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Abstract— Caching can effectively smooth the temporal traffic
variability and decrease the redundant data transmission in
mobile video delivery. In this paper, we consider a video caching
system consisting of a video provider (VP), a mobile network
operator (MNO) with a set of cache-enabled base stations (BSs),
and multiple mobile users. The VP leases some popular videos
to the MNO, while the MNO places these rented videos in local
caches of its BSs to save expensive backhaul transmission cost.
However, in such a two-sided market, these two entities are com-
peting with each other for their own profit due to their opposite
expectation on the video pricing. To address this, we model the
competition between the two entities using the framework of
Stackelberg games and propose a joint video pricing and cache
placement strategy by considering the heterogeneity of video file
sizes and exploiting the classic law of demand from the field
of economics. The proposed optimization problem is able to
jointly maximize the profit of the VP and the MNO by the
optimal selection of the video pricing and the cache placement
strategy given that price, for both noncooperative BS caching
and cooperative BS caching cases. We then develop iterative
algorithms based on dynamic programming and gradient ascent,
respectively, for these two cases to find the Stackelberg equilib-
rium (SE). The simulation results further show that the proposed
joint optimization formulation follows the law of demand in
economics, and the proposed algorithms for both cases can
efficiently converge to the SE point that jointly maximizes the
profit for both the VP and the MNO.

Index Terms— Wireless caching, video pricing, mobile video
delivery, cache placement, Stackelberg game.

I. INTRODUCTION

W ITH the ever-increasing and widespread use of smart
devices, wireless video streaming is currently expe-

riencing extensive growth and being leveraged for a wide
range of multimedia applications, such as mobile multimedia
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services. Statistics show that mobile video data has become
the dominant source for the exponential growth of global
mobile data traffic over cellular networks [1]. A noticeable
consequence of the extensive growth of mobile video traffic
is the resultant acceleration of busy-hour traffic compared
to the average traffic growth. Unlike general web usage
occurring throughout the whole day, video usage is more
prone to be requested and consumed during the evening
hours. Consequently, more video usage means more traffic
during the peak hours of the day. Therefore, the mobile
video traffic presents a usually high temporal variability, which
causes traffic congestion during peak hours yet network under-
utilization during off-peak hours. On the other hand, most
of the streaming requests of mobile users are repetitive and
concentrated on some popular videos, which incurs redundant
data transmission over the network [2].

The temporal variability and redundancy of video transmis-
sions can be efficiently reduced by locally caching some of
the popular videos in the storage of intermediate network
nodes [3]. In general, the wireless video caching problem
comprises two separate phases [4]. The first phase is the
placement phase, which includes pre-fetching videos in the
local cache and is performed usually during off-peak hours
when the network resource is abundant or before the start of
video streaming services. The second phase is the delivery
phase in which requested videos are delivered to mobile users
either from the local cache or through the expensive backhaul
connections. Studies to date have investigated work related
to the aforementioned cache placement and delivery from
different perspectives. A fundamental information-theoretic
formulation of the general caching problem is proposed in [4],
which is able to reduce the overall data transmission in the
delivery phase through the joint optimization of the placement
and delivery phases to achieve an important caching gain. For
mobile video traffic, caching at distributed local caches that
are placed geographically closer to the mobile users has been
demonstrated capable of significantly relieving the video traffic
load of the mobile operator’s network, by replacing the usually
weak yet expensive backhaul links with the high-speed local
connections to ensure the low delay requirement of users [3].
To further address the heterogeneity issue of the network and
mobile users, a mobile edge cache placement framework [5]
is proposed for dynamic adaptive video streaming, in order to
maximize the users’ quality-of-experience (QoE) by consid-
ering the coordination among local caches and different rate-
distortion behavior of videos.
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All of these caching schemes mainly focus on the opti-
mal cache placement from the network and user perspec-
tive, with the purpose of either reducing the traffic load of
the network or enhancing the users’ QoE. However, mobile
multimedia services today are tightly coupled with economic
issues, such as pricing for videos at the content provider and
rental of storage at the network service provider. To investigate
the caching problem from such an economic perspective,
the joint pricing and caching problem in [6] considers a small-
cell video caching system where multiple mobile network
operators (MNOs) rent some popular videos from a video
provider (VP) and store these videos in the local cache of
their small-cell base stations (BSs), and jointly maximizes the
profit of the MNOs and the VP through a Stackelberg game.
In [7], a joint pricing and resource allocation framework is
formulated for a similar system, where multiple VPs rent the
storage space from an MNO for caching their videos. However,
the limitation of these schemes is that the optimal decision
variable for caching in their framework is the fraction of BSs
that cache a specific video, while the specific cache placement
strategy stating the caching decision between BSs and videos
is still unclear. In addition, their joint pricing and caching
decision is based on a simplified assumption of homogeneous
video file size. This assumption may become infeasible in
practical video streaming applications, since the output video
files after the encoding/compression may have heterogeneous
sizes due to different rate-distortion behavior.

To address the above issues, in this paper, we propose a joint
video pricing and cache placement optimization framework
for the video caching system with proper consideration of the
heterogeneity of video file sizes and by exploiting the classic
law of demand from the field of economics. Specifically,
we consider a video caching system consisting of a video
provider (VP), a mobile network operator (MNO) with a set of
cache-enabled base stations (BSs) and multiple mobile users.
This video caching system is further viewed as a two-sided
market composed of the VP and the MNO. In such a two-
sided market, the MNO saves the backhaul transmission cost
by renting some popular videos from the VP and caching
the copies of these videos in the local storage of its BSs,
while the VP also makes some profit via leasing these videos.
However, the law of demand in economics reveals that the
objectives of maximizing their own profit for these two entities
are conflicting since they have opposite expectation on the
video pricing. We therefore model the competition between
the VP and the MNO as a single-leader single-follower Stack-
elberg game to jointly maximize the profit of the VP and the
MNO, for both the noncooperative BS caching case and the
cooperative caching through coordination between BSs.

For the noncooperative caching case where each BS inde-
pendently makes the caching decision, we show that the
MNO’s profit maximization problem can be decoupled as a
set of knapsack problems with respect to the actual storage
space of each BS. We then develop an iterative dynamic
programming algorithm to efficiently find the Stackelberg
Equilibrium (SE) point of the proposed Stackelberg game,
which corresponds to the optimal video pricing for the VP and
the optimal cache placement strategy for the BSs of the

MNO. For the case where BSs are cooperating, we employ
the split cache strategy optimally designed for cooperative
caching in the proposed Stackelberg game. We then prove that
the MNO’s profit maximization problem is reformulated as a
convex optimization problem, and develop an iterative gradient
ascent algorithm to find the SE point. We conduct exten-
sive simulations under different system settings. Simulation
results demonstrate that the proposed optimization formulation
follows the law of demand in economics, and the proposed
algorithms for both cases can efficiently converge to the SE
point that jointly maximizes the profit of the VP and the
MNO. Simulation results also show that their profit can be
further increased by allowing the coordination between BSs.

The rest of this paper is organized as follows. Section II
reviews the related works in the literature. In Section III,
we introduce the joint video pricing and cache placement
framework for the video caching system and related system
models. In Section IV, we model the profit gained by the MNO
and the VP in the video caching system, and generally formu-
late a joint pricing and cache placement optimization prob-
lem for both noncooperative and cooperative caching under
the framework of Stackelberg game. In Sections V and VI,
we develop an iterative dynamic programming algorithm and
an iterative gradient ascent algorithm to find the SE point,
respectively, for both cases. Section VII presents simulation
results, and evaluates the gain of the proposed algorithms
compared to existing algorithms. We conclude this paper in
Section VIII.

II. RELATED WORK

Many works have been done to leverage caching in different
multimedia data delivery systems by designing various caching
strategies to improve the cache utilization [3], [5], [8]–[12].
A joint routing and caching problem is formulated in [8]
to obtain the optimal fraction of content requests locally
served by distributed caches, subject to constraints such as the
bandwidth of the network, the storage capacity of local caches,
and the content request patterns of users. Chen et al. [9] utilize
caching in the wireless device-to-device network, and propose
an incentive mechanism to encourage the mobile users to
share their contents with the optimal rewarding policy obtained
through a Stackelberg game approach. For cooperative content
caching, Shanmugam et al. [3] propose an optimal caching
placement scheme for cooperative local caches to minimize
the average downloading delay experienced by mobile users.
The split cache strategy that divides the cache storage space
into a duplicate partition and a unique partition is proposed
for the distributed cooperative caching in [10], to provide the
optimal object placement with minimal overall download cost
in the social wireless network. This strategy is theoretically
proved and numerically analyzed as the optimal cache place-
ment strategy for networks with homogeneous assumptions
about content demands, cache capacities and content sizes.
Jiang et al. [11] formulate a joint cache placement and content
delivery optimization problem for cooperative caching over
heterogeneous cellular networks, and develop a hierarchical
primal-dual approach to find the optimal caching and delivery
policy. To utilize caching in adaptive video streaming systems,
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an adaptive caching strategy for information centric networks
is proposed in [12], which adapts to variable video contents
with heterogeneous bitrates and is able to reduce the access
delay for the requested bitrate of each user. The adaptive
video streaming is also leveraged in the mobile edge cache
placement framework [5], which maximizes the users’ QoE by
considering the coordination among local caches and different
rate-distortion behavior of videos. To obtain the optimal cache
placement strategy, a polynomial-time greedy algorithm is
developed with theoretical proof on the performance approx-
imation bound. As mentioned, all of these works focus on
the optimal cache placement from the network’s or the user’s
perspective, and neglect the economic issues that might affect
the caching strategy design in the two-sided market between
the content provider and the network.

