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Abstract—Due to the popularity of three-dimensional videos,
2D-to-3D video conversion has become a hot research topic for the
past few years. The most critical issue in 3D video synthesis is the
estimation of depth maps for the video frames. Numerous efforts
have been devoted in fully automatic and semi-automatic depth
estimation approaches, although the discontinuity of depth field
and the ambiguity of motion boundary are still the main chal-
lenges in depth estimation. This paper proposes a semi-automatic
structure-aware sparse-to-dense depth estimation method, which
leverages the tensor voting at two different levels to propagate
depth across frames. In the first level, a 4D tensor voting
is performed to remove outliers caused by inaccurate motion
estimation. Noticing that the 4D tensors of correctly matched
points should lie on the smooth layer in the manifold, we utilize
the variety saliency defined by the eigen-system of the tensor for
outlier removal. In the second level, a high-dimensional tensor
voting algorithm, incorporating spatial location, motion and color
into the tensor representation, is devised to propagate the depth
from the sparse points to the entire image domain. By projecting
the input feature into the tangent space, the relation between
the location, motion, color and the depth can be established by
voting process. Extensive experiments on public dataset validate
the effectiveness of the proposed method in comparison with
state-of-the-art depth estimation approaches.

Index Terms—Depth estimation, tensor voting, motion estima-
tion, bilateral filtering.

I. INTRODUCTION

Three dimensional (3D) video can provide an enhanced
visual experience with depth perception beyond conventional
2D contents. With the growth of 3D display devices, the
increasing demand for 3D contents has aroused a significant
challenge to the 3D industry. A promising way is to produce
new 3D videos from massive existing monocular 2D videos.
A typical 2D-to-3D conversion process consists of two steps:
depth estimation and depth-based rendering. Depth estimation
is a critical issue because without accurate depth, synthesized
stereo views cannot be well generated by depth-based render-
ing (e.g. DIBR [1, 2]).

Existing 2D-to-3D techniques can be divided into two cate-
gories: fully automatic methods (e.g., [3]) and semi-automatic
methods (e.g., [4, 5]), depending on whether user interactions
are involved in depth estimation. Fully-automatic methods
are limited to some restricted scenarios, thus do not work
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well for arbitrary scenes. In contrast, semi-automatic methods
can balance 3D content quality with production cost, which
makes them more effective and flexible. Aiming at desirable
3D quality, semi-automatic methods require skilled operators
to assign depth to the key frames in 2D videos. Later, the
depth information can be propagated automatically from the
key frames to non-key frames over the entire video sequence.
Depth propagation is a major part of depth estimation, thereby
playing a key role in the semi-automatic group. It should be
noted that the proposed method belongs to this category.

Bilateral filtering has been adopted by many approaches
[4, 6] to propagate depth across frames. The main drawback
of bilateral filtering is that it is sensitive to occlusion and inac-
curate motion estimation. In comparison, the proposed method
utilizes high-dimensional tensor voting for depth estimation,
which is robust against occlusion by propagating depth along
the structure of the same object. To estimate motion, many
approaches [7, 8] apply bi-directional matching of optical
flow. However, they often suffer from over-smooth and motion
discontinuity. On the contrary, the proposed method does not
estimate motion densely, but only for a sparse set of feature
points, whose motions are easy to determine, and use 4D
tensor voting to remove unreliable matches.

The contribution of this paper is two-fold. First, a robust
sparse depth map estimation method is proposed, which is
illustrated in the red block in Fig. 1. The depth values of a
sparse set of interest points can be estimated in three steps,
namely, interest point extraction, motion estimation and outlier
removal. Specifically, the first step extracts a set of interest
points from the image, which can be accurately matched
across frames, by corner detection and uniform sampling to
ensure the distinctiveness and the spatial coverage. Next, the
motion of the interest points between two frames will be
estimated by optical flow tracking, so that the depth can be
propagated in accordance with the motion. Finally, since the
motion estimation is not always reliable, an outlier removal
procedure using 4D tensor voting is designed to eliminate the
mismatched interest points. By examining the variety saliency
of the 4D tensors, the proposed algorithm is more effective
in outlier detection compared with conventional bi-directional
motion validation.

Second, based on the depth of the sparse set of interest
points, a depth interpolation algorithm is contrived, which is
illustrated in the green block in Fig. 1. High-dimensional ten-
sor voting [9, 10] is leveraged to reliably propagate the depth
of the interest points to the entire image. To be concrete, the
proposed algorithm encodes each point in the depth field with
the spatial coordinates, motion, color and depth for reliable
depth inference. To extract local structures from the manifold
that the points lies on, the tangent space spanned by the
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Fig. 1. The overall framework of the proposed method.

tangent vectors of the free parameters is utilized to establish
the relation between the visual and motion input to the depth.
Comprehensive experiments on public dataset validate the
effectiveness of the proposed method in comparison with state-
of-the-art methods in depth estimation for videos.

