspace clustering with
the compressed data, and which is generated by projecting
the original high-dimensional data onto a lower-dimensional
subspace chosen at random. Given only the compressed data and
sensing matrix, the proposed method, row space pursuit (RSP),
recovers the authentic row space that gives correct clustering
results under certain conditions. Extensive experiments show that
RSP is distinctly better than the competing methods, in terms of
both clustering accuracy and computational efficiency.

Index Terms— Subspace clustering,
sparsity, low-rankness.

compressive sensing,

I. INTRODUCTION

LONG with the evolvement of data collection tech-
Anology, the dimension of data is now getting higher
and higher. For example, one can easily use the latest
camera phones to take high-quality photos in a resolution
of 40 or more megapixels. In general, when the data dimension
increases, the cost in storing, transmitting and analyzing
data will inevitably rise. What is more, the increase in data
dimension is actually much faster than the advance in commu-
nication, storage and computation power. As a consequence,
it is often desirable to reduce the dimensionality of data.
However, given that the data of interest has been compressed
via dimension reduction, a natural question to ask is how fo
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analyze the structure of the original data by only accessing
the compressed data.

To investigate the highlighted problem, one essentially
needs to integrate dimension reduction and pattern analysis
into a unified framework. Among various dimension reduction
methods, we would like to consider the well-known Random
Projection (RP) [1], in which the original m-dimensional data
points are projected to a p-dimensional (p < m) subspace,
using some sensing matrix R € RP*™ generated at ran-
dom. Unlike the data-dependent methods such as Principal
Component Analysis (PCA) and Principal Component Pursuit
(PCP) [2], which must be trained before being applied to the
data, RP needs no training procedure and is therefore computa-
tionally efficient. Even more, the sensing matrix R is randomly
generated and thus could be shared across multiple devices
without transmission. Due to these advantages, RP is often
the most preferable choice for reducing the dimension of data
stored on resource-constrained devices, e.g., satellite-borne
sensors [3]. Regarding the pattern analysis problems, robust
subspace clustering [4]-[7], the task of grouping together
the data points lying approximately on the same (linear)
subspace, has considerable practical and scientific significance.
In fact, as pointed out by [8], robust subspace clustering is a
representative setting of unsupervised learning. So, in the spirit
of unifying data compression with pattern analysis, we would
suggest considering the following problem that combines RP
with robust subspace clustering.

Problem 1 (Compressive Robust Subspace Clustering):

Let X = [x1, -+ ,xy] € R™ store a collection of n
m-dimensional points approximately drawn from a union of
k subspaces. Suppose that R € RP*"(p « m) is a random
Gaussian matrix whose columns have unit lengths. Denote
M & RX e RPX". Given the compressed data M and the
sensing matrix R, the goal is to segment all points into their
respective subspaces.

Due to its significance in science and application, robust
subspace clustering has received extensive attention in the
literature, e.g., [5]-[7], [9]-[30]. However, most existing
methods are specific to the original uncompressed data X,
and we have spotted only sparse researches relevant to the
setup of Problem 1. Namely, in [31], [32], it is shown
that the subspace principal angles before and after RP
compression are mostly unchanged, which means that one
may simply input M into some existing subspace cluster-
ing methods such as Shape Interaction Matrix (SIM) [13],
Sparse Subspace Clustering (SSC) [16], [33] and Low-Rank
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Representation (LRR) [6], [25]. This, however, may not work
for Problem 1, in which the original data X could be conta-
minated by gross errors; namely,

X = Lo+ So,

where Lg stores the authentic samples lying exactly on the
subspaces and Sp corresponds to the possible errors. In the
presence of gross errors, i.e., the entries in Sp have large
magnitudes, it will lead to very poor results by simply applying
subspace clustering methods to the compressed data M. This
is because the projection procedure could change the statistical
properties of the errors. For example, consider the case where
the gross errors are entry-wisely sparse; that is, a small fraction
of the entries in Sy are nonzero and have large magnitudes.
In the compressed data matrix M, however, the errors may
spread to every entries of the matrix, thereby RSy is often
a dense matrix with large values. The resulted problem—
segmenting the points in M into correct subspaces purely
based on M which itself is corrupted by dense gross errors—is
indeed intractable.