In another line of research, the idea of investigating the
caching strategy from an economic perspective has been
recently explored in [6], [7], [13]–[16]. Through a care-
ful evaluation of the trade-off between the cache storage,
edge server transcoding, and backhaul transmission cost,
Jin et al. [13] integrate caching with transcoding operations
in the media cloud, and analyze the optimal caching and
transcoding resource allocation scheme to minimize the total
operational cost of the system for the noncooperative caching
case. Similarly, the trade-off between cache storage cost and
transcoding computation cost is investigated for the media
cloud [14], and for the video-on-demand systems with multiple
video versions [15], to develop a cost-efficient caching and
transcoding strategy. Li et al. [6] consider a small-cell video
caching system where multiple MNOs rent popular videos
from a video provider (VP) and cache these videos in their
small-cell BSs, and propose a joint pricing and caching scheme
to maximize the profit of the MNOs and the VP through
a Stackelberg game. The authors in [16] further extend the
joint pricing and caching policy design to the information
centric network. Similarly in [7], a joint pricing and resource
allocation framework is formulated, where multiple VPs rent
the storage space from an MNO for caching their videos.

This work differs from the related literature in the follow-
ing aspects. First, we study the optimal video pricing and
cache placement strategy with proper consideration of the
heterogeneity of video file sizes, which is a more practical
scenario for compressed videos but is not considered in most
of the existing literature. Second, we employ the law of
demand from the field of economics to explain the proposed
Stackelberg game and to strike the balance between the video
pricing decision made by the VP and the actual demand
for caching from the MNO, and also demonstrate this law
through our simulation results. Third, we reveal explicitly
the optimal cache placement strategy to state the caching
decision between BSs and videos for both noncooperative and
cooperative caching, which is not shown in most of the joint
pricing and caching schemes.

III. FRAMEWORK AND SYSTEM MODELS

In this section, we introduce the joint video pricing and
cache placement framework for the video caching system and
related system models.

Fig. 1. A video caching system comprising a VP and an MNO with cache-
enabled BSs and mobile users.

A. Framework

As illustrated in Fig. 1, we consider a video caching system
comprising a video provider (VP), a mobile network operator
(MNO) with a set of cache-enabled base stations (BSs), and
multiple mobile users. To reduce the mobile video traffic over
the backhaul links between the VP and BSs, and to enable
faster video delivery to the users, the MNO is willing to rent
some popular videos from the VP and cache the copies of these
videos in the local storage of its BSs that are geographically
closer to the users. Through leasing these video copies to the
MNO, on the other hand, the VP also makes some profit.
Therefore, both the VP and the MNO can benefit from the
local caching system. However, they are both assumed to be
selfish and intend to maximize their own revenues.

The overall framework of the proposed video caching sys-
tem is as follows. The VP publishes some popular videos on
its website after purchasing the copyrights of these videos.
The MNO then bargains with the VP about the unit rental
cost that the VP charges for renting a video. The objective of
the joint video pricing and cache placement is to reach the
optimal pricing scheme for the VP and the optimal caching
strategy for each BS of the MNO under that price, which
corresponds to the equilibrium between the two competing
entities within the game theoretic framework. Upon reaching
the equilibrium, the MNO will place the rented video copies
into the local storage of its BSs following the optimal caching
scheme. The mobile users will connect to their adjacent BSs
for downloading the desired videos. If a copy of the requested
video is found in the local cache of the BS directly connecting
to the user (or any other indirectly connected BS when the
BSs are cooperating with each other), the MNO will send
the cached copy to the user with a low downloading delay
and transmission cost. Otherwise, the BS has to first request
and obtain the video from the VP via the possibly congested
and weak backhaul links, and then send the video to the
user, which results in a much higher downloading delay and
transmission cost.

B. Network Model

We now describe in more detail the models considered in
this work, and introduce the notations.

On the VP side, let first F = {f1, f2, . . . , fJ} denote the
set of J video files that are published by the VP. We further
assume that this set is sorted in decreasing order of popularity,
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i.e., fj represents the j-th popular video out of the set F .
To improve the transmission efficiency, these videos are com-
pressed and encoded by a standardized video encoder (e.g.,
H.264, HEVC) before transmission. In practice, due to the
difference of video types (e.g., movies, sport videos, cartoon,
etc.) and video contents (e.g., motion of the objects) among
these videos, the output video files after compression may have
heterogeneous sizes. In this regard, sj is used to denote the
file size of video fj ∈ F .

For the MNO, let B = {b1, b2, . . . , bI} denote the set of I
BSs deployed between the VP and mobile users, where each
BS bi has a storage capacity of Si. We denote by cbh the unit
transmission cost of the backhaul links between the VP and
the BSs, by cco the unit transmission cost of the links between
any two BSs, and by cmu the unit transmission cost of the links
connecting the mobile users to the BSs. The unit transmission
delay of a link (m, n) is denoted as dm,n.

C. Video Request Generation Model

In accordance with [3], [13], [17], we study here the video
caching system with the optimal decision of pricing and cache
placement to be made for a certain period of time. We therefore
assume the average demand during this time period for the set
of J video files to be known in advance, and adopt the same
assumption from [3], [13] that the video requests from mobile
users are statistically independent. Such an independent user
request model is an acceptable approximation in the average
sense or for the case when the content popularity variation
over time is relatively slow.

To model the independent user request, we use a probability
mass function Pj to denote the average probability of a video
file fj ∈ F being requested by mobile users. Specifically,
as a widely used distribution for the popularity based request
modeling [18], the Zipf distribution is adopted to model the
popularity distribution of video files (i.e., the distribution
of video request possibilities). With this model, the average
probability of requesting the j-th popular video file fj is
inversely proportional to its rank and given by:

Pj =
Ω
jα

, Ω =
1

∑J
j=1 1/jα

, ∀fj ∈ F , (1)

where the Zipf parameter α ∈ [0, 1] determines the skewness
of the popularity distribution. A larger value of α indicates
a more concentrated request distribution, i.e., the majority of
requests are made by the users for the first few popular video
files. It can also be seen from Eq. (1) that the video file set
is sorted in a decreasing order of popularity, where a smaller
index j corresponds to a higher popularity Pj .

D. Pricing Model and the Law of Demand

In the field of economics [19], [20], the relationship between
the price and demand of a good is concluded by the law
of demand. It claims that when other factors are kept equal,
the demanded quantity of a good falls as the price of the good
rises. Following this law, the demand versus price curve can
be characterized as a downward-sloping line.

In the video caching system in Fig. 1, the videos are
considered as the goods, while each BS of the MNO as a
buyer. The demand of BS bi ∈ B is then defined as the amount
of videos (normalized to the unit file size of these videos) that
the BS is willing to purchase for renting and caching in its
local cache, which is denoted as Qi. In this paper, we adopt
the revenue sharing contract model in [21]–[23] that is widely
used in video rental industry. Under this contract, the VP
charges a wholesale rental price per unit of video δ, and the
payment from users for downloading and watching the cached
videos in BSs of the MNO is divided between the VP and the
MNO, with a revenue sharing percentage θ retained for the
MNO. Then, based on the law of demand, when the VP raises
the unit price δ for renting a video, the MNO will accordingly
decrease the cached amount of videos in each BS to save the
rental cost.

E. Cache Placement and Service Modes

We further consider a caching system where a video file is
either fully cached or not cached at all in the local storage of
any BS. The local cache placement strategy of the BSs can
then be represented by a bipartite graph Gbi,fj = (B,F , Ebi,fj )
between vertices representing the BSs in B and vertices
describing the video files in F . An edge (bi, fj) ∈ Ebi,fj

is drawn when video file fj is rented by and placed in the
local cache of BS bi. To better understand the cache placement
strategy indicated by the bipartite graph, we can further denote
XI×J as an I×J adjacency matrix of Gbi,fj , such that ∀bi ∈ B
and ∀fj ∈ F , xi,j = 1 indicates that an edge (bi, fj) ∈ Ebi,fj

exists and xi,j = 0 denotes the absence of an edge between
bi and fj , i.e.,

xi,j =

{
1, if the BS bi caches the video file fj ;

0, otherwise.
(2)

In this paper, we study the optimal cache placement strategy
under two different base station service modes: the noncoop-
erative caching and the distributed cooperative caching.

1) Noncooperative Caching: In the noncooperative caching
case, the BSs are not communicating with each other. When-
ever a mobile user that connects to BS bi submits a playback
request for a video file fj , the MNO will first search in the
local cache of BS bi. If a copy of that video file is already
cached, the BS will directly serve the user’s request by sending
the cached content with a local transmission cost of sj · cmu

and a local transmission delay of sj · di,mu. In this case,
the VP will also share its received user payment for that
video with the MNO. Otherwise, the BS has to first request
and obtain the video from the VP via the congested and
weak backhaul link, and then send the video to the user,
which incurs additionally a backhaul transmission cost of
sj · cbh and a backhaul transmission delay of sj ·dvp,i. Taking
into account the cache placement matrix XI×J , the average
revenue, in terms of the backhaul transmission cost plus the
backhaul transmission delay cost saved by local caching for
serving a user connecting to BS bi with the requested video
file fj , can then be expressed as:

R̄save
i,j = sj · xi,j · (cbh + ς · dvp,i), ∀fj ∈ F , ∀bi ∈ B, (3)
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where ς is a weight constant relating the delay cost to the
transmission delay. It can be seen from Eq. (3) that if the video
file fj is cached in the local cache of BS bi, then xi,j = 1 and
R̄save

i,j = sj · (cbh + ς ·dvp,i); otherwise, xi,j = 0 and R̄save
i,j =

0. On the other hand, the shared user payment incurred by
local caching for serving a user connecting to BS bi with the
requested video file fj can then be expressed as:

R̄share
i,j = xi,j · θ · rj ∀fj ∈ F , ∀bi ∈ B, (4)

where rj is the price for video file fj that is paid by the
user to the VP, and θ is the revenue sharing percentage that
the MNO will retain from the user’s payment. It can be seen
from Eq. (4) that if the video file fj is cached in the local
cache of BS bi, then xi,j = 1 and R̄share

i,j = θ · rj ; otherwise,
xi,j = 0 and R̄share

i,j = 0.
2) Distributed Cooperative Caching: In the distributed

cooperative caching case, the BSs are able to communicate
with their adjacent BSs. Here, we denote by N (bi) the set
of adjacent BSs to bi, and assume that N (bi) is sorted in
an increasing order of the transmission delay to bi, such
that b(l)i

∈ N (bi) represents the BS with the l-th smallest
transmission delay to the BS bi. In particular, we define the
notation b(0)i