The rest of this paper is organized as follows: Section
II reviews related literature; Section III describes the pro-
posed sparse-to-dense depth estimation approach with high-
dimensional tensor voting. Section IV evaluates the proposed
method through extensive experiments; Finally, Section V
concludes the paper.

II. RELATED WORK

Existing 2D-to-3D techniques can be divided into two
categories: automatic and semi-automatic methods. The former
can estimate the depth of a video sequence automatically
without the human intervention. Depth is estimated from
monocular depth cue, such as shape-from-shading [11] and
depth-from-defocus [12]–[14]. However, these methods can
only extract 3D information from constrained scenes. Multi-
view stereo methods attempt to recover depth by estimating
3D information from images of the same scene captured in
different time, e.g. structure-from-motion [15]–[17]. Recently,
learning-based methods have been exploited to generate depth
map of a monocular image. Konrad et al. [18] presented
two learning-based 2D-to-3D conversion schemes. The first
utilizes low-level video attributes to estimate depth value of
a pixel by learning a local point transformation, while the

second estimates the global depth map of a query image
from a repository of image-depth pairs using nearest-neighbor
search. Wang and Jung [7] proposed example-based video
stereolization with foreground segmentation and depth propa-
gation. Although fully automatic approaches minimize human
involvement, their performance and use scenarios are very
limited. In comparison, the proposed method is capable of
producing high-quality depth maps with the guidance of cheap
sparse key-frames in a semi-automatic way.

Semi-automatic methods are more successful in producing
high stereo quality under the guidance of human intervention.
Guttmann et al. [5] developed a dense depth fusion method
based on user scribbles. A classifier is trained to predict the
disparity based on the user scribbles in some frames, and the
disparity of entire shot can be recovered by an optimization
process, which is constrained by the original scribbles and
the high confidence predictions. 3D tensor voting is utilized
in [19] for multiview stereo reconstruction to enforce pho-
toconsistency, visibility and geometric consistency. A semi-
automatic 2D-to-3D conversion system in [6] contains two
main steps: depth assignment in key frames and dense depth
propagation from key frames to non-key frames. Users draw
some simple strokes to assign depth values in key frames, and
the unmarked areas are assigned using graph-cut optimization.
The depth propagation for non-key frames is based on shifted
bilateral filtering. However, the critical limitation of methods
based on user strokes is that they only work for simple
videos, because users can not possibly label every object in
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the frame by hand. On the contrary, the proposed method
can generate accurate depth maps for complicated videos.
To improve the efficiency of depth propagation, Li et al. [8]
propagated depth for non-key frames via bi-directional motion
estimation, where bi-directional motion vectors are estimated
to determine the depth propagation strategy. [20] extended the
depth propagation algorithm, and proposed a depth refinement
process based on the natural scene statistics (NSS) model.

In [4], depth is attained by bilateral filtering and refined
through a block-based motion compensation from previous
frames. In 2011, the bilateral filtering based method was
extended in [6], where the depth map is propagated by shifted
bilateral filtering with motion information. Bilateral filtering
based approaches are sensitive to occlusions and inaccurate
motion estimation, while the proposed method is robust against
occlusion and motion via high-dimensional tensor voting. Li et
al. [8] propagated depth for non-key frames via bi-directional
motion estimation, where bi-directional motion vectors are
estimated to determine the depth propagation strategy. In [7],
motion vectors are estimated by the Horn-Schunk optical
flow estimation. To alleviate error propagation, post-filtering is
performed before estimating depth to the next frame. It should
be noted that these methods suffer from over-smooth and
motion discontinuity, but the proposed method yields accurate
motion for a sparse set of keypoints.

III. SPARSE-TO-DENSE DEPTH ESTIMATION VIA
HIGH-DIMENSIONAL TENSOR VOTING

A. Framework Overview

The overall architecture of the proposed method is illus-
trated in Fig. 1. The video sequence is denoted by {Ft}Kt=1,
where K is the number of frames and Ft is the t-th frame. The
depth map of the first frame is given and denoted by D1, and
the depth maps of the remaining frames, i.e., {Dt}Kt=2, will be
estimated by propagating the depth along the time line from
the first frame. In other words, the depth map Dt+1 will be
estimated based on Ft, Ft+1 and Dt. In specific, the proposed
method propagates the depth from the current frame to the next
frame in two steps: depth map initialization by sparse motion
estimation and depth interpolation by high-dimensional tensor
voting.

In sparse motion estimation, a set of interest points are
extracted from Ft, and the corresponding points in Ft+1 will
be attained by visual tracking. To rule out the false matches
from tracking, an outlier removal procedure is performed to
retrieve high-confident points for sparse depth estimation and
depth propagation. It is worth mentioning that, on the contrary
to conventional approaches that use forward-backward motion
verification to remove false matches, the proposed method
investigates 4D tensor voting based on the location and the
motion of the interest points for outlier removal, which is more
effective in capturing the geometric structure of the depth map.
Hence, the depth of the sparse set of keypoints in Dt+1 can be
obtained by propagating the depth from Dt along the motion
vectors.