In order to study Problem 1 under the context of sparse
errors, we propose a simple yet effective method termed
row space pursuit (RSP). Given the compressed data matrix
M and sensing matrix R, RSP recovers not only the row
space of the clean data (i.e., L) but also the possible gross
errors. Since the authentic row space (i.e., row space of L)
provably determines the true subspace membership of the
data points, the final clustering results are obtained by simply
using the recovered row space as input to perform K-Means
clustering. In general, RSP owns a computational complexity
of only O(mnp) and can therefore fast segment a large
number of high-dimensional data points. What is more, most
of the computational resources required by RSP are spent on
matrix multiplications, which are easy to accelerate by parallel
algorithms. Extensive experiments on high-dimensional and
large-scale datasets demonstrate the superior performance of
RSP, in terms of both clustering accuracy and computational
efficiency. In effect, RSP can even maintain comparable accu-
racies to the prevalent methods that perform clustering using
the original high-dimensional, uncompressed data.

II. PROBLEM FORMULATION AND ANALYSIS

Formally, the regime underlying a collection of points
approximately drawn from a union of k subspaces could be
modeled as X = Lo + Sp, where Lo and Sy correspond
to the components of the authentic samples and possible
errors, respectively. The word “error”, in general, refers to
the deviation between the model assumption (i.e., subspaces)
and the observed data. In practice, the errors could exhibit as
white noise [34], missing entries [35], outliers [25], [36] and
corruptions [2]. In this paper, we would like to focus on the
setting of gross corruptions studied in PCP [2]; namely, So is
entry-wisely sparse and the values in Sy are arbitrarily large.

As shown in [6], [13], and [18], the row space of L can lead
to exact subspace clustering under certain conditions. Hence,
Problem 1 would be mathematically formulated as a problem
called compressive row space recovery:
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Problem 2 (Compressive Row Space Recovery): Let Lo €
R™ ™ with (skinny) SVD UOZOVOT and rank ro store a set
of n m-dimensional authentic samples strictly drawn from a
union of k subspaces, where Vo € R"*0. Let R € RP*™(rg <
p K m) be a random Gaussian matrix whose columns have
unit £y norms. Suppose that the data matrix X is generated
by X = Lo+ So, with Sy being an entry-wisely sparse matrix
corresponding to the possible errors. Denote by M & RX €
RP*" the compressed data matrix. Given M and R, the goal
is to identify V()VOT and Sy.

The above problem is essentially a generalization of the
subspace recovery problem studied in [6]. To approach Prob-
lem 2, one may consider Compressive Sparse Matrix Recovery
(CSMR) [37], which is a variation of Compressive Principal
Component Pursuit (CPCP) [38]. Given M and R, CSMR
strives to recover RLg and Sy by solving the following convex
optimization problem:

min

i Al + A1,
AeRpxn §eRmxn

st. M=A+RS, (1)
where | - ||; denotes the £; norm of a matrix seen as a long
vector. Under certain conditions, it is provable that CSMR
strictly succeeds in recovering both RLop and Sp. However,
as clarified in [37], CSMR is actually designed for the case
where m > n > rg, i.e., Lo is a tall, low-rank matrix such that
RLy is still low rank. In the cases of square or fat matrices,
the recovery ability of CSMR is quite limited, because in this
case RLo could be high rank or even full rank. To achieve
better results, we shall propose a new method termed RSP.

III. COMPRESSIVE ROBUST SUBSPACE CLUSTERING
VIA ROW SPACE PURSUIT

In this section, we shall detail the proposed RSP method
for compressive robust subspace clustering.

A. Compressive Row Space Recovery by RSP

The formula of RSP is derived as follows. Denote by
Uy ZOVOT and rp the SVD and rank of L, respectively. Since
M = R(Lo + So), we could construct a matrix P € R"*" to
annihilate Lo on the right, i.e., Lo P = 0. This can be easily
done by taking P = I — VpV,J, with I being the identify
matrix. That is,

(M — RSo)(T — VoVi) = RLo(T — VoV{)=0. (2)

Hence, we may seek both Vy and Sy by the following
non-convex program:

min
VeRnxr’SeRmxn
st. (M —RS) (T —VVvTy=o0,

1511,
viv =1, 3

where r (rp < r < p) is taken as a parameter. In order
to attain an exact recovery to the authentic row space Vp,
we would need r = rp. Yet, to obtain superior clustering
results in practice, exact recovery is not indispensable, and
it is indeed unnecessary for the parameter r to strictly equal
to the true rank ro, as will be shown in our experiments. There
is also an intuitive explanation for this phenomenon. That is,
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the equality in (2) always holds when Vj is replaced by any
other space that includes Vj as a subspace.