= bi to denote the BS bi itself. Whenever a
playback request for a video file fj is submitted by a mobile
user, the MNO will also try to first serve the user by the cached
copy in the local cache of the BS bi that connects to the user.
When the requested video file is not locally cached, BS bi

will communicate with its adjacent BSs according to the order
of N (bi), searching for the cached copy of that video. If at
least one adjacent BS in N (bi) caches the requested video,
this determination will continue until a copy of that video is
found in the local cache of an adjacent BS bk ∈ N (bi). In this
case, BS bi will obtain the video from the BS bk and send the
video to the user, which incurs additionally a transmission
cost of sj · cco and a transmission delay of sj · dk,i. When no
copy of the requested video is available at the local cache of
any adjacent BS, the BS has to request and obtain the video
from the VP via the congested and weak backhaul link, and
then send the video to the user. However, this will result in a
much more expensive transmission cost (i.e., cbh � cco) and
a much larger transmission delay (i.e., dvp,i � dk,i), since
the backhaul communication resource is usually very limited
compared to the high-speed links provided by the adjacent
BSs. In the cooperative case, the average revenue saved by
local caching for serving a user connecting to BS bi with the
requested video file fj is given by:

R̄save
i,j = sj ·

{

(cbh + ς · dvp,i)

−
|N (bi)|∑

n=1

[n−1∏

m=0

(1− x(m)i,j)
]

x(n)i,j(c
co + ς · d(n)i,i)

−
[|N (bi)|∏

m=0

(1 − x(m)i,j)
]

(cbh + ς · dvp,i)
}

,

∀fj ∈ F , ∀bi ∈ B. (5)

Eq. (5) is derived in accordance with the proposed determi-
nation process for distributed cooperative caching. In Eq. (5),

if the video file fj is cached in the local cache of BS bi, then
x(0)i,j = 1 and the last two terms equal to zero. In this case,
we have R̄save

i,j = sj · (cbh + ς · dvp,i). Otherwise, either one
of the last two terms in Eq. (5) becomes nonzero. If the BS
b(n̂)i

∈ N (bi) caches a copy of video file fj and any other
BS with a transmission delay lower than b(n̂)i

fails to cache
this video, (i.e., x(n̂)i,j = 1 and x(n)i,j = 0, ∀n < n̂), we then
have the term [

∏n−1
m=0(1 − x(m)i,j)]x(n)i,j equals to one for

n = n̂ and zero for any other adjacent BS n ∈ N (bi) \ {n̂},
while the term [

∏|N (bi)|
m=0 (1 − x(m)i,j)] = 0. If no copy of

the video file fj can be found in either the BS bi or any of
the adjacent BSs in N (bi) (i.e., x(0)i,j = 0 and x(n)i,j =
0, ∀n ∈ N (bi)), the term [

∏|N (bi)|
m=0 (1 − x(m)i,j)] = 1, while

∑|N (bi)|
n=1 [

∏n−1
m=0(1− x(m)i,j)]x(n)i,j = 0.

Similarly, the shared user payment incurred by local caching
for serving a user connecting to BS bi with the requested video
file fj is given by:

R̄share
i,j = θ · rj −

[|N (bi)|∏

m=0

(1 − x(m)i,j)
]

· θ · rj ,

∀fj ∈ F , ∀bi ∈ B. (6)

In Eq. (6), if no copy of the video file fj can be found in
either the BS bi or any of the adjacent BSs in N (bi), then the
term [

∏|N (bi)|
m=0 (1 − x(m)i,j)] = 1 and R̄share

i,j = 0; otherwise,
the requested video fj will be served directly by the BS with
the cached copy, resulting in R̄share

i,j = θ · rj .

IV. STACKELBERG GAME FORMULATION FOR JOINT

PRICING AND CACHE PLACEMENT OPTIMIZATION

In this section, we model the profit gained by the MNO
and the VP in the video caching system, and then generally
formulate a joint pricing and cache placement optimization
problem for both the noncooperative and cooperative caching
cases under the framework of Stackelberg games.

A. Profit Modeling

The overall profit gained by the MNO through the local
caching is determined by three components: the revenue of the
saved cost (including both the transmission cost and the delay
cost) for backhaul transmission, the revenue of the shared user
payment gained by local caching in the BSs, and the video
rental cost paid for renting some popular video files from the
VP and caching them in these BSs.

As seen in Eqs. (3)-(6), for both the noncooperative and
cooperative caching cases, the average revenue achieved by
local caching for serving a user connecting to BS bi with
requested fj can be derived and denoted as R̄save

i,j + R̄share
i,j .

Therefore, the total revenue of the MNO gained by local
caching in all its BSs is given by:

RMNO(X) =
∑

bi∈B

∑

fj∈F
Pjλi · (R̄save

i,j + R̄share
i,j ), (7)

where λi is the expected number of video download requests
submitted from the mobile users to BS bi and Pjλi thus
denotes the expected number of requests submitted to bi for
video file fj .
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In order to cache video file fj into the local storage of
its BS bi, the MNO has to rent a copy of that video from
the VP with a rental cost of sj · δ, where sj represents
the file size of fj and δ is the unit wholesale rental price
that the VP charges for renting a video. Here, the revenue
sharing contract model in [21]–[23] is adopted with a further
consideration on video sizes. The motivation is as follows.
If we take a specific type of videos with similar R-D behavior
and spatial resolutions for example and encode them with
the same encoder parameters, the output video sizes are then
approximately proportional to the video lengths. The rental
price charged by the VP is usually proportional to the video
length, which in turn is approximately proportional to the
video size. Another motivating example is that for videos
with similar lengths and compression ratios, the output video
sizes are then determined by different spatial resolutions (e.g.,
the size of a movie with 1080p resolution is about 2.25 times
of the size of that movie with 720p resolution). When the
VP charges a rental price according to the video resolution
provided, the rental price is also correlated to the video sizes.
For the sake of simplification and without of loss of generality,
we assume a proportional relationship between the rental price
and the video size. Therefore, the overall rental cost of the
MNO paid for renting the cached video copies is given by:

CMNO(δ, X) =
∑

bi∈B

∑

fj∈F
sj · δ · xi,j . (8)

By subtracting the rental cost from the revenue gained by
local caching, we can define for the MNO the utility function
UMNO(δ, X) in terms of the overall profit, as follows:

UMNO(δ, X)
= RMNO(X) − CMNO(δ, X)

=
∑

bi∈B

∑

fj∈F
[Pjλi · (R̄save

i,j + R̄share
i,j )− sj · δ · xi,j ]. (9)

On the VP side, the overall profit consists of three com-
ponents: the revenue from leasing the cached video copies
to the BSs owned by the MNO (which equals to the overall
rental cost paid by the MNO), the revenue of user payment for
downloading and watching requested videos, and the cost in
terms of the shared user payment retained by the MNO with
local caching, as follows.

UV P (δ, X) = CMNO(δ, X) +
∑

bi∈B

∑

fj∈F
Pjλi · rj

−
∑

bi∈B

∑

fj∈F
Pjλi · R̄share

i,j . (10)

B. Stackelberg Game Formulation

Both the VP and the MNO are assumed to be selfish and
intend to maximize their own revenues. From the above utility
definition, however, it can be seen that the profit maximiza-
tion of the VP and that of the MNO are two conflicting
optimization objectives. On the one hand, the VP wishes to
increase the unit rental price δ to earn more revenue from
leasing videos. This would directly increase the rental cost
and result in a lower profit for the MNO. On the other hand,

following the law of demand, a higher unit rental price δ would
reduce the amount of videos that the BSs are willing to rent
for local caching, which may even lead to a lower overall
profit for the VP itself. To reach the equilibrium between these
two competing entities, game theory is an efficient approach
to achieving their commonly accepted price and the optimal
cache placement strategy. In the context of the hierarchical
relationship between the VP and the MNO, Stackelberg game
[6], [7], [9], [24] can be exploited as an extension of the
noncooperative game for the resource competition between
two groups of players, i.e., a leader and a follower.

We formulate the proposed video caching system into
a single-leader single-follower Stackelberg game, where the
VP acts as the leader while the MNO responds to the VP’s
action as the follower. More specifically, the VP first imposes
a unit rental price δ and announces it to the MNO. Based on
the unit rental price δ, the expected number of video requests
submitted to the BSs and the average video request probability,
the MNO then determines the amount of videos that it wants
to rent for each BS and the optimal cache placement strategy
X = {xi,j , ∀bi ∈ B, ∀fj ∈ F} to maximize its utility/profit.
Therefore, the proposed Stackelberg game is composed of the
following two sub-problems: the profit maximization problem
of the leader (VP) and the profit maximization problem of the
follower (MNO).

1) VP’s Profit Maximization Problem:

P1: max
δ

UV P (δ, X) =
∑

bi∈B

∑

fj∈F
[sj · δ · xi,j (11a)

+Pjλi · rj − Pjλi · R̄share
i,j ]

s.t. δ ∈ [0, δmax], (11b)

xi,j ∈ {0, 1}, ∀bi ∈ B, ∀fj ∈ F . (11c)

The objective in Eq. (11a) is to maximize the VP’s profit of
renting the video files to the MNO, the constraint in Eq. (11b)
states that the unit rental price does not exceed the maximum
unit price set by the market, and the constraints in Eq. (11c)
defines the cache placement strategy between the BSs and the
video files as a matrix of binary decision variables.

