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« A tour of wavelets
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Background

- Objects are formed by connected regions of
similar texture and intensity levels.

- If the objects are small in size or low in contrast,
we normally examine them at high resolutions;
if they are large in size or high in contrast, a
coarse view is required.

Multiresolution processing
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Background

- Image Pyramids
An image pyramid is a collection of decreasing

resolution images arranged in the shape of a
pyramid

The base of the pyramid contains a high-resolution
representation of the image being processed; the
apex contains a low-resolution approximation.
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ldea: Represent NxN image as a "pyramid” of
1x1, 2x2, 4x4,..., 2¥x2* images (assuming N=2¥)

level k(= 1 pixulq

level k-1 IIIIIIL/
h
level k-2 )E
Ill./ i
/
level O (= onginal image) B

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* In computer graphics, a mip map [Williams, 1983]
« A precursor to wavelet transform



IVM http://ivm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

*
/
1x%1 /&;\Level 0 (apex)
2%2 "Cﬂ-;\.\Level 1
4 \

4 X %‘Level 2
\\ ™)

’ =
/ H

/!
/

N/2 X N/2 / N Level J — 1
v

.\ Level J (base)

a
b

FIGURE 7.2

(a) An image
pyramid. (b) A
simple system for
creating
approximation
and prediction
residual pyramids.

Levelj—1
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a

b

FIGURE 7.3

Two image
pyramids and
their histograms:
(a)an
approximation
pyramid;

(b) a prediction
residual pyramid.
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Gaussian pyramid construction

Step:
Repeat {
* Filter
« Subsample

} Until minimum resolution reached
« can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!
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Laplacian pyramid construction

® Created from Gaussian pyramid by subtraction

Gaussian Pyramid

Laplacian pyramid
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What are they good for?

- Improve Search

= Search over translations
- Like homework
* Classic coarse-to-fine strategy

= Search over scale
+ Template matching
- E.g. find a face at different scales

» Precomputation

= Need to access image at different blur levels

= Usetul for texture mapping at different resolutions
- Image Processing

= Editing frequency bands separately

= E.g. image blending... next time!
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Background

» Subband Coding

Another important imaging technique with ties to
multiresolution analysis is subband coding

In subband coding, an image is decomposed into a set of
bandlimited components, called subbands
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ho(n) — 24 — 21 go(N)
Yo(N) :

Analysis Synthesis

y:(n)
h,(n) 21 —1 2T 1 gi(n)

|H (@)  |Hy(@)

Low band High band

0 7[/2 7z
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Subband Coding

» The impulse responses of the synthesis and analysis filters can be shown to
satisfy the following biorthogonality condition

(h(2n=k),g;(K))=5(i-])&(n), i,j={0.1]

« Of special interest in subband coding— and in the development of the fast
wavelet transform— are filters that move beyond biorthogonality and
require

(gi(n),g;(n+2m))=5(i—j)5(m), i,j={0,1}

which defines orthonormality for perfect reconstruction filter banks.
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FIGURE 7.7
— 2| ——e®a(m,n) A two-

Columns dimensional, four-
(along ) band filter bank
for subband

(along m) * hy(n) — 21 —e dv(m,n) image COdelg.
flm,n) @— Columns
* ho(n) 2l ——ed’(mn)
Columns
Rows
* hy(n) 2l ——edP(mn)

Columns
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=

go(n)

e N S S =)

0.23037781
0.71484657
0.63088076
—0.02798376
—0.18703481
0.03084138
0.03288301
—0.01059740

TABLE 7.1
Daubechies 8-tap
orthonormal filter
coefficients for
go(n) (Daubechies
[1992]).
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FIGURE 7.3

The impulse
responses of four
8-tap Daubechies
orthonormal

_1 1 1 1 1 1 1 1 1 1 n _1 | 1 1 1 1 1 1 1 1 n ﬁlters' See
0 2 4 6 8 0 2 4 6 8 Table 7.1 for the
values of g(n) for

8o(n) gi(n) 0=n=T.
1 1

05 r T T 05 r T
0 T ® | 0o 0o wo=® P © ' J)

—0.5 —-0.5 l
_1 | | | | | | | 1 | n _1 | | | | | | | 1 | n
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FIGURE 7.9