Analysis: We shall briefly analyze the performance of the
RSP program (3), under the context of Problem 2. To do this,
we first consider an equivalent version of (3):

I}Dﬁ? ISl, st. (M —RS)(T—-—P)=0, Pe€E, 4)

where & = (VVT : V e R VIV = 1} is the set of
orthogonal projections onto a r-dimensional subspace. For the
sake of simplicity, assume that r = rp. Whenever S = S,
it is provable that P = Vj VOT is the only feasible solution to
the problem in (4). More precisely, provided that p > rg, it is
almost surely (i.e., with probability 1) that the row space of
RLy is exactly Vy [39]. On the other hand, given P = VOVOT,
the problem in (4) turns into a sparse signal recovery problem
explored in [40]; namely,

m}in Iylle, s.t.b=dy, )
where ® = (I—VOVOT)(X)R and b = vec(M(I—VoVOT)). Here,
the symbols ® and vec(-) denote the Kronecker product and
the vectorization of a matrix into a long vector, respectively.
Since I — VOVOT is an orthogonal projection, ® may still
satisfy the so-called Restricted Isometry Property (RIP) [40].
As a result, according to [40], the convex program in (5) may
identify vec(Sp) with overwhelming probability, as long as
p > clSollo/n for some numerical constant ¢, where || - ||o is
the {o pseudo-norm of a matrix, i.e., the number of nonzero
entries of a matrix.

In summary, the results in [39] and [40] have already proven
that (P = Vg VOT, S = Sp) is a critical point to the non-convex
problem in (4). However, due to the orthonormal constraint
VTV = 1, it would be hard to obtain a stronger guarantee.
Thus, in this paper we would like to focus on the empirical
performance of RSP. Still, the above analysis provides some
useful clues for understanding the behaviors of RSP. Namely,
to obtain exact or near exact recoveries to V()VOT and Sp,
the number of random projections p has to obey the following
two conditions:

p zroand p = c|[Sollo/n. (6)

For convenience, hereafter, we shall consistently refer to the
quantity ||Sollo/n as the corruption size.

B. Optimization Algorithm

The observed data in reality is often contaminated by noise,
and thus we shall consider instead the following non-convex
program that can also approximately solve the problem in (3):

AlIST

min
VER”XV,SER’"X”

1
+5 (M — RS)(T — vk, st viv=1, (7)

where |- || denotes the Frobenius norm of a matrix and 4 > 0
is a parameter.

Although non-convex as a whole, the problem in (7) is
indeed easy to solve while one of V and S is given, thereby it
is suitable to solve (7) by the first-order methods established
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Algorithm 1 Solving the Problem in (7) by the Alternating
Proximal Method

input: M, R, r and ).

parameters: p = 1.1 R||?

Output: V and S.

Initialization: .S = 0.

repeat
compute the matrix M — RS.
update V' using the top 7 right singular vectors of
M — RS.
compute the gradient given in (9).

. update S by (10).

10: until convergence

A A o e

o ®

in the literature [41]-[43]. We choose to use the alternating
proximal method established in [43]. Let (V;, S;) be the
solution estimated at the rth iteration. Denote

1
g(V,8) & SII(M — RS)(T = VVI)][E.

Then the solution to (7) is updated via iterating the following
two procedures:

Vigr = argmving(V, S;), s.t. vy =1,

osg(Vie1, S
s8(Vig1 ))”%’ 8)

where p > 0 is a penalty parameter and dsg(V;11, S) is the
partial derivative of g(V, S) with respect to the variable S at
V = V;41; namely,

0sg(Vi41,8) = RT(RS = M)(I = Vi1 Vi)
= RT(RS — RSV, V) = M + MV VL)),
)

According to [43], the penalty parameter could be set as p =
1.1||R||?, where || - || is the operator norm of a matrix, i.e., the
largest singular value.