2) MNO’s Profit Maximization Problem:

P2: max
X

UMNO(δ, X)

=
∑

bi∈B

∑

fj∈F
[Pjλi · (R̄save

i,j + R̄share
i,j )− sj · δ · xi,j ]

�
∑

bi∈B

∑

fj∈F
Vi,j(δ) · xi,j (12a)

s.t. Qi =
∑

fj∈F
sj · 1Vi,j(δ)>0, ∀bi ∈ B, (12b)

Wi = min{Si, Qi}, ∀bi ∈ B, (12c)
∑

fj∈F
xi,j · sj ≤Wi, ∀bi ∈ B, (12d)

δ ∈ [0, δmax], (12e)

xi,j ∈ {0, 1}, ∀bi ∈ B, ∀fj ∈ F . (12f)

The objective in Eq. (12a) is to maximize the MNO’s profit as
defined in Eq. (9), where we further define a notation Vi,j(δ)
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to denote the coefficient summation of the terms with respect
to the specific decision variable xi,j in the total utility function
UMNO(δ, X). Its physical meaning is the profit of the MNO
gained by caching video file fj in BS bi. The constraint in
Eq. (12b) characterizes the price-demand relationship. For a
given unit rental price δ, the MNO is willing to cache a video
file fj in its BS bi only if by doing so a positive utility can be
introduced (i.e., fj is considered as a video file demanded for
caching in bi only if Vi,j(δ) > 0). In Eq. (12b), 1Vi,j(δ)>0

is an indicator function the value of which equals to 1 if
Vi,j(δ) > 0 and 0 otherwise. The demand Qi of BS bi is
then the summation of file sizes over the video files that
could introduce a positive utility if cached. The constraint in
Eq. (12c) defines the actual storage space Wi that BS bi is
willing to rent and able to cache due to the storage limit, as the
minimum of the demand Qi and the physical storage capacity
Si. The constraint in Eq. (12d) requires that the total size of
cached video copies in BS bi does not exceed its actual storage
space Wi. The constraints in Eqs. (12e) and (12f) define the
feasible regions for the price and cache placement decision
variables, respectively.

3) Stackelberg Equilibrium: The target of the proposed
Stackelberg game is to reach the Stackelberg Equilibrium (SE)
point, from which neither the leader (VP) nor the follower
(MNO) has any incentive to deviate [6], [7], [9]. If any entity
deviates from this SE point, its own profit will be reduced.
In the following, we define the SE point for the proposed
Stackelberg game.

Definition 1: Let δopt denote the optimal solution to the
VP’s profit maximization problem P1 and Xopt denote the
optimal solution to the MNO’s profit maximization problem
P2 given the optimal unit rental price δopt. For any (δ, X) in
the feasible region, if the following conditions hold:

UV P (δopt, Xopt) ≥ UV P (δ, Xopt), (13)

UMNO(δopt, Xopt) ≥ UMNO(δopt, X), (14)

then (δopt, Xopt) is the SE point of the proposed Stackelberg
game.

V. ITERATIVE DYNAMIC PROGRAMMING ALGORITHM FOR

NONCOOPERATIVE CACHING

In this section, we focus on the noncooperative caching case
and accordingly develop the iterative dynamic programming
algorithm to jointly obtain the optimal pricing for the VP and
the corresponding optimal cache placement strategy for the
MNO.

The general process to find an SE point of the proposed
Stackelberg game is to first solve the follower’s optimization
problem P2 for the best response function X∗(δ) given a
unit rental price δ, and then to solve the leader’s optimization
problem P1 for the optimal unit rental price δ∗ based on
the obtained X∗(δ). However, since the decision variables
xi,j , ∀bi ∈ B, ∀fj ∈ F are binary integers, the MNO’s profit
maximization problem is an integer programming problem,
which means that X∗(δ) cannot be explicitly expressed as
a closed-form function. To address this issue, we develop

in the following an iterative dynamic programming algo-
rithm to obtain the SE point of the proposed Stackelberg
game.

A. Problem Decomposition and Equivalent
Knapsack Problems

We first solve the follower’s optimization problem P2 (i.e.
the MNO’s profit maximization problem) for a given unit
rental price δ. Since the BSs in the noncooperative caching
case only serve the mobile users with either the locally cached
video copies or a video file transmitted from the VP, the cache
placement decision variable [xi,j |∀fj ∈ F ] for a BS bi is not
coupled in the objective function or the constraints of problem
P2 with the decision variable in any other BS. The optimiza-
tion problem P2 can therefore be equivalently decomposed
into a set of I sub-problems, with each sub-problem SUB-i
corresponding to the cache placement optimization problem
of BS bi ∈ B, as follows:

SUB-i: max
[xi,j|∀fj∈F ]

Ubi(δ, [xi,j |∀fj ∈ F ]) (15a)

�
∑

fj∈F
[Pjλi · (R̄save

i,j +R̄share
i,j )−sj · δ · xi,j ]

s.t. Qi =
∑

fj∈F
sj · 1Vi,j(δ)>0, (15b)

Wi = min{Si, Qi}, (15c)
∑

fj∈F
xi,j · sj ≤Wi, (15d)

xi,j ∈ {0, 1}, ∀fj ∈ F , (15e)

where the decision variable [xi,j |∀fj ∈ F ] is a J
dimensional cache placement vector, the objective function
Ubi(δ, [xi,j |∀fj ∈ F ]) in Eq. (15a) is defined as the profit
gained by the MNO from the local caching in BS bi, and
the constraints in Eqs. (15b)-(15e) have the same physical
meaning as the constraints in Eqs. (12b)-(12d) and (12f).
By integrating Eqs. (3) and (4) into Eq. (15a), this objective
function can be further derived as:

Ubi(δ, [xi,j |∀fj ∈ F ])

=
∑

fj∈F
[Pjλi · (R̄save

i,j + R̄share
i,j )− sj · δ · xi,j ] (16a)

=
∑

fj∈F
[Pjλisj(cbh + ς · dvp,i) + Pjλiθrj − sjδ] · xi,j

�
∑

fj∈F
Vi,j(δ) · xi,j , (16b)

where Vi,j(δ) � Pjλisj(cbh + ςdvp,i) + Pjλiθrj − sjδ
represents the profit of the MNO gained by caching video
file fj in BS bi in the noncooperative caching case and its
value remains constant for a given unit rental price δ.

By replacing the optimization objective in Eq. (15a) with
that in Eq. (16b) and given a unit rental price δ, the actual
storage space Wi can be computed according to Eqs. (15b)
and (15c). The sub-problem SUB-i in Eq. (15) can then be
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viewed as a 0-1 knapsack problem. More specifically, the video
files f1, . . . , fJ ∈ F are considered as the J items with each
item fj having a weight sj and a value Vi,j(δ), while the
maximum weight capacity of the knapsack is Wi. The profit
maximization problem of BS bi then converts to the following
equivalent 0-1 knapsack problem:

max
[xi,j∈{0,1}|∀fj∈F ]

∑

fj∈F
Vi,j(δ) · xi,j (17a)

s.t.
∑

fj∈F
xi,j · sj ≤Wi, (17b)

which optimally selects from a set of items F with differ-
ent weight sj and value Vi,j(δ) the items that maximize
the total value subject to the knapsack’s maximum capacity
constraint Wi.

B. Dynamic Programming Algorithm

To efficiently solve the knapsack problem in Eq. (17),
we develop a dynamic programming (DP) algorithm in Algo-
rithm 1. The core idea of the DP algorithm is to decompose
the original knapsack problem into a set of smaller knapsack
problems, and to find the relationship between the structure
of the optimal solution to the original knapsack problem and
those to the smaller knapsack problems. Following this idea,
we construct a two dimensional array U [0 . . . J, 0 . . .Wi] to
store the solutions to these smaller knapsack problems, where
each entry U [j, w], ∀0 ≤ j ≤ J, ∀0 ≤ w ≤ Wi stores
the optimal solution (in terms of the maximum total value)
to a smaller knapsack problem with the knapsack’s capacity
constraint reducing to

∑
fj′∈{f1,f2,...,fj} xi,j′ · sj′ ≤ w. That

is, the value of U [j, w] represents the maximum total value of
any subset of the video file set {f1, f2, . . . , fj} with the sum
of video file sizes not larger than w. It can be recursively
calculated based on the optimal solutions to some smaller
knapsack problems, as follows:

U [j, w] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if j = w = 0;

U [j − 1, w], if sj > w;

max{U [j − 1, w], Vi,j(δ) + U [j − 1, w − sj ]},
if sj ≤ w.

(18)

Eq. (18) generally determines if the video file fj will be
selected by and contribute to the optimal solution U [j, w],
which can be studied in the following three cases. 1) When
j = 0 and w = 0, then the value of U [j, w] is set to zero. 2)
When sj > w, video file fj cannot be added since otherwise
the maximum capacity constraint is violated, which indicates
U [j, w] = U [j − 1, w]. 3) When sj ≤ w, video file fj is
added only if by adding this item to the optimal solution of
U [j − 1, w − sj ], the value of Vi,j(δ) + U [j − 1, w − sj ] is
larger than U [j − 1, w]. At this time, U [j, w] is updated as
Vi,j(δ) + U [j − 1, w − sj ]. Otherwise, video file fj cannot
be added and we have U [j, w] = U [j − 1, w]. The computa-
tional complexity of the proposed dynamic programming (DP)
algorithm in Algorithm 1 is O(JWi).

Algorithm 1 Dynamic programming algorithm for the knap-
sack problem in Eq. (17)

Input: vector Vi(δ) = [Vi,1(δ), Vi,2(δ), . . . , Vi,J (δ)] defined
in Eq. (16b);

vector of video file sizes s = [s1, s2, . . . , sJ ];
and actual storage space Wi for caching in BS bi.

Output: optimal cache placement vector [x∗
i,j |∀fj ∈ F ];

and maximum value of U∗
bi

(δ, [x∗
i,j |∀fj ∈ F ]).