In depth interpolation, the entire depth map of frame Ft+1

will be estimated with high-dimensional tensor voting on the

basis of the depth of the initial points. To obtain a reliable
representation, each initial point is encoded by its location,
motion, color and depth. Then, each point propagates its
information to its neighbors via tensor voting, and the tangent
space spanned by the free parameters of the tensors will be
derived for depth inference. Hence, the depth of a point can
be interpolated by iteratively moving towards the desirable
direction based on the tangent space.

As follows, we will revisit the basic concepts about tensor
voting in Section III-B, and then describe the technical details
on the depth map initialization by sparse motion estimation
in Section III-C and depth interpolation by high-dimensional
tensor voting in Section III-E.

B. Preliminaries in Tensor Voting

In this section, we briefly review the necessary notations
and formulations in tensor voting. More technical details can
be found in [21], and a comprehensive survey is available in
[10]. Two special cases of tensors are: stick tensor and ball
tensor. The stick tensor has only one non-zero eigenvalue and
represents perfect certainty for a hyperplane normal to the
eigenvector that corresponds to the non-zero eigenvalue. On
the other hand, all eigenvalues of a ball tensor are identical and
non-zero, which represents perfect uncertainty in orientation,
or, just the presence of an unoriented point.

After the data points are represented with tensors, they can
refine the information they carry based on their neighbors
through a voting process. The vote that the voter casts to the
receiver has the orientation the receiver would have, if both the
voter and receiver belong to the same structure. The magnitude
of the vote is proportional to the confidence that the voter and
receiver belong to the same structure.

C. Depth Map Initialization by Sparse Motion Estimation

To obtain an accurate depth map, the depth of a sparse
set of reliable and discontinuity-preserving interest points is
estimated in the first step, which will be propagated to other
points in the second step.

The interest point are sampled from Ft+1 in two ways:
non-uniform sampling from corners, and uniform sampling
from regular grids. In concrete, to obtain an accurate matching
of the interest points in Ft and Ft+1, the initial points
are supposed to be distinct, so that they can be extracted
repetitively and matched unambiguously. Hence, we extract
Shi-Tomasi corners [22] from the image, which have been
proven to be effective in various computer vision tasks, e.g.,
visual tracking, image retrieval and object detection. On the
other hand, since the distribution of corner points are highly
imbalanced, we uniformly sample the interest points in the
regular grids at a stride of 4 pixels over the entire image.
Hence, the initial points are capable of capturing the main
structures of the image. In addition, due the the fact that
points in textureless region may result in large error in visual
tracking, we remove the points of small eigenvalue of the
structure tensor. Eventually, the initial points extracted from
Ft+1, consisting of points from the corners and from the
textureless region, can be denoted by Pt+1 = {pt+1

i }Mi=1,
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TABLE I
NOTATIONS

K Number of frames Ft, t = 1, · · · ,K The t-th frame
Dt depth map of frame t p = (x, y) Coordinates of interest point

P = {pi}Mi=1 Set of interest points M Number of interest points
ut+1 = (xt − xt+1) Horizontal motion vector vt+1 = (yt − yt+1) Vertical motion vector

T N -dimensional tensor ei, i = 1, · · · , N Eigenvectors
λi, i = 1, · · · , N Eigenvalues N (P ) Set of neighbors of P

R(P ) Votes received by P W (P, Pi) Vote Pi casts to P
(r, g, b, d) RGB intensities and depth V Tangent space

~w Projected direction

where Pt+1 is the point set in Ft+1, M is the number of
initial points, and pt+1

i = (xt+1
i , yt+1

i ) is the coordinates of
the i-th points.

To estimate the displacement of the initial points, KLT
tracker [22] is leveraged to find the corresponding points of
Pt+1 in Ft, which is denoted by Pt = {pti}Mi=1, where pti is
the location of pt+1

i in Ft. Consequently, the motion vectors
of the initial points are

ut+1
i = xti−xt+1

i , vt+1
i = yti − yt+1

i , i = 1, · · · ,M, (1)

where ut+1
i and vt+1

i are the horizontal and vertical displace-
ments of pt+1

i with respect to pti.
The examples of the initial points extracted from the test

sequences are demonstrated in Fig. 2, where the blue points
are uniformly sampled from regular grids over the image, and
the red points are extracted from corners.

D. Outlier Removal by 4D Tensor Voting

To eliminate the wrong matches obtained from visual track-
ing, a 4D tensor voting process is performed. The use of a
voting process for feature inference from sparse and noisy data
was introduced by Guy and Medioni [23] and then formalized
into a unified tensor framework. This methodology is non-
iterative and robust to considerable amounts of outlier noise.
The only free parameter is the scale of analysis, which is
indeed an inherent property of visual perception. The input
data is encoded as tensors, then support information (including
proximity and smoothness of continuity) is propagated by
voting within a neighborhood.