The two optimization problems in (8) both have closed-form
solutions. More precisely, the V-subproblem is solved by
finding the top r eigenvectors of a semi-positive definite
matrix, (M — RS;)T (M — RS;). To do this, one actually just
needs to calculate the top r right singular vectors of M — R S;,
which is a p x n matrix. The solution to the S-subproblem is
given by

A 1
Si+1 = argmin —[IS][1 + S1S— (S —
S p 2

0sg(Vig1, S
Seat = Hyls, — 38Vt 9y

(10)
where H,,,[-] denotes the entry-wise shrinkage operator with
parameter 1/p. The whole optimization procedure is also
summarized in Algorithm 1.

Empirically, the convergence of Algorithm 1 is determined
when the objectives of two adjacent iterations differ by no
more than 1072 M||%; namely, |o;41 — o;] < 1077 M]3,
where o; is the objective computed at the rth iteration. Under
this criterion, the number of iterations for convergence is
below 500 in most cases and seldom exceeds 1000. Thus,
we consistently set the maximum number of iterations to
1000 in all the experiments.
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Algorithm 2 Compressive Subspace Clustering by RSP

input: M, R and k.

parameters: r and \.

Output: clustering results

obtain Vj by Algorithm 1, using M, R, and )\ as the
inputs.

5: segment the row vectors of the n x r matrix V, into k
clusters by K-Means.

B e

C. Clustering Procedure

Given an estimate (denoted as 170) to the authentic row space
Vo, it is rather standard to obtain the final clustering results
by using |\70\707| as an affinity matrix for spectral clustering.
This approach often leads to superior clustering results, but it
is time consuming especially when n and k are both large. For
high efficiency, we shall adopt a simple and efficient approach
for obtaining the final clustering results based on the estimated
row space, \70, which is just an n X r (r < n) matrix.

Our approach is motivated by the following analyses.
When the subspaces are independent and sufficient sam-
ples are observed for each subspace, it is known that
V()VOT is block-diagonal and can lead to correct clustering
results [6], [13], [18]. In this case, actually, the n x ro matrix
Vo also owns a structure of block-diagonal. To see why,
assume without loss of generality that Lo = [Ly, Lo, - - -, Li],
where L; with SVD U; ZiViT is a matrix that stores the
samples from the ith subspace. With these notations, it is easy
to see that Vj is equivalent to a block-diagonal matrix; namely,
Vo = VoB with B € R0*'0 being an orthogonal matrix
(i.e., BBT = BTB = 1) and

Vi O 0 0
5 0O V, 0 0
Vo =

0 0 0

0 0 0 W

Given 170 as above, correct clustering results could be obtained
by using directly the K-Means algorithm to segment the rows
of Vp into k groups. Also, note that the orthogonal matrix B
on the right strictly preserves the inner products among the
row vectors. Thus, the clustering results are the same while
using Vj instead of Vj as inputs to K-Means.

The above analyses illustrate that it is appropriate to get the
final clustering results by applying directly K-Means onto the
row vectors of Vp. Algorithm 2 presents the whole procedure
of the proposed subspace clustering method. Roughly speak-
ing, this algorithm still falls into the category of spectral-type
methods such as SIM, LRR and SSC, which obtain the
final subspace clustering results by performing K-Means on
a collection of top eigenvectors obtained from the eigenvalue
decomposition of some matrix—for example the variants of
the self-representation matrices in LRR and SSC. The main
difference is that Algorithm 2 discards the construction of
|\70\70T| as well as its eigenvalue decomposition so as to
produce directly the clustering results based on Vo, achieving
high computational efficiency.
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D. Computational Complexity

After obtaining Vo, it is known that the K-Means cluster-
ing step needs O(nkr) time. So, it remains to make clear
the computational complexity of Algorithm 2, in which the
computational resources are mostly consumed by its Step 4,
i.e., Algorithm 1, which iteratively solves the non-convex
optimization problem in (7).

Regarding Algorithm 1, its Step 6—the computation of the
matrix M — RS, needs pn 4+ mpn elementary operations. The
update of the variable V' can be finished by computing the
partial-r SVD of a p x n matrix and thus has a complexity
of O(pnr). To compute the gradient given in (9), mnp +
4 pnr—+4 pn elementary operations are required. That is, Step 8,
which is indeed the most expensive step in Algorithm 1,
has an O(mnp) complexity. The shrinkage operator used in
Step 9 is computationally cheap, as it needs only O (mn) time.
In summary, each iteration in Algorithm 1 has an O(mnp)
complexity, thereby the overall complexity of our Algorithm 2
is O (mnpl+nkr), where [ is the number of iterations required
by Algorithm 1 to get converged.