1: function DP(Vi(δ), s, Wi)
2: for w = 0 to Wi do
3: U [0, w] := 0
4: end for
5: for j = 1 to J do
6: U [j, 0] := 0
7: for w = 1 to Wi do
8: if sj ≤ w then
9: if Vi,j(δ) + U [j − 1, w − sj ] > U [j − 1, w] then

10: U [j, w] := Vi,j(δ) + U [j − 1, w − sj ]
11: Flag[j, w] := 1
12: else
13: U [j, w] := U [j − 1, w]
14: Flag[j, w] := 0
15: end if
16: else
17: U [j, w] := U [j − 1, w]
18: Flag[j, w] := 0
19: end if
20: end for
21: end for
22:

23: K := Wi

24: for j = J downto 1 do
25: if Flag[j, K] == 1 then
26: x∗

i,j := 1
27: K := K − sj

28: else
29: x∗

i,j := 0
30: end if
31: end for
32: return [x∗

i,j |∀fj ∈ F ] = [x∗
i,1, x

∗
i,2, . . . , x

∗
i,J ] and

U∗
bi

(δ, [x∗
i,j |∀fj ∈ F ]) = U [J, Wi]

33: end function

We implement the iterations over j = 1, 2, . . . , J and
w = 1, 2, . . . , Wi in Algorithm 1 to obtain the value of
U [j, w] by utilizing at each iteration the recursive relationship
in Eq. (18). In addition, we introduce an auxiliary array
Flag[1 . . . J, 1 . . .Wi] to record which subset of video files
is selected for the optimal solution. Specifically, an entry
Flag[j, w], ∀1 ≤ j ≤ J, ∀1 ≤ w ≤ Wi is set to 1 if
video file fj is selected for the optimal solution U [j, w];
and set to zero otherwise. Then the maximum profit of
the original knapsack problem in Eq. (17) is obtained as
U∗

bi
(δ, [x∗

i,j |∀fj ∈ F ]) = U [J, Wi], and the corresponding
optimal cache placement vector [x∗

i,j |∀fj ∈ F ] can be obtained
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Algorithm 2 Iterative dynamic programming algorithm for the
noncooperative caching case
1: function MNO_Game(δ, X)
2: for each BS bi ∈ B do
3: for each video file fj ∈ F do
4: Compute Vi,j(δ) := Pjλisj(cbh + ςdvp,i) + Pjλiθrj −

sjδ according to Eq. (16b)
5: end for
6: Compute Qi :=

∑
fj∈F sj · 1Vi,j(δ)>0 according to

Eq. (15b)
7: Compute Wi := min{Qi, Si} according to Eq. (15c)
8: DP(Vi(δ), s, Wi) according to Algorithm 1
9: end for

10: return the optimal cache placement matrix X|δ =
[x∗

i,j |∀bi ∈ B, ∀fj ∈ F ] and the maximum MNO’s profit
UMNO(δ, X|δ) =

∑
bi∈B U∗

bi
(δ, [x∗

i,j |∀fj ∈ F ]), for a
given unit rental price δ

11: end function
12:

13: function VP_Game(δ, X)
14: Set δ := 0
15: repeat
16: MNO_Game(δ, X)
17: Compute the VP’s profit UV P (δ, X|δ) according to

Eq. (10)
18: δ ← δ + Δδ

19: until UV P (δ, X|δ) achieves the maximum value with
regard to δ, and the corresponding decision variables are
denoted as δopt and Xopt

20: return the optimal unit rental price δopt and the optimal
cache placement matrix Xopt

21: end function

based on a downward iteration over j = J, . . . , 2, 1 for the
auxiliary entry Flag[j, w], ∀1 ≤ j ≤ J, ∀1 ≤ w ≤Wi.

C. Iterative Dynamic Programming Algorithm

Based on Algorithm 1, we then develop a DP based iterative
algorithm as shown in Algorithm 2 to find the SE point
of the proposed Stackelberg game. The proposed DP based
iterative algorithm in Algorithm 2 involves iterative rounds
of interactions between the VP and the MNO. As a leader,
the VP first initializes the unit rental price δ to zero and starts
the game. In the follower’s game, the MNO responds with
computing the demanded amount of the video files and the
actual storage space for local caching according to Eqs. (15b)
and (15c), respectively, and running the DP algorithm in
Algorithm 1 to obtain the optimal cache placement matrix
and the corresponding maximum profit given the unit rental
price. After that, the VP computes its own profit based on
the cache placement matrix obtained by the MNO, and then
increases the unit rental price δ by a slight increment of
Δδ > 0 and implements the above interactions iteratively. The
computational complexity of the proposed DP based iterative
algorithm in Algorithm 2 is O(IJWmaxδmax/Δδ), where
Wmax � maxbi∈B Wi.

At the first several iterations, the VP’s profit would increase
with the increment of δ. This is because when the unit rental
price δ is small, the actual storage space (actual amount
of rented video files for local caching) is mainly limited
by and equal to the storage capacity of the BSs, and thus
the total profit of the VP through renting will be linearly
increased with the increment of δ. This increasing trend,
however, cannot last for long. The demand of the BSs for
local caching would be decreasing after the unit rental price δ
reaches a certain point, which in turn would decrease the total
profit of the VP. Therefore, after a few iterations, the VP’s
profit starts to decrease due to the decreasing demand of
the BSs. The VP has to find such a point δopt, by running
the iterations until its profit achieves the maximum value
with regard to δ, and the corresponding unit rental price δopt

and cache placement matrix Xopt are the SE point of the
proposed Stackelberg game for the noncooperative caching
case. In Algorithm 2, the value of step size Δδ should
be sufficiently small to guarantee that the optimal solution
(δopt, Xopt) is close enough to the SE point [9]. Then, for
the optimal unit rental price δopt and the optimal cache
placement matrix Xopt returned by the iterative DP algorithm
in Algorithm 2 with a sufficiently small value of Δδ , we have
UV P (δopt, Xopt) ≥ UV P (δ, X|δ) since UV P (δopt, Xopt)
achieves the maximum value among UV P (δ, X|δ) with regard
to δ, and UV P (δ, X|δ) ≥ UV P (δ, Xopt) since X|δ is the
optimal cache placement matrix solved by the DP algorithm
for given δ. Therefore, we can verify that UV P (δopt, Xopt) ≥
UV P (δ, Xopt). In addition, Xopt is the optimal cache place-
ment matrix solved by the DP algorithm when δ = δopt, thus
we have UMNO(δopt, Xopt) ≥ UMNO(δopt, X). Therefore,
both the conditions in Eqs. (13) and (14) hold and the solution
(δopt, Xopt) obtained by the proposed algorithm converges to
the SE point. The convergence to the SE point of the proposed
iterative DP algorithm in Algorithm 2 will also be justified by
the experimental results shown in Fig. 3 in Section VII-A.

VI. OPTIMIZATION ALGORITHM FOR DISTRIBUTED

COOPERATIVE CACHING

In this section, we focus on the distributed cooperative
caching case and accordingly develop the iterative gradient
ascent algorithm to find the SE point of the proposed Stack-
elberg game.

A. Challenges

Compared to the noncooperative caching case, the optimiza-
tion algorithm design for the distributed cooperative caching
is more complicated. The fundamental technical challenges
introduced by the coordination between BSs can be explained
as follows. If we integrate the expression of the notations
R̄save

i,j and R̄share
i,j in Eqs. (5) and (6) into the optimization

objective in Eq. (12a) and after derivation, we can see that
the notation Vi,j(δ) includes not only the achieved revenue
for serving the users of BS bi by caching video file fj in
bi, but also the achieved revenue for serving the users of the
adjacent BSs to bi by caching video file fj in bi. Therefore,
the MNO’s profit maximization problem in Eq. (12) cannot be



ZOU et al.: JOINT PRICING AND CACHE PLACEMENT FOR VIDEO CACHING: A GAME THEORETIC APPROACH 1575

decoupled and decomposed into the sub-optimization prob-
lems of its BSs, since the cache placement decision of a
BS bi is correlated with those of its adjacent BSs in N (bi).
In addition, the proposed dynamic programming algorithm in
Algorithm 1 is no longer feasible, since the value of Vi,j(δ) is
correlated with all the values of Vi′,j(δ), ∀b′i ∈ N (bi). In fact,
following the proof of Proposition 1 in [5], we can similarly
prove that in the noncooperative caching case the MNO’s profit
maximization problem in Eq. (12) for a given unit rental price
δ is equivalent to a submodular maximization problem with a
set of knapsack constraints1. In theory, it requires exponential
computational complexity (with respect to I , J , and Si)
to obtain the optimal solution and usually is approximately
solved in practice by the greedy algorithm with a sub-optimal
solution to problem P2.

To address the above challenges, in the following, we intro-
duce the split cache strategy designed for the cooperative
caching system, and reformulate the MNO’s profit maximiza-
tion problem based on this strategy with the homogeneous
assumptions on cache storage capacities and content sizes.
We then extend the investigation for practical scenarios with
heterogeneous cache storage capacities of BSs and heteroge-
neous file sizes of videos.

B. Split Cache Strategy for Distributed Cooperative Caching

The noncooperative cache placement strategy in Section V
is to individually allocate the popular video files in the local
cache of each BS by solving its own profit maximization
problem, which is an extreme strategy in cooperative caching
and might give rise to heavy content duplications over the
network of MNO. Another extreme cache placement strategy
is to allocate the popular video files over the BSs by avoiding
duplications. These two strategies are either too greedy or too
unselfish, resulting a poor caching performance. To strike the
balance between greediness and full cooperation, the split
cache strategy that locates somewhere in between these two
extreme cases is proposed in [10], [25] for the distributed
cooperative caching in small-cell networks. In addition, it is
theoretically proved and numerically analyzed in [10] as
the optimal cache placement strategy for networks with the
homogeneous assumptions on content demands, cache storage
capacities and content sizes.

Therefore, we adopt here this split cache strategy to divide
the actual storage space of the cache into a duplicate partition
and a unique partition. Specifically, the duplicate partition
takes up a proportion ρ of the actual storage space and is
used by every BS for caching the same most popular video
files. The rest 1−ρ portion is allocated as the unique partition
for disjointly caching unique subsets of the less popular video
files in different BSs, such that the diversity of cached content
is enhanced.

C. Problem Reformulation for MNO Profit Maximization

As illustrated in Fig. 2, we assume that each BS bi ∈ B
has the same storage capacity Si = S0, and the same demand

1The detailed proof is omitted here due to the space limit.

Fig. 2. Storage partitioning for the local cache of BS bi based on the split
cache strategy.