For outlier removal, each point is represented by com-
bining the location (x, y) and the motion (u, v) into a 4D
tuple (x, y, u, v). Since each point is represented in the 4-
dimensional space. A 4-D second order, symmetric, non-
negative definite tensor is defined for each point, which is
used to discover the outliers by examining the eigensystem.

First, each point is encoded as a ball tensor with eigenvalues
and eigenvectors

λ1 = 1, e1 = (1, 0, 0, 0)>,

λ2 = 1, e2 = (0, 1, 0, 0)>,

λ3 = 1, e3 = (0, 0, 1, 0)>,

λ4 = 1, e4 = (0, 0, 0, 1)>.

(2)

The second order, symmetric, non-negative definite tensor can
be decomposed as

T =
4∑

i=1

λieie
>
i

=
4∑

i=1

[(λi − λi+1)
i∑

k=1

eke
>
k ] + λ4

4∑
i=1

eie
>
i ,

(3)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues in descending
order, and e1, · · · , e4 are the corresponding eigenvectors. Note
that eigenvectors are represented as column vectors.

In the voting stage, each point communicates information
with its neighbors, and refines the information it carries, which
is demonstrated in Fig. 3(a). Specifically, the votes that a
receiver point P collects from its neighborhood is

R(P ) =
∑

Pi∈N (P )

W (P, Pi)

=
∑

Pi∈N (P )

e−
‖~vi‖

2

σ2

(
I − ~vi ~v

>
i

‖~v>i ~vi‖

)
,

(4)

where ~vi =
−−→
PiP . The set of neighbors of P is denoted by

N (P ). W (P, Pi) is the vote that the voter point Pi casts to the
receiver point P . σ is the scale of voting that controls the range
within which a voter can influence a receiver. Empirically, σ
is set to 0.1, and it does not have a significant impact on the
performance of the proposed method. A k-d tree is used to
find neighborhood in 4D tuple quickly.

After voting, the mis-matched outliers of the interest points
can be eliminated by examining the eigen-system of the
tensors. The basic idea is that a tensor represents the structure
of a manifold going through the point by encoding the normals
to the manifold as eigenvectors of non-zero eigenvalues, and
the tangents as eigenvectors of zero eigenvalues. Specifically,
the saliency that a tensor only has d normals is defined
by λd − λd+1. Therefore, the types of structures it encoded
can be determined by the number of non-zero differences of
consecutive eigenvalues.

In outlier removal, as illustrated in Fig. 3(b), correctly
matched points are supposed to lie in a smooth surface in the
4D space, which have strong support, while the incorrectly
matched points are likely to be isolated points in the 4D
space, which receive little or no supports. Since a surface
in 4D space is characterized by two normal vectors, the
support of a point is measured by the 2D variety saliency,
which is defined by λ2−λ3. Consequently, correctly matched
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(c) (d)

Fig. 2. Interest points sampled in testing sequences: red points indicates corners and blue points are uniformly sampled points. (Best viewed in color)

points are supposed to have large 2D variety saliency, while
the incorrectly matched ones are supposed to have small 2D
variety saliency, which is demonstrated in Fig. 3(c). Thus,
the outliers can be removed by thresholding the 2D variety
saliency of the points. In the experiments, the points with 2D
variety saliency smaller than 0.75 of the average 2D variety
saliency will be removed.

The algorithm of outlier removal by 4D tensor voting is
summarized in Algorithm 1, and the sparse depth of the
resulting reliable points can be attained by shifted bilateral
filtering [6].

E. Depth Interpolation by High-Dimensional Tensor Voting

After the depth values of the initial points P = {pi}Ni=1

are estimated as described in Section III-C and Section III-D,
the depth of the remaining points in the depth map, which
are denoted by Q = {qi}Mi=1, will be attained by depth
interpolation via 8D tensor voting.

Here, each point is represented by (x, y, u, v, r, g, b, d),
where (x, y) and (u, v) are the location and displacement
of the point, respectively. (r, g, b) are the values of the red,
green and blue channels, and d is the depth of the point. In
interpolation processing , we use the 8D tensor voting to find
the relation (x, y, u, v, r, g, b) → d. In order to estimate the
depth for Q, we take the 8D space as input-output space,
where input space is (x, y, u, v, r, g, b) and output variable is
d. Assuming that each point Pi ∈ P lies on a manifold, tensor
voting can be used to extract local structures in this manifold.