Up to present, the convergence rate of the alternating
proximal method has not been fully understood. Empirically,
we have found that at most 1000 iterations are needed for
Algorithm 1 to produce near optimal solutions. So, it would
be adequate to consider the computational complexity of our
RPS as O(mnp). Moreover, since the matrix multiplication
operators are easily parallelizable, the proposed algorithms
are indeed fairly fast, especially when running on Graphics
Processing Unit (GPU).

Among the other things, it is worth noting that the iteration
number / would depend on the values of 4 and r/p. In general,
larger A leads to more information loss and, accordingly,
[ will be smaller. For example, while A is sufficiently large
(e.g., 4 = +00), the objective in (7) is perfectly minimized
by So = 0, and in this case Algorithm 1 converges in only
one iteration. Moreover, the iteration number / also depends
on the value of r/p. In the extreme case of r/p > 1,
Algorithm 1 runs only one iteration and outputs the solution
of 30 = 0. Whenever 30 = 0, our RSP method is almost
equivalent to applying directly SIM [13] onto the compressed
data matrix M.

IV. EXPERIMENTS AND RESULTS

All experiments are conducted on a server equipped with a
64-bit Ubuntu 16.04 operating system, two Intel(R) Xeon(R)
E5-2620 v4 2.10GHz CPU processors, 256GB RAM and four
NVIDIA Titan X (Pascal) 12GB graphics cards. We have not
implemented the algorithms using multiple GPU devices, and
thus only one GPU card is randomly chosen by Matlab for
accelerating the computations.

A. Experimental Settings

1) Experimental Data: Notice that the commonly used
datasets (e.g., Hopkins155 [44]) have only a few hundreds
dimensions, and thus they would not be suitable for being
used to verify the merits of compressive robust subspace
clustering methods. As a consequence, we create four datasets
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Fig. 1. Examples from the image datasets used in our experiments. The face
or digit images in the same row across belong to the same class. (a) EssFace.
(b) SoFace. (c) WalVideo.

for experiments, including “SynMat”, “EssFace”, “SoFace”
and “WalVideo”.

1) SynMat: We first consider randomly generated matrices.
A collection of 200 x 200 data matrices are generated accord-
ing to the model of X = Lo + Sp, in which Lg is created
by sampling 100 points from each of 2 randomly generated
subspaces, the values in each point are normalized such that
the super norm of Lo is 1, and Sp is consisting of random
Bernoulli +1 values. The dimension of each subspace varies
from 1 to 20 with step size 1, and thus the rank of L varies
from 2 to 40 with step size 2. The corruption size ||Sollo/n
varies from 0.4 to 8 with step size 0.4. In summary, this dataset
contains in total 400 matrices with size 200 x 200.

2) EssFace: The images of the second dataset we used
are provided by the University of Essex,! so referred to as
“EssFace”. This dataset contains in total 7495 images for
375 individuals, each of which has 19 or 20 images. The origi-
nal images contain background, and no ground truth rectangle
is provided. Thus, we utilize the face detector established
in [45] to obtain the bounding boxes that contain only the
faces. Then we resize the face rectangles into 100 x 100,
resulting in a collection of 7495 10,000-dimensional points
for experiments. Figure 1(a) shows some examples selected
from this dataset.

3) SoFace: The original SoF [46] dataset is a collection
of 42,592 face images for 112 individuals, with each indi-
vidual being involved in multiple photography sessions. The
same physical setup is used in each session. In general, this
dataset presents several challenges regarding face recognition,

1 Available at cswww.essex.ac.uk/mv/allfaces/index.html
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TABLE I

INFORMATION ABOUT THE FOUR DATASETS USED
IN THE EXPERIMENTS OF THIS PAPER

#class | #dimension | #points | #points in
name (k) (m) (n) each class
SynMat 2 200 200 100
EssFace 375 10000 7495 19~20
SoFace 2662 10000 26619 8~11
WalVideo n/a 27648 1379 n/a

e.g., heavy noise, gross occlusion, strong expression, serious
blurring and harsh illumination. Since the images for the same
individual vary greatly in pose and appearance, it is hard, if not
impossible, to form individual-level classes by using the pixel
values as inputs for clustering. Thus, instead of identifying
the individuals, we aim to group together the images from the
same session, i.e., each session is treated as a class. Moreover,
we resize the face rectangles into 100 x 100 and discard the
images contaminated by blurring or canvas. For the ease of
reference, we shall refer to this new version as “SoFace”,
which defines a task of segmenting 26,619 data points with
dimension 10,000 into 2662 classes. Some example images
from this dataset are shown in Figure 1(b).