Qi = Q0 for a given unit rental price δ according to Eq. (12b).
Therefore, the actual storage space used for caching can be
obtained as Wi = W0 = min{Q0, S0}, within which a
proportion of ρ is used for the duplicate partition while the
rest for the unique partition. We further assume that each
video file fj ∈ F has the same file size sj = s0 and the
same price rj = r0 charged by the VP from the user. The
split cache strategy in [10], [25] then populates the duplicate
partition of every BS with the Ndu most popular video files
Fdu = {f1 ∼ fNdu

}, where Ndu = 	ρ · W0/s0
 and the
notation 	·
 denotes the floor function. On the other hand,
a total number Nun = I ·	(1−ρ)·W0/s0
 of the unique video
files will be uniformly distributed over the unique partitions
of all the BSs b1 ∼ bI , corresponding to the less popular
video files Fun = {fNdu+1 ∼ fNdu+Nun}. Therefore, based
on Eq. (1), the probability that a requested video is cached in
the duplicate partition of each BS is given by:

P du =
∑

fj∈Fdu

Pj ≈
∫ Ndu

j=1

Ω
jα

dj = Ω
N

(1−α)
du − 1
1− α

(19a)

=
N

(1−α)
du − 1

J (1−α) − 1
≈ (ρ · W0

s0
)(1−α) − 1

J (1−α) − 1
, (19b)

where Ω = 1/
∑J

j=1
1

jα ≈ 1/(
∫ J

j=1
1

jα dj) = 1−α
J(1−α)−1

and
we have the approximation in Eq. (19b) by releasing the floor
operation in Ndu. The probability that a requested video is
cached in the unique partitions of all the BSs can be similarly
derived as:

Pun =
∑

fj∈Fun

Pj =
Ndu+Nun∑

j=1

Pj −
Ndu∑

j=1

Pj (20a)

=
(Ndu + Nun)(1−α) −N

(1−α)
du

J (1−α) − 1
(20b)

≈ {(ρ ·
W0
s0

) + [I · (1− ρ) · W0
s0

]}(1−α) − (ρ · W0
s0

)(1−α)

J (1−α) − 1
,

(20c)

where the floor operation in Ndu and Nun is similarly released
to obtain the approximation in Eq. (20c).

Following the split cache strategy, the less popular video
files fNdu+1 ∼ fNdu+Nun will be uniformly distributed over
the unique partitions of all the BSs. Therefore, the average
local hit rate of each BS bi, defined as the probability that the
request from a user of bi is served by the video files cached
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in bi, can be expressed as:

PL
i = P du +

Pun

I
(21)

The average adjacent BS hit rate of each BS bi, defined as the
probability that the request from a user of bi is served by the
video files cached in the adjacent BSs in N (bi), is given by:

PA
i =

I − 1
I

Pun. (22)

Both PL
i and PA

i can be written as functions of ρ.
Therefore, for a given unit rental price δ, the MNO’s profit

maximization problem in Eq. (12) can be reformulated with
respect to the average local hit rate and the average adjacent
BS hit rate, as follows:

P3: max
ρ∈[0,1]

UMNO(ρ) �
∑

bi∈B

{

λis0 PL
i · (cbh + ς · dvp,i)

+ λis0P
A
i ·

[

(cbh + ς · dvp,i)− (cco +
ς

|N (bi)| ·
|N (bi)|∑

n=1

d(n)i,i)
]

+λi(PL
i + PA

i ) · θr0 − s0 · δ ·Wi

}

. (23)

In the reformulated optimization problem in Eq. (23), the deci-
sion variable changes to the proportion parameter ρ in the split
cache strategy, and the optimization objective is expressed as
a function of ρ. More specifically, in the objective function
UMNO(ρ), the first term denotes the average revenue saved for
sending requested videos to users of bi by the locally cached
video files in bi, the second terms represents the average
revenue saved for sending the requested videos to users of
bi by the remotely cached video files in the adjacent BSs of
bi, where 1

|N (bi)|
∑|N (bi)|

n=1 d(n)i,i is the average transmission
delay between bi and its adjacent BSs, the third term denotes
the shared user payment achieved by serving the users with
the cached video copy either in bi or from its adjacent BSs,
and the last term is the average rental cost in accordance
with the actual storage space Wi = W0 of bi used for video
caching, where the demand Qi = Q0 for a given unit rental
price δ is obtained according to the constraint in Eq. (12b)
and the actual storage space used for caching can be obtained
as Wi = W0 = min{Q0, S0} according to the constraint in
Eq. (12c). In addition, the cache storage constraint in Eq. (12d)
is satisfied when determining the number Ndu = 	ρ ·W0/s0

of duplicated files and the number Nun = I ·	(1−ρ) ·W0/s0

of unique files.

Proposition 1: The objective function UMNO(ρ) in Eq. (23)
is a concave function over the feasible region of the decision
variable ρ ∈ [0, 1].

Proof: In general, the concavity of function UMNO(ρ)
can be proved by showing that the second-order derivative
d2 UMNO(ρ)/dρ2 ≤ 0, ∀ρ ∈ [0, 1]. For the details, please
refer to Appendix IX.

D. Iterative Gradient Ascent Algorithm

Based on the proof of concavity in Proposition 1, the MNO’s
profit maximization problem can be efficiently solved by the
gradient ascent algorithm. Then, similar to the procedure in
Algorithm 2, we develop an iterative gradient ascent algorithm
as shown in Algorithm 3 to find the SE point of the proposed
Stackelberg game for the distributed cooperative caching case.
In Algorithm 3, the VP’s game and its interaction with the
MNO are the same as those in Algorithm 2. The difference
appears in the MNO’s game that targets to obtain the optimal
cache placement matrix and maximum MNO’s profit for a
given unit rental price δ. In the MNO’s game of the distributed
cooperative case, we first use the gradient ascent algorithm
with a step-size of Δρ > 0 to find the optimal proportion
parameter ρ∗|δ for a given δ. Then, we populate the duplicate
partition of every BS with the Ndu most popular video files
f1 ∼ fNdu

, and uniformly place the less popular video
files fNdu+1 ∼ fNdu+Nun over the unique partitions of all
the BSs b1 ∼ bI . The computational complexity of the
proposed iterative gradient ascent algorithm in Algorithm 3 is
O((ε−2+J)δmax/Δδ), where the computational complexity of
each gradient ascent algorithm in the MNO’s game is O(ε−2)
according to [26].

Similarly as Algorithm 2, at the first several iterations
when the unit rental price δ is small, the VP’s profit would
increase with the increment of δ. But after a few iterations,
the VP’s profit starts to decrease due to the decreasing demand
of the BSs according to the price-demand relationship. The
VP has to find such a point δopt, by running the iterations
until its profit achieves the maximum value with regard to
δ, and the corresponding unit rental price δopt and cache
placement matrix Xopt are the SE point of the proposed
Stackelberg game for the distributive cooperative caching case.
The convergence to the SE point of the proposed iterative
gradient ascent algorithm in Algorithm 3 will also be justified
by the experimental results shown in Section VII-B.

E. Extension to Scenarios With Heterogeneous File Sizes and
Cache Capacities

We now extend the analysis to a more practical scenario
where the video files have different sizes and the cache storage
capacities of BSs are also different. In this situation, the video
files to be cached in the duplicate and unique partitions given
the proportion parameter ρ are different than those in the
homogeneous case. Specifically, the set of cached video files
in the duplicate partition of every BS is obtained as:

Fdu = arg max
Ψ⊆F

{ ∑

fj∈Ψ

Pj · sj

∣
∣
∣
∣

∑

fj∈Ψ

sj ≤ ρ ·W0

}

, (24)

where W0 = min{Wi|bi ∈ B} and the set of video files that
are uniformly distributed in the unique partitions of all the
BSs is given by:

Fun = arg max
Φ⊆(F\Fdu)

{ ∑

fj∈Φ

Pj · sj

∣
∣
∣
∣

∑

fj∈Φ

sj ≤
∑

bi∈B
Wi − (1 − ρ) ·W0

}

, (25)
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Algorithm 3 Iterative gradient ascent algorithm for the dis-
tributed cooperative caching case

1: function MNO_Game(δ, X)
2: Set ρ := 0
3: Set error threshold ε to a small positive value close to 0

(e.g., ε = 0.1, 0.01, . . .)
4: Compute Q0 according to Eq. (12b)
5: Compute W0 := min{Q0, S0} according to Eq. (12c)
6: Set UMNO := UMNO(ρ)
7: repeat
8: ρ← ρ + Δρ · dUMNO(ρ)

dρ

9: ΔUMNO ← UMNO(ρ)− UMNO

10: Set UMNO := UMNO(ρ)
11: until |dUMNO(ρ)

dρ | ≤ ε
12: Let ρ∗|δ := ρ
13: Compute Ndu := 	ρ∗|δ ·W0/s0

14: Compute Nun := I · 	(1− ρ∗|δ) ·W0/s0

15: Set X|δ = [x∗

i,j |∀bi ∈ B, ∀fj ∈ F ] as zero matrix.
16: Set x∗

i,j := 1, ∀bi ∈ B, ∀fj ∈ Fdu = {f1 ∼ fNdu
}

17: for each video fj ∈ Fun = {fNdu+1 ∼ fNdu+Nun} do
18: r ← (j mod I) + 1
19: Set x∗

r,j := 1
20: end for
21: return the optimal cache placement matrix X|δ and the

maximum MNO’s profit UMNO(δ, X|δ) = UMNO(ρ∗|δ),
for a given unit rental price δ

22: end function
23:

24: function VP_Game(δ, X)
25: Set δ := 0
26: repeat
27: MNO_Game(δ, X)
28: Compute the VP’s profit UV P (δ, X|δ) according to

Eq. (10)
29: δ ← δ + Δδ

30: until UV P (δ, X|δ) achieves the maximum value with
regard to δ, and the corresponding decision variables are
denoted as δopt and Xopt

31: return the optimal unit rental price δopt and the optimal
cache placement matrix Xopt

32: end function

Then, the duplicate partition and unique caching probabilities
in Eqs. (19a) and (20a) are normalized with respect to the file
sizes, and rewritten as:

P du
N =

∑

fj∈Fdu

Pj · sj

s0
, and Pun

N =
∑

fj∈Fun

Pj · sj

s0
, (26)

where s0 =
∑

fj∈F sj/J is the average file size. Based on
Eqs. (21) and (22), we have the average local and adjacent
BS hit rates, and plug them into Eq. (23) to obtain the MNO’s
profit maximization problem for the scenarios with hetero-
geneous video file sizes and cache storage capacities. For
the heterogeneous case, we can still implement Algorithm 3
to find the SE point of the Stackelberg game between the
VP and the MNO, but with a slight modification on the update

step of the proportion parameter in Line 7 as ρ ← ρ + Δρ.
That is, the previous gradient ascent algorithm used for the
homogeneous case is modified here as a constant step-size
search algorithm to find the optimal proportion parameter ρ∗|δ
for a given δ.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms for both the noncooperative and distributed cooper-
ative caching cases, and derive simple guidelines for effective
pricing and cache placement in video caching systems under
different simulation settings.