After the data points are represented with tensors, they can
refine the information they carry based on their neighbors
through a voting process. The vote that the voter casts to the
receiver has the orientation the receiver would have, if both the

Algorithm 1: Outlier Removal by 4D Tensor Voting

Input: N initial points: {Pi}Ni=1, Pi = (xi, yi, ui, vi)
Output: Refined points
1. Initialization:
for i = 1 to N do

Encode Ti as identity matrix I;
Decompose Ti’s eigensystem according to Eq. (3);

end
Construct k-d tree for fast neighbor searching;
2. Voting:
for i = 1 to N do

for each Pj ∈ N (Pi) do
Compute ball voting W (Pj , Pi) according to Eq.
(4);
Ri ← Ri +W (Pj , Pi);

end
end
3. Analysis:
for i = 1 to N do

Decompose Ri’s eigensystem according to Eq. (3);
Calculate Si ← λ2 − λ3, Savg ← Savg + Si;

end
Calculate Savg ← Savg/N ;
Set α← 0.75;
for i = 1 to N do

if Si < αSavg then
Discard Pi;

end
end
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Fig. 3. Outlier removal by 4D tensor voting. (a) Ball voting; (b) visualization
of tensors; (c) 2D variety saliency (i.e., λ2−λ3). The green dots represent the
correctly-matched points, which have strong support and high variety saliency.
The red dots represent the falsely-matched points, which have weak support
and low variety saliency.

A B1

B2B3

B4
v4

v1

v2
v3

Fig. 4. Tensor voting process.

voter and receiver belong to the same structure. The magnitude
of the vote is a function of the confidence we have that the
voter and receiver indeed belong to the same structure. Since
the data points in this paper are encoded as ball tensors, the
process of ball voting will be introduced.

As illustrated in Fig. 4, the vote by a ball voter Bi prop-
agates the voter’s preference for a straight line that connects

TABLE II
TENSOR INTERPRETATION IN THE 8D SPACE

Dimension Saliency Normals Tangents
0 λ8 e1, e2, · · · , e7, e8 none
1 λ7 − λ8 e1, e2, · · · , e7 e8
2 λ6 − λ7 e1, e2, e3, e4, e5, e6 e7, e8
3 λ5 − λ6 e1, e2, e3, e4, e5 e6, e7, e8
4 λ4 − λ5 e1, e2, e3, e4 e5, e6, e7, e8
5 λ3 − λ4 e1, e2, e3 e4, e5, e6, e7, e8
6 λ2 − λ3 e1, e2 e3, e4, · · · , e8
7 λ1 − λ2 e1 e2, e3, · · · , e8

Algorithm 2: Depth Interpolation by 8D Tensor Voting

Input: P = {Pi}Ni=1, Q = {Qi}Mi=1

Output: The depth values of Q: {di}Mi=1

1. Initialization:
for i = 1 to N do

Encode ball tensor Ti as identity matrix I for Pi;
end
Set Pt as the projection of P in input space;
Set Qt as the projection of Q in input space;
Construct k-d trees of P and Pt for fast neighbor
searching;

2. Tangent Space Calculation by Voting:
for i = 1 to N do

Compute ball voting R(Pi) according to Eq. (4);
end
for i = 1 to N do

Decompose Ri’s eigensystem according to Eq. (3);
Calculate the tangent space Vi of Pi;

end
3. Depth Estimation for Q:
for i = 1 to M do

Find P ′ as the nearest neighbor of Q′i;
Project

−−−→
Q′iP

′ into V to get desirable direction ~w;
Q̂← P ′ + τ ~w;
while |Q̂−Q′i| > ε do

Set Q̂ as a new start point;
Calculate Q̂’s tangent space and get desirable
direction ~w;
Q̂← Q̂+ ~w;

end
di ← dQ̂;

end

voter to the receiver A, which is the simplest and smoothest
continuation between two points without other information
provided. Hence, the vote of a ball voter is a tensor that spans
the (N − 1)-D normal space of the line and has one zero
eigenvalue associated with the eigenvector that is parallel to
the line. Meanwhile, the magnitude of the vote is dependent on
the distance between the two points. Mathematically, the vote
that the voter Bi casts to the receiver A in Fig. 4 is defined
as

W (Bi, A) = e−
‖vi‖

2

σ2

(
I − viv

>
i

‖viv>i ‖

)
, (5)

which is also a N ×N tensor. In Eq. (5), vi is a unit vector
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parallel to
−−→
BiA. Therefore, the votes that a receiver point

collects from all of its neighbors are

R(A) =
∑

Bi∈N (A)

W (A,Bi)

=
∑

Bi∈N (A)

e−(
‖vi‖

2

σ2
)

(
I − ~vi~v

>
i

‖~v>i ~vi‖

)
,

(6)

where N (A) denotes the set of neighbors of point A, which
is {B1, B2, B3, B4} in Fig. 4.

The local structure is characterized by normal and tangent
vectors. The structure in the 8D space can be represented
as parametric equations: x = x, y = y, r = r, g = g, b =
b, u = u(x, y), v = v(x, y), d = d(x, y, r, g, b). Since these
equations are controlled by 5 parameters, i.e., (x, y, r, g, b),
the local structure can be characterized by 3 normal vectors
and 5 tangent vectors, as shown in Table I. The 5 tangent
vectors span a tangent space Vi of Pi, as Eq. (7)

V = span{e4, e5, e6, e7, e8} (7)

The local smoothness around Pi is kept in the derived tangent
space. Thus, we can interpolate a new point in the neighbor-
hood of Pi.