4) WalVideo: In practice, the errors encoded in the sparse
component Sp could correspond to the objects of interest.
To show this, we consider a surveillance video selected from
the CAVIAR project.” The video we considered is a sequence
of 1379 frames taken in the entrance lobby of the INRIA
Labs, recording the scenes in which one person is walking in
straight line, so referred to as “WalVideo” (see Figure 1(c)).
This video has a near static background but contains dramatic
illuminations. The original frames have a resolution 384 x 288.
We reduce the resolution by half so as to obtain a 27, 648 x
1379 data matrix for experiments.

For the ease of reading, we also summarize in Table I the
major information of the above four datasets.

2) Baselines and Evaluation Metrics: For the sake of
comparison, we implement 6 competing methods as fol-
lows. Following the suggestions in [31] and [32], we apply
three prevalent subspace clustering methods, SIM, LRR and
SSC, onto the compressed data matrix M € RP*" result-
ing in three benchmark baselines. Furthermore, we utilize
CSMR [37] to recover RLy € RP*" from M at first, then
apply SIM, LRR and SSC onto the recovered matrices (which
are estimates to RLp), and in this way we obtain another
three competing methods, “CSMR+4-SIM”, “CSMR+SSC” and
“CSMR+LRR”.

Running time and clustering accuracy are used to eval-
vate the efficiency and effectiveness of subspace clustering
methods, respectively. Here, the clustering accuracy is simply
the percentage of correctly grouped data points. Also, notice
that all the considered methods can be split into two stages:
a learning stage that estimates some eigenvector matrix V €
R (I = k or [ = r) from data, and a clustering stage that
produces the final results by K-Means. So we will report their
time consumption separately.

2 Available at homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 2. Results in recovering the randomly generated matrices in SynMat.
All the methods are performed on the compressed data matrix M with p =
50. The rank rq is assumed to be given. The numbers plotted in the above
figures are averaged form 20 random trials.

3) Parameter Configurations: For the ease of choosing the
parameters of various subspace clustering methods, first of all,
we normalize the input matrix M to be column-wisely unit-
normed. The parameter » in SIM plays the same role as in our
RSP. So, first we manually tune r to maximize the accuracy
of SIM, then we adjust » around this estimate for RSP. The
parameter A in RSP is chosen from the range of 2710 <
Jo< 20 Regarding CSMR, which is indeed sensitive to its
regularization parameter A, we try our best to test as more can-
didates as possible from the range 27'9||R||//max(p, n) <
2 < 210||R||//max(p, n), with the target of maximizing the
accuracy of CSMR+-SIM. Then the same parameter is used by
the other CSMR based methods, e.g., CSMR-+LRR. About the
key parameter A in LRR and SSC, we manually select a good
estimate from the range of 0.1/y/logn < 1 < 10//logn and
2710 < 7 < 219 respectively.

B. Results on SynMat

As mentioned in Section III-A, it is possible that RSP
strictly succeeds in recovering Vy VOT under certain conditions.
To verify this, we first experiment with the SynMat dataset.
The 200 x 200 matrices are projected to 50 x 200 by RP
with p = 50, and task here is to recover the authentic
row space by using only the compressed matrix. For each
pair of ro and [|Spllo/n, we perform 20 random trials, and
thus in this experiment we run 8000 simulations in total.
To show the superiorities of RSP, we also consider to recover
the target VoV] by PCA and CSMR: PCA estimates VoV,
by computing directly the SVD of M, while CSMR is to
firstly obtain an estimate to RLg by program (1) and then
try obtaining Vj VOT via performing SVD on the estimate. The
accuracy of recovery, i.e., the similarity between V) VOT and
\70 \70T, is measured by Signal-to-Noise Ratio, SNRggp.

The evaluation results are shown in Figure 2, in which each
plotted number is a score defined as in the following:

0, SNRgp < 15,
0.2, 15 < SNRgp < 20,
0.5, 20 < SNRgp < 30,
1, SNRgg > 30.