A. Noncooperative Caching Case

We consider a video caching system comprising a VP that
provides J = 100 video files with the Zipf parameter α =
0.5, and an MNO with I = 5 BSs. The file sizes of the
J = 100 videos at the VP are randomly selected from
{s0, 2s0, 3s0, 4s0, 5s0}, where s0 = 1 is set as the
normalized unit file size. For each BS bi ∈ B, the number of
video download requests submitted from the users is assumed
as λi = 200. For the backhaul links between the VP and BSs,
we set the unit backhaul transmission cost cbh = 1 dollars/unit
size, the backhaul transmission delay dvp,i = 2 s, and the
weight constant ς = 0.1. The revenue sharing percentage is
set as θ = 0.45 as in [22]. For the video price rj paid by users,
we assume that it depends on the video popularity, where the
VP charges 0.5, 0.4 and 0.3 dollar/unit size from the users for
video files f1 ∼ f10, f11 ∼ f50 and f51 ∼ f100, respectively.

1) Impact of System Parameters: We first evaluate and com-
pare the performance of the proposed iterative DP appeared
in Algorithm 2 under various parameter settings, in order
to gain a further insight into the impact of different system
parameters. We adopt the aforementioned simulation settings,
unless stated otherwise. Fig. 3 illustrates the impact of the unit
rental price δ on VP’s profit UV P and MNO’s profit UMNO,
and on the actual storage space Wi allocated for each BS bi,
by varying the parameter setting of the BS storage capacity
Si, the Zipf parameter α, and the unit backhaul transmission
cost cbh, respectively.

For different parameter settings, we can conclude some
general observations, as follows. If we focus on any spe-
cific parameter setting, the actual storage space Wi for local
caching keeps constant and equals to the storage capacity Si

when δ is small, and becomes a downward-sloping line after
δ exceeds a certain value. This actual demand versus price
curve empirically justifies the theoretical analysis of the law
of demand in Section III-D, which claims that when other
factors are kept equal, the demanded quantity of a good falls
when the price rises. In accordance with this actual demand
versus price curve, the maximum MNO’s profit given a unit
rental price δ also decreases with δ, since a larger δ results in
a higher rental cost and a lower saved backhaul transmission
cost due to the decreasing demand for local caching. The
VP’s profit first increases linearly with increasing δ when δ
is small and the actual storage space Wi for local caching is
larger than but constrained by the storage capacity Si. Then,
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Fig. 3. Impact of the unit rental price δ on the profit of the VP and the
MNO, and on the actual storage space allocated for BSs, with (a) and (b)
different BS storage capacity Si; (c) and (d) different Zipf parameter α; and
(e) and (f) different unit backhaul transmission cost cbh.

after a few iterations, the VP’s profit starts to decrease when
δ is larger than a certain point δopt, due to the decreasing
demand of the BSs. This point δopt, together with the optimal
cache placement matrix Xopt given δ = δopt, is thus the
SE point of the proposed Stackelberg game. In other words,
the convergence to the SE point of the proposed algorithm is
justified in experiments.

More specifically, in Figs. 3(a) and 3(b), we let α = 0.5
and cbh = 1 dollars/unit size and evaluate the impact of δ
on the algorithm’s performance by setting Si to 100, 200,
and 300 unit sizes, respectively. It can be seen that as the
storage capacity Si increases, the optimal unit rental price
δopt with regard to the SE point will decrease to allow a
larger Wi. Although δopt decreases, the maximum profit of
the VP and the MNO will both be increased due to the
increment of Wi. Figs. 3(c) and 3(d) show the impact of δ
on the algorithm’s performance by fixing cbh = 1 dollars/unit
size and Si = 200 unit sizes, and varying the value of
Zipf parameter α = 0.25, 0.5, 0.75. As α becomes larger,
the video request probability is more concentrated on the
popular video files, which results in a smoother actual demand
versus price curve, and a smaller optimal unit rental price with
a higher maximum profit for the MNO but a lower maximum
profit for the VP. In Figs. 3(e) and 3(f), the impact of δ on the

Fig. 4. (a) Maximum profit of the VP and the MNO and (b) optimal unit
rental price vs. Zipf parameter; and (c) maximum profit of the VP and the
MNO and (d) optimal unit rental price vs. unit backhaul transmission cost; and
(e) maximum profit of the VP and the MNO and (f) optimal unit rental price
vs. weight parameter; where the storage capacity of each BS is Si = 125.

algorithm’s performance is studied when α = 0.5, Si = 200
unit sizes, and cbh changes from 1 to 3 dollars/unit size.
We note that the actual storage space Wi starts to fall later
when the unit backhaul transmission cost cbh increases, which
corresponds to a larger optimal unit rental price with a higher
maximum profit for both the MNO and the VP.

2) Performance Comparison: We further compare the per-
formance of the proposed iterative DP algorithm (iDP) in
Algorithm 2 with two other caching schemes: maximum hit
rate (maxHR), where for a given unit rental price δ, each BS
bi selects to cache the video files that maximize the local
cache hit rate until the demand is reached; and random caching
(Random), where for a given unit rental price δ, each BS bi

randomly selects the video files to cache until the demand is
reached. In Fig. 4, we set storage capacity to Si = 125 unit
sizes, and compare the maximum profit of the VP and the
MNO, and the optimal unit rental price in accordance with
the SE point of each algorithm versus the Zipf parameter and
the unit backhaul transmission cost, respectively. It should
be noted that according to the law of demand and previous
analysis on the demand versus price curve, for the same
parameter setting, the optimal unit rental price after iterations
to reach the SE point of all the three algorithms will be
the same, as shown in Figs. 4(b) and 4(d). Similarly to the
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Fig. 5. Impact of the unit rental price δ on (a) the profit of the VP,
the MNO and the BSs, and (b) the actual storage space allocated for BSs,
under heterogeneous BS settings.

conclusion from Fig. 3, the optimal unit rental price of all
the three algorithms decreases as the Zipf parameter increases,
and increases as the unit backhaul transmission cost increases.
Therefore, as shown in Figs. 4(a) and 4(c), the maximum
profit of VP achieved by all the three algorithms is also
the same, which represents a decreasing curve of α and an
increasing curve of cbh. In Figs. 4(e) and 4(f), we further
study the impact of the weight parameter ς on the algorithms’
performance. It can be seen that a larger value of ς results in
a higher optimal unit rental price δopt, which corresponds to a
higher maximum profit for both the MNO and the VP. For the
MNO, the proposed algorithm can achieve a higher maximum
profit than the other two schemes through the optimal cache
placement strategy.

3) Performance Evaluation Under Heterogeneous BS Set-
tings: Next, we study the performance of the proposed iter-
ative DP algorithm in Algorithm 2 under the heterogeneous
setting of the BSs, where we assume that the BSs have het-
erogeneous storage capacities S = [156, 268, 466, 362, 257]
unit sizes (the capacities are randomly selected integers within
the range [100, 500]), and different numbers of video requests
λ = [231, 135, 385, 329, 182] (the numbers are randomly
selected integers within the range [100, 400]). Fig. 5 shows
the impact of δ on the performance of the proposed algo-
rithm. As seen in Fig. 5(b), the actual demand versus price
relationship of each BS represents a different curve since
the parameter setting of Si and λi becomes heterogeneous,
which causes different cache placement decisions and thus
different BS’s profit versus unit rental price curves in Fig. 5(a).
However, the overall profit of the VP and the MNO follows the
same trend as in the homogeneous settings, and the SE point
can still be reached by iteratively searching for the maximum
value point of the VP’s profit.

In Fig. 6, we compare the performance of the proposed
algorithm with the other two caching schemes under the
heterogeneous setting of the BSs. A similar trend as for the
homogeneous setting in Fig. 4 can be observed: the optimal
unit rental price and the maximum profit of VP achieved by all
the three algorithms will decrease with the increment of Zipf
parameter and increase with the increment of unit backhaul
transmission cost, while the proposed algorithm achieves a
higher maximum profit for MNO through the optimal cache
placement strategy.

Fig. 6. (a) Maximum profit of the VP and the MNO and (b) optimal unit
rental price vs. Zipf parameter; and (c) maximum profit of the VP and the
MNO and (d) optimal unit rental price vs. unit backhaul transmission cost;
and (e) maximum profit of the VP and the MNO and (f) optimal unit rental
price vs. weight parameter; under heterogeneous BS settings.

B. Distributed Cooperative Caching Case

In the distributed cooperative caching case, the file size of
all the J = 100 videos at the VP is first set as s0, where
s0 = 1 unit size is the normalized unit file size. The video price
charged by the VP from the users is set to 0.5 dollar/unit size
for each video. We further assume that the transmission delay
di,i′ between every two BSs bi and bi′ is randomly selected
from the range (0, 0.5) s. The remaining simulation settings
are the same as in Section VII-A, unless stated otherwise.

1) Impact of System Parameters: We first evaluate and
compare the performance of the proposed iterative gradient
ascent algorithm in Algorithm 3 under various parameter
settings, in order to gain a further insight into the impact
of different system parameters. Fig. 7 presents the impact of
the unit rental price δ on VP’s profit UV P and MNO’s profit
UMNO, and on the actual storage space Wi allocated for each
BS bi, by varying the parameter setting of the BS storage
capacity Si, the Zipf parameter α, and the unit adjacent BS
transmission cost cco, respectively.