The algorithm of depth interpolation by 8D tensor voting
is illustrated in Algorithm. 2. The 7D input space of point P
is denoted by P ′ = (x, y, u, v, r, g, b). To estimate the depth
of a point Qi ∈ Q, we first find the nearest neighbor of Q′i,
which is denoted by P ′. Subsequently, the direction

−−−→
P ′Q′i is

computed and project it back into the 8D space.

~w = V >(V V >)−1V
−−−→
P ′Q′i (8)

The 8D point P is taken as the starting point on the manifold.
The desired direction ~w is the projection of the vector

−−−→
P ′Q′i

on the tangent space V of P . Then, we take a small step
along ~w towards Qi to get Q̂, according to Q̂ = P + τ ~w.
Approximation stops when |Q̂ − Qi| < ε. Q̂ in 8D space
is the desired interpolated point for Qi. Therefore, the depth
value of Qi is dQ̂.

IV. EXPERIMENTS

The proposed method is evaluated upon the dataset used
in [20], which is composed of ten sequences: Inition-2d3d-
Showreel-1, Inition-2d3d-Showreel-2, Philips-3D-experience-
1, Philips-3D-experience-2, Dice-1, Dice-2, HeadRotate,
Building, Interview and InnerGate. The first eight sequences
are collected from the Philips WowVc c© project, and the
last two sequences are from Heinrich-Hertz-Institute and [8],
respectively. In particular, this dataset covers many challenging
scenarios for depth estimation including textureless regions,
occlusions, color ambiguity and fast-moving objects. A com-
prehensive summarization of the dataset is illustrated in Table
III.

A. Comparison with State-of-the-art Methods

In the first experiment, we evaluate the performance of
the proposed method both objectively and subjectively in
comparison with many state-of-the-art methods, including

• Bilateral filtering (BF) [24];
• Improved depth propagation using keyframes (IDP) [4];
• Disparity propagation (DP) [6];
• Bi-directional motion estimation (BDME) [8];
• Natural scene statistics models (NSS) [20];
• Example-based video stereolization (EBVS) [7].
The mean squared error (MSE) of the estimated depth maps

by the seven methods is displayed in Table IV. In general, the
proposed method achieves the lowest MSE in eight out of
ten test sequences. In the Philips-3D-experience-2 sequence,
although the proposed method achieves the second best result
among the seven method, it is outperformed by NSS by large
margin, because natural scene statistics provides a robust prior
guide in modeling the natural scenes.

In addition to MSE, we also evaluate the Structure Similar-
ity (SSIM) indices of the seven methods, because this metric
is more characteristic of the structural information that the
viewers are particularly sensitive to. The SSIM reflects the
similarity of two depth maps in structure, and is implemented
in the LIVE website [25]. The results of SSIM evaluation are
displayed in Table V. Again, the proposed method achieves the
best performance among the seven methods, which obtains the
highest SSIM in eight out of ten sequences. Table V clearly
demonstrates that the proposed method is more effective in
preserving the structure information and the discontinuities in
depth estimation.

Furthermore, several examples of the estimated depth maps
by IDP, BDME, EBVS and the proposed method are displayed
in Fig. 5, and the ground truth depth maps are shown in the
last column in Fig. 5. In particular, we enlarge some local
patches lying in the depth boundary, which are displayed
below the depth maps for each sequence. Moreover, the
PSNRs of the estimated depth maps are also displayed below
the frames. It is clearly shown that the proposed method
can obtain reliable depth estimation in occlusion boundary
areas. In Philips-3D-experience-1, due to occlusion, EBVS
misuses the depth of moving foreground object to estimate
that of occluded background areas, while the proposed method
accurately captures the depth discontinuities of the foreground
girl and the background lawn.

B. Error Accumulation Across Frames

In addition to the global evaluation of depth estimation,
we further plot the MSE of each frame estimated by IDP,
BDME, EBVS and the proposed method for the Philips-3D-
experience-1, Dice-1, HeadRotate and Interview sequences.

A key-frame with ground truth depth map is provided every
20 frames for each sequence, from which the depth maps of
other frames are estimated. To guarantee the accuracy, the
depth map of a non key-frame is linearly interpolated from
the two depth maps propagated from its previous key-frame
and next key-frame (except for IDP, which propagates depth
causally).