SCOre =

Y

As we can see, PCA works poorly, attaining SNRgg smaller
than 15 in almost all the cases. This illustrates that it is
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Fig. 3. Examples from the corrupted version of EssFace, with the corruption
size being chosen as 25.

TABLE II

EVALUATION RESULTS ON THE CORRUPTED VERSION OF ESSFACE, WITH
CORRUPTION SIZE 25 AND p = 500. OUR GPU 1S OF SINGLE
PRECISION, THEREBY THE ACCURACY ACHIEVED USING
GPU 18 SLIGHTLY LOWER THAN USING CPU

method accuracy (%) time (seconds)

learning  k-means  total

SIM 12.25 24 43 67
CSMR+SIM 12.84 499 42 541
LRR 7.45 105 37 142
CSMR+LRR 7.33 637 37 674
SSC 9.14 1439 44 1483
CSMR+SSC 9.19 2903 45 2948
RSP (CPU) 66.76 1177 20 1197
RSP (GPU) 66.71 257 23 280

unlikely to solve Problem 2 without accessing the sensing
matrix R. Also, it can be seen that CSMR (with 1 =
1.2||R||/+/max(p, n)) succeeds only in limited cases. The
reason is that, as aforementioned, CSMR essentially requires
ro < min(p, n) such that RLy is low rank. Our RSP may
partially overcome this limit, thereby RSP (with » = ry and
4 = 277) can do much better than CSMR in recovering the
authentic row space.

C. Results on EssFace

To get a comprehensive understanding about RSP, we cor-
rupt each image by adding an s x s (s = 0,3,5) spot
at a location randomly chosen from the image rectangle.
The values in the spot are made to be 5 times as large as
the maximum of pixel values so as to suppress the visual
information of faces (see Figure 3).

Table II and Figure 4 show the comparison results at s = 5
(i.e., the corruption size is 25) and p = 500. It can be seen
that all of SIM, LRR and SSC produce very poor results.
This is because these methods possess no mechanism to
disentangle the authentic samples and gross errors. In fact,
given only the compressed data M, there is no way to correctly
segment this dataset. The pre-processing of CSMR fails to
make any substantial improvement in terms of clustering
accuracy. The reason is that p = 500 is not large enough
for CSMR to get a good estimate to RLg. In contrast, our
RSP (with r = 40 and A = 27%) can achieve an accuracy
about 67%. This result, in fact, is even slightly better than
the best result that SIM, LRR and SSC achieved on the
original 10000-dimensional data: Using PCP to pre-process the
original data matrix X, SIM, LRR and SSC attain accuracies
of 64.23%, 61.32% and 65.19%, respectively. However, it is
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SIM

CSMR+SIM

LRR

CSMR+SSC RSP

Fig. 4. Visualization of the affinities matrices corresponding to 10 classes
in EssFace. For RSP that needs only \70, we show \A/O\A/OT for the sake of
comparison. Each affinity matrix is post-processed by zeroing-out its diagonal
and normalizing its values to have a maximum of 1.
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Fig. 5. Explore the performance of RSP under various parametric settings,
using EssFace as the experimental data. (a) The parameter 1 is varying while
r = 40 and corruption size = 25. (b) The parameter r is varying while 1 =
276 and corruption size = 25. (c-d) The parameter p is varying while 1 = 276
and r = 40.

very time-consuming to perform robust subspace clustering
on the original high-dimensional data. Namely, PCP spends
more than 23 hours in recovering Lo. In sharp contrast, our
RSP (uisng GPU) needs only about 5 minutes to get good
clustering results with accuracy about 67%.

We also investigate the influences of the parameters in RSP
as well as the projection number p. As shown in Figure 5(a),
the accuracy of RSP drops dramatically when 4 > 27*. This
is because, as aforementioned, RSP will converge to the
trivial solution Sy = 0 if A is sufficiently large. Provided that
there is no dense noise in the data, theoretically speaking,
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TABLE III
EVALUATION RESULTS ON SOFACE, WITH p = 500