Similarly to the noncooperative caching case in Fig. 3,
the general observation is that the law of demand in
Section III-D can be justified by the actual demand versus
price curves in Figs. 7(b), 7(d) and 7(f). In addition, the con-
vergence to the SE point of the proposed iterative gradient
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Fig. 7. Impact of the unit rental price δ on the profit of the VP and the
MNO, and on the actual storage space allocated for BSs, with (a) and (b)
different BS storage capacity Si; (c) and (d) different Zipf parameter α; and
(e) and (f) different unit adjacent BS transmission cost cco.

ascent algorithm is justified through the iterations of UV P

in Figs. 7(a), 7(c) and 7(e). More specifically, in Figs. 7(a)
and 7(b), we let α = 0.5 and cco = 0.5 dollar/unit size and
evaluate the impact of δ on the algorithm’s performance by
setting Si to 20, 50, and 100 unit sizes, respectively. It can
be seen that as the storage capacity Si increases, the optimal
unit rental price δopt with regard to the SE point will decrease
to allow a larger Wi. Although δopt decreases, the maximum
profit of the VP and the MNO will both be increased due to
the increment of Wi. Figs. 7(c) and 7(d) show the impact of
δ on the algorithm’s performance by fixing Si = 70 unit sizes
and cco = 0.5 dollars/unit size, and varying the value of Zipf
parameter α = 0.4, 0.5, 0.6. As α becomes larger, the video
request probability is more concentrated on the popular video
files, which results in a smoother actual demand versus price
curve, and a smaller optimal unit rental price with a higher
maximum profit for the MNO but a lower maximum profit
for the VP. In Figs. 7(e) and 7(f), the impact of δ on the
algorithm’s performance is studied when α = 0.5, Si = 70
unit sizes, and cco changes from 0.25 to 0.75 dollar/unit size.
We note that the actual storage space Wi starts to fall earlier
when the unit adjacent BS transmission cost cbh increases,
which corresponds to a smaller optimal unit rental price with
a higher maximum profit for the MNO but a lower maximum
profit for the VP.

Fig. 8. Maximum profit of (a) the MNO and (b) the VP vs. Zipf parameter;
and maximum profit of (c) the MNO and (d) the VP vs. unit backhaul
transmission cost; and maximum profit of (e) the MNO and (f) the VP vs.
weight parameter; under heterogeneous file size and caching capacity settings.

2) Performance Evaluation Under Heterogeneous File Size
and Cache Capacity Settings: Then, we conduct simula-
tions for the scenario with heterogeneous file sizes and
cache storage capacities, by setting the file sizes of the
J = 100 videos the same as in Section VII-A and by
assuming that the BSs have heterogeneous storage capac-
ities S = [215, 252, 185, 120, 282] unit sizes (the
capacities are randomly selected integers within the range
[100, 300]) and different numbers of video requests λ =
[296, 202, 251, 222, 276] (the numbers are randomly selected
integers within the range [200, 300]). Here, the proposed iter-
ative gradient ascent algorithm (denoted by cooperative, ρ∗) in
Algorithm 3 is compared to other two schemes: the previously
proposed iterative DP algorithm (denoted by noncooperative)
in Algorithm 2 for the noncooperative caching, and the split
cache strategy for the cooperative caching with a constant
partitioning parameter ρ = 0.5 (denoted by cooperative, ρ =
0.5). Through the comparison result shown in Fig. 8, it can
be seen that the proposed algorithm in Algorithm 3 achieves a
higher maximum profit for both the VP and the MNO than the
previously proposed optimal caching scheme in Algorithm 2
for the noncooperative caching. Such a performance gain is
mainly achieved by encouraging the cooperation between BSs
to further save the unit backhaul transmission cost, which
becomes more significant when the difference between cbh
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Fig. 9. (a) Number of video requests from users for different movies in
MovieLens Latest Dataset (small), (b) request probability distribution after
ranking with request probabilities, and (c) maximum profit of the VP and the
MNO and (d) optimal unit rental price vs. revenue sharing percentage.

and cco increases as shown in Figs. 8(c) and 8(d). In addition,
the proposed algorithm in Algorithm 3 also outperforms the
split cache strategy with a constant partitioning parameter
ρ = 0.5, since the proposed algorithm is able to seek the
optimal partitioning parameter ρ∗ for any given unit rental
price.

C. Performance Comparison on a Trace Dataset

Finally, we use the MovieLens Latest Dataset (small) [27]
from MovieLens (an online recommender to gather research
data on personalized recommendations) [28] as the trace
dataset for performance comparison. This dataset contains
100835 ratings obtained from 610 users over 9742 movies,
where each entry corresponds to a movie rating by a user
and comprises an anonymous user ID, a movie ID, a rating
made on a 5-star scale, and a timestamp. We adopt the similar
approach as in [29], [30], and consider each movie rating as
a video request from a user. To provide a better illustration
of the dataset, Fig. 9(a) shows the number of video requests
from users for different movies in the dataset, and Fig. 9(b)
presents the request probability distribution of these movies
after ranking with their request probabilities. Accordingly,
we consider a video caching system comprising a VP that
provides J = 9742 video files and an MNO with I = 1
BS. The spatial resolution of each video file is randomly
selected from 360p, 480p and 720p. The corresponding file
size is approximately assumed to be s0, 2s0, and 5s0, where
S0 = 1 is set as the normalized unit file size. The storage
capacity of the BS is set to 2000 unit sizes. For the video
price rj paid by users, we assume that it depends on the video
popularity, where the VP charges 0.5, 0.4 and 0.3 dollar/unit
size from the users for video files f1 ∼ f200, f201 ∼ f1000 and

f1001 ∼ f9742, respectively. The remaining simulation settings
are the same as in Section VII-A, unless stated otherwise.

In Figs. 9(c) and 9(d), we compare the performance of
the proposed iterative DP algorithm in Algorithm 2 with
maxHR and Random schemes, by varying the revenue sharing
percentage θ from 40% to 60%. The curves obtained for
both the proposed iterative DP algorithm and the maxHR
scheme shows that as θ increases, the MNO will retain
more revenue from the shared user payment, which leads to
an slightly increasing maximum profit for the MNO but a
slightly decreasing maximum profit for the VP. It can also
be seen that as θ becomes larger, the MNO is willing to
pay a higher optimal rental price δ∗ to the VP. In addi-
tion, through the optimal cache placement strategy, the pro-
posed algorithm can achieve a higher maximum profit for
the MNO under the same setting of θ than the other two
schemes.

VIII. CONCLUSION

This paper studied a joint video pricing and cache place-
ment problem for a video caching system that consists of a
video provider (VP) and a mobile network operator (MNO)
with a set of cache-enabled base stations (BSs). We have
modeled the profit competition between the VP and the
MNO as a Stackelberg game, and proposed a leader-follower
optimization formulation to jointly maximize the profit of
both entities by the optimal selection of video pricing for
the VP and the optimal cache placement strategy for the
BSs of the MNO, for both noncooperative and cooperative
caching cases. For the noncooperative caching case, we have
developed an iterative dynamic programming algorithm to
efficiently find the SE point of the proposed Stackelberg game,
while for the cooperative caching case, we have used the
split cache strategy and developed an iterative gradient ascent
algorithm to do so. Extensive simulations have been done
under different system settings, empirically demonstrating the
law of demand in economics and the convergence of the
proposed algorithms to the SE point. Based on the analysis
and simulation results, we further provided guidelines for the
system design of the joint video pricing and cache placement.
For the same system setting, the overall profit of both entities
could be increased by allowing the coordination between
the local caches of the BSs. In addition, the optimal video
pricing as well as the optimal demand for local caching in
the BSs were affected and thus could be adjusted by tuning
different system parameters, such as the storage capacity,
unit backhaul and adjacent BS transmission cost, distribution
of video popularity. For future work, we plan to formally
extend the proposed joint video pricing and cache placement
optimization framework by exploiting the adaptive stream-
ing technologies, such as dynamic adaptive streaming over
HTTP (DASH).

IX. PROOF OF PROPOSITION 1

For the sake of simplicity, we first let c1 = s0 · (cbh + ς ·
dvp,i) + θr0, c2 = s0 · (cco + ς

|N (bi)| ·
∑|N (bi)|

n=1 d(n)i,i) + θr0,
and c3 = s0 · δ ·Wi, to represent some constant terms. Then,
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function UMNO(ρ) can be written as:

UMNO(ρ)

=
∑

bi∈B
[λic1 PL

i + λi(c1 − c2)PA
i − c3] (27a)

=
∑

bi∈B
[λic1(PL

i + PA
i )− λic2 PA

i − c3] (27b)

=
∑

bi∈B

[

λic1(P du + Pun)− λic2
I − 1

I
Pun − c3

]

,

(27c)

where Eq. (27c) is obtained by integrating the Eqs. (21) and
(22). By further denoting k1 = W0

s0
and k2 = 1

J(1−α)−1
in

Eqs. (19) and (20), P du, Pun and (P du +Pun) can be written
as:

P du = k2(k1ρ)(1−α) − k2, (28)

Pun = k2[k1ρ + Ik1(1− ρ)](1−α) − k2(k1ρ)(1−α),

(29)

P du + Pun = k2[k1ρ + Ik1(1− ρ)](1−α) − k2. (30)

Therefore, the second-order derivative of (P du + Pun) and
P du can be denoted and derived as:

∇ � d2(P du + Pun)
dρ2

= −α(1− α)k2k
2
1(1− I)2 ·

[k1ρ + Ik1(1− ρ)](−α−1) ≤ 0, (31)

∇du � d2P du

dρ2
= −α(1− α)k2k

2
1(k1ρ)(−α−1) ≤ 0. (32)

Then, for the second-order derivative of function UMNO(ρ),
we have:

d2 UMNO(ρ)
dρ2

=
∑

bi∈B

[

λic1∇− λic2
I − 1

I
(∇−∇du)

]

(33a)

=
∑

bi∈B

[

λi(c1 − c2
I − 1

I
)∇+ λic2

I − 1
I
∇du

]

(33b)

≤ 0, (33c)

where the inequality in Eq. (33c) holds since backhaul trans-
mission cost s0 · (cbh + ς ·dvp,i) is larger than the adjacent BS
transmission cost s0 · (cco + ς

|N (bi)| ·
∑|N (bi)|

n=1 d(n)i,i), which
indicates that c1 > c2. Therefore, function UMNO(ρ) is a
concave function, and Proposition 1 is proved.
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