The MSE curves are illustrated in Fig. 6. We can observe
from Fig. 6 that the MSE curves oscillate periodically at an
interval of 20, and peak in the middle of the key-frames for
most test sequences. This is because the frames in the middle
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TABLE III
TESTING SEQUENCE SUMMARIZATION

Sequence Resolution Frames Key-frame interval Compositions
Inition-2d3d-Showreel-1 960× 540 91 30 outdoor scene, textureless, zoom in/out
Inition-2d3d-Showreel-2 960× 540 91 30 outdoor scene, large displacement, sharp edges
Philips-3D-experience-1 960× 540 41 20 outdoor scene, occlusion, sharp edges
Philips-3D-experience-2 960× 540 61 30 outdoor scene, thin objects

Dice-1 960× 540 61 20 indoor scene, textureless, sharp edges
Dice-2 960× 540 101 25 indoor scene, occlusion, sharp edges

HeadRotate 960× 528 81 20 indoor scene, occlusion, color ambiguity
Building 360× 184 101 25 indoor scene, sharp edges, color ambiguity
Interview 720× 184 101 25 indoor scene, occlusion,large displacement
InnerGate 640× 384 901 25 outdoor scene, large displacement, zoom in/out

TABLE IV
MEAN SQUARED ERROR OF DEPTH ESTIMATION

BF [24] IDP [4] DP [6] BDME [8] NSS [20] EBVS [7] Proposed
Inition-2d3d-Showreel-1 42.59 40.91 47.46 16.89 10.13 32.68 11.28
Inition-2d3d-Showreel-2 7.76 7.55 8.51 5.51 4.87 6.32 3.97
Philips-3D-experience-1 87.13 94.83 40.04 41.98 26.87 32.68 25.12
Philips-3D-experience-2 607.15 548.94 245.50 190.77 102.34 388.20 163.23

Dice-1 131.40 124.75 249.98 86.97 55.10 113.80 52.79
Dice-2 71.18 70.01 191.54 69.25 40.55 79.88 37.92

HeadRotate 85.70 79.78 40.58 19.27 17.09 57.99 16.20
Building 387.67 360.47 227.29 105.81 84.01 192.33 69.28
Interview 112.32 98.73 68.73 45.03 31.76 68.32 23.13
InnerGate 497.47 529.96 400.77 156.41 114.52 195.30 98.55

TABLE V
STRUCTURE SIMILARITY COMPARISON

BF [24] IDP [4] DP [6] BDME [8] NSS [20] EBVS [7] Proposed
Inition-2d3d-Showreel-1 .967 .971 .974 .979 .982 .973 .980
Inition-2d3d-Showreel-2 .984 .985 .985 .981 .985 .983 .991
Philips-3D-experience-1 .961 .971 .977 .976 .980 .975 .980
Philips-3D-experience-2 .912 .928 .933 .935 .947 .935 .967

Dice-1 .978 .988 .978 .985 .988 .982 .989
Dice-2 .983 .990 .981 .987 .991 .990 .99

HeadRotate .973 .976 .981 .987 .988 .979 .990
Building .840 .875 .902 .922 .928 .912 .932
Interview .951 .963 .976 .979 .984 .979 .984
InnerGate .891 .900 .913 .930 .937 .917 .949

TABLE VI
PERFORMANCE OF DIFFERENT OUTLIER REMOVAL STRATEGIES

without outlier removal Optical flow validation 4D tensor voting
Inition-2d3d-Showreel-1 32.19 16.91 11.28
Inition-2d3d-Showreel-2 21.61 9.15 3.97
Philips-3D-experience-1 77.36 31.35 25.12
Philips-3D-experience-2 401.14 268.14 163.23

Dice-1 194.04 124.57 52.79
Dice-2 105.82 90.31 37.92

HeadRotate 41.13 24.18 16.20
Building 80.17 76.21 69.28
Interview 109.12 28.30 23.13
InnerGate 419.17 186.16 98.55

of two key-frames have relatively large error accumulation
from both sides, whereas the frames near the key-frames have
smaller error from the closer key-frames suppressed by linear
interpolation. A special case is Fig. 6 (a), where the error
peaks are closer to the future key-frames, because it is likely
that for this video the forward propagation is more accurate
than backward propagation.

C. Performance of Outlier Removal by 4D Tensor Voting

Furthermore, to evaluate effectiveness of the proposed out-
lier removal algorithm via 4D tensor voting, we compare it
with other two strategies, namely, without outlier removal and
bi-directional optical flow validation [20]. In particular, for bi-
directional optical flow validation, the forward and backward
motion vectors will be computed for each interest point, which
are denoted by vf and vb. In the ideal case, these two motion
vectors should be opposite, i.e., ‖vf + vb‖2 = 0. Hence, an
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Inition-2d3d-Showreel-1

Original Frame IDP BDME EBVS Proposed Ground Truth

Philips-3D-exprerience-1

HeadRotate

Interview

39.75dB38.69dB 39.63dB 39.42dB

33.79dB30.41dB 33.14dB 33.09dB

35.04dB28.80dB 35.01dB 30.53dB

36.27dB31.03dB 34.82dB 31.49dB

Fig. 5. Estimated depth maps of four testing sequences (from top to bottom): Inition-1, Philips-1, HeadRotate and Interview. The PSNR values of depth
maps are shown below the frames.

interest point will be regarded as an outlier if ‖vf +vb‖2 > 2.
The performance of the three outlier removal strategies is
displayed in Table VI.