method accuracy (%) time (seconds)
learning  k-means total

SIM 52.16 1801 4005 5806
CSMR+SIM 53.82 2809 3998 6807

LRR 48.18 2984 4012 6996
CSMR+LRR 48.01 4247 4025 8272

SSC 53.44 20777 4055 24832
CSMR+SSC 53.79 23070 4087 27157
RSP (CPU) 57.61 1315 310 1625
RSP (GPU) 57.42 214 314 528

there exists A* > 0 such that RSP works equally well for all
A < A*. However, in practice the white noise is ubiquitous,
and thus the performance of RSP slightly degrades while 4 is
too small. Overall, A =2 % is a good choice for this dataset.
Regarding the parameter r, Figure 5(b) shows that RSP could
work almost equally well while r locates in a certain range.
This confirms our doctrine that r is unnecessary to be identical
to ro. For this dataset, r = 40 is a proper setting, as can
be seen from Figure 5(b). As we can see from Figure 5(c),
RSP breaks down while p is too small, and the value of the
breaking point depends on the corruption size. More precisely,
without the gross corruptions, RSP actually works equally
well for a wide range of p. In the case where the corruption
size is 9, RSP breaks down when p < 200. When the
corruption size increases to 25, the breaking point becomes
p < 400. These phenomena, in general, are consistent with
the conditions listed in (6). Figure 5(d) plots the running time
as a function of the parameter p, revealing the phenomenon
that the running time of RSP does not increase monotonically
with p. This is because, as discussed earlier, the convergence
speed of Algorithm 1 actually depends on p.

D. Results on SoFace

To verify the effectiveness of various methods under the
context of compressive robust subspace clustering, we reduce
the data dimension to 500 by RP. The comparison results
are shown in Table III. In terms of running time, RSP (with
r = 120 and A = 279) distinctly outperforms all the competing
methods. In particular, RSP is even much faster than SIM,
which is to simply apply SIM onto the compressed matrix
M e RI0%26619 Thig is because SoFace has a large number
of data points and classes, saying n = 26619 and k = 2662.
In this case, spectral clustering is indeed very time-consuming
due to the following two procedures: 1) computing the partial
SVD of an n x n matrix, and 2) using K-Means to segment
a collection of n k-dimensional points into k clusters. On this
dataset, our Algorithm 1 converges with about 400 iterations,
and after that, in sharp contrast, Algorithm 2 only needs
to perform K-Means clustering on a set of n r-dimensional
points. Besides of its high computational efficiency, RSP also
outperforms the competing methods in the sense of clustering
accuracy.

E. Results on WalVideo

Unlike the above clustering experiments, in this experiment
the input matrix M is not normalized. This is because we
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original frame

Fig. 6.

RSP (p = 1000)
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RSP (p = 2000) RSP (p = 3000)

Moving object detection in surveillance video. Four frames from the WalVideo dataset, with varying illumination. From left to right: the original

frame, the sparse component |Sqy| obtained by PCP and RSP. The parameters in RSP are set as r =5 and 1 = 276,

TABLE IV

RUNNING TIME ON WALVIDEO. THE PARAMETERS
OF RSP ARE SET AS 7 = 5 AND 4 =270

time (seconds)

method CPU GPU
PCP 4606 2820

RSP (p = 1000) 1024 301
RSP (p = 2000) 1755 469
RSP (p = 3000) 2299 511

need to visualize the sparse component So produced by RSP.
Figure 6 shows four frames taken from the WalVideo dataset,
which has dramatic illuminations in background. As we can
see, RSP with p > 2000 works as well as PCP. What is more,
in terms of stability against the illumination in background,
RSP is even slightly better than PCP. To be more precise,
PCP occasionally treats a considerable amount of background
illumination as the moving objects (see the second row of
Figure 6), while RSP produces more reliable results for the
same frame. Since in this dataset the data matrix X is tall
(i.e., m > n), the computational complexity of RSP and PCP
has the same order. Yet, as shown in Table IV, RSP is still
faster than PCP, especially when GPU is used. In particular,
our RSP is more parallelizable than PCP, and thus RSP benefits
more from GPU than PCP does, as we can see from Table IV.

V. CONCLUSION

In this paper we studied the problem of compressive robust
subspace clustering, a significant problem not thoughtfully

explored before. We first mathematically formulated the prob-
lem as to recover the row space of the clean data, given only
the compressed data M and sensing matrix R. Then we devised
a simple method termed RSP, which iteratively seeks both the
authentic row space and the sparse errors possibly existing
in the original high-dimensional data. Extensive experiments
with various settings verified the effectiveness and efficiency
of RSP.

There are still several problem left for future work. For
example, it is better to estimate or learn the hyper-parameter r
from the data. It is also of considerable significant to explore
the tensor form and multi-view extensions of the proposed
problem.
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