As expected, using all the interest points without removing
the outliers brings large error to the depth map estimation due

to inaccurate motion estimation, occlusion and deformation.
On the other hand, the error can be reduced by validating
the forward and backward optical flow vectors, because mis-
matched interest points are discarded, whose forward and
backward motion vectors have large deviations. Finally, the
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Fig. 6. Frame-wise mean squared error by IDP, BDME, EBVS and the proposed method.

TABLE VII
AVERAGE TIME CONSUMPTION FOR EACH STEP OF THE PROPOSED METHOD (IN SECONDS)

Point extraction KLT Outlier removal Sparse depth Depth interpolation Total
Inition-2d3d-Showreel-1 0.04 0.32 8.16 0.11 53.13 61.92
Inition-2d3d-Showreel-2 0.04 0.31 7.98 0.11 57.32 66.03
Philips-3D-experience-1 0.04 0.35 8.26 0.11 50.42 59.39
Philips-3D-experience-2 0.04 0.35 8.23 0.11 60.13 69.10

Dice-1 0.04 0.30 6.91 0.11 52.22 59.75
Dice-2 0.04 0.30 6.01 0.11 51.62 58.32

HeadRotate 0.04 0.33 7.38 0.10 54.41 62.41
Building 0.02 0.11 1.69 0.03 13.12 15.18
Interview 0.03 0.27 4.46 0.09 48.47 53.49
InnerGate 0.03 0.28 5.33 0.08 49.08 55.05

best performance is achieved by the proposed 4D tensor voting
method, because it is capable of preserving the structural
information, which is critical in modeling the discontinuities
in the depth field.

D. Voting Neighborhood

We evaluate the influence of voting neighborhood to the
performance of proposed depth interpolation on Inition-2d3d-
Showreel-1, Philips-3D-experience-1, HeadRotate and Inter-
view. We change the voting neighborhood from 10 to 100 by
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stride of 5, and the relation of MSE with neighborhood size
is demonstrated in Fig. 7.
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Fig. 7. Relation of MSE and neighborhood size.

It can be observed from Fig. 7 that MSE drops drastically
as neighborhood size increases before 25. When the neighbor-
hood size exceeds 25, the MSE almost converges, since the
voting weights are trivial from distant points.

E. Computational Complexity

Finally, we present the computational complexity of the
proposed method. The experiments are conducted on a PC with
3.2GHz Intel Core-i5 CPU and 8GB RAM. The algorithm is
implemented in C++ and OpenCV library. The average time
consumption of interest point extraction, KLT tracking, outlier
removal, sparse depth computation and depth interpolation by
high-dimensional tensor voting for each testing sequence is
illustrated in Table VII.

In general, the proposed method takes about one minute to
estimate the depth map for each frame. Most of the run-time
is spent on depth interpolation, since there are large quantity
of points to be inferred, and the tensor voting process is more
complicated in the 8D space.

F. Analysis

From the experiments, we can observe that the proposed
method achieves accurate depth estimation, and outperforms
other methods both qualitatively and quantitatively. The reason
why tensor voting makes such improvement for depth estima-
tion is two-fold.

First, since the sparse depth field is critical for the proposed
method, tensor voting is utilized to remove false matches
of interest points, thus, generating reliable depth vectors as
the initialization of the following depth propagation. Com-
pared with other outlier removal approaches, 4D tensor voting
achieves better result, because it investigates the eigen-system
of the matching points, which have strong support for correctly
matched ones and weak support for falsely matched ones in
sense of texture and motion.

Second, based on this reliable initial depth field, high
dimensional tensor voting is used to propagate the depth
from the interest points to the entire image. Compared with
conventional methods that propagate depth homogeneously,
the proposed method propagates depth using high dimensional
tensor voting in a structure-aware fashion. Hence, a point
would receive strong directed votes from points that lie in
the same structure and less from the others, making the depth
consistent with the motion and texture of the frames.

V. CONCLUSIONS

This paper presents a structure-aware sparse-to-dense depth
estimation algorithm, which leverages tensor voting for outlier
removal as well as depth propagation. On the one hand, a
4D tensor voting algorithm is designed to eliminate outlier
points with inaccurate motion estimation. Hence, the depth of
a sparse set of high-confidence interest points can be obtained,
which will be propagated to the other region of the image. On
the other hand, a high-dimensional tensor voting algorithm,
incorporating spatial location, motion and color into the tensor
representation, is devised to propagate the depth from the
sparse points to the entire image domain. Experimental result
shows that the proposed method outperforms many state-of-
the-art depth estimation approaches on public benchmarks.
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