A four-band split
of the vase in

Fig. 7.1 using the
subband coding
system of Fig.7.7.
The four
subbands that
result are the

(a) approximation,
(b) horizontal
detail, (c) vertical
detail, and

(d) diagonal detail
subbands.
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T =HFH'

L ) 1 L] L]
Fis an NxN image matrix

His an NxN transformation matrix

T is the resulting N x N transform
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The Haar Transform

All of the basis functions are rectangular impulse pairs except h,(z)
The impulse pairs have different width, height and positions

Width of nonzero region is descending

1 1 1
lo—a—>3——> ..
2 4 8

Height of nonzero region is ascending

1 V2 2
NN N

The basis functions have the same characters as those of wavelet

transform
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The Haar Transform

» Basis functions of Haar transform (discrete)

Tiix) x-0 X 2] hix) i=
a=1 E=0 5=
. - - i 2=]
TITIITT] 1111 11
0] N1 j [T 1] Nl
B R s A |
- -1 _ 1 i _ o
l.:i V-1 I:l = 1 = -1 X i) 1 = ;,_::,_1 X
F=2"+g—-1

2P o Foand 287 - )
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o 1|1 1
“F
» 4x4 transformation matrix is

1 1

1 -1 -1

H, =

1 1

2 1
71 RN -
0 2 -2
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The Haar Transform

» Transformation kernel is separable
» For N = 8, the basis functions are

IRIERISCIRA N =
o I S
dAHEEE =
o I B 0 e =
AMEEEES
dEEEdE=m=
SRR RS EE =
SANPFANES
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a
5| @]l

FIGURE 7.10

(a) A discrete
wavelet transform
using Haar H,
basis functions. Its
local histogram
variations are also
shown. (b)—(d)
Several different
approximations
(64 X 64,

128 X 128, and
256 X 256) that
can be obtained
from (a).
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Basic of Multiresolution Analysis

- Expansion of a signal f (X) :

. real-valued expansion coefficients
F0=Y ad () % A .
@, (X) : real-valued expansion functions

— <¢Zk (x), f (x)> = .MK*(X) f (x)dx @ (x): the dual function of ¢, (X)

If the expansion is unique, the ¢, (x) are called basis functions.
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Basic of Multiresolution Analysis

If {4 (X)}is an orthonormal basis for V', then ¢ (x) =4 (x)

The function space of the expansion set ¢(X): v =span{g, (x)}
K

If {4 (9} are not orthonormal but are an orthogonal basis for V,
then the basis funcitons and their duals are called biorthogonal.

5 - It O , J ” k
Biorthogonal: <¢,—(X),¢1<(X)> =0y = {1 j=k

How to construct such orthonormal basis?
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The subspace spanned over k for anyj :

V; = spkan{qﬁ,-,k(x)}
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Basic of Multiresolution Analysis

» Requirements of scaling function:

1. The scaling function is orthogonal to its integer translates.

2. The subspaces spanned by the scaling function at low scales are
nested within those spanned at higher scales.

Thatis V, c---cV,cV,cV,cV,c---cV,

3. The only function that is common to all v. is f (x)=0
Thatis ™\, _ (o} ’

4. A}rlly function can be represented with arbitrary precision.
That is,

V, ={C(R)}
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FIGURE 7.12
The nested
function spaces
spanned by a
scaling function.

Are these scaling functions orthonormal basis?

NO!



\ IVM http://tvm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

Basic of Multlresolutlo Analys

» Wavelet function

spans the difference between any two adjacent scaling subspaces
Vj and Vi,

Wi (X) = 212y (2'x—k) for all k € Zthat spans the space W,
where W, = spkan {Wj,k (x)}

The wavelet function can be expressed as a weighted sum of shifted,
double-resolution scaling functions. That is,

w(x) = h, (MN24(2x—n)

n
where the h,(n) are called the wavelet function coefficients.

It can be shown that h, (n) = (=1)"h,(1-n)
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Are these wavelet functions orthonormal basis?Yes !
The scaling and wavelet function subspaces are related by V., =V; ®W,

We can express the space of all measurable, square-integrable function as

L*(R)=V, ®W, ®W, ®W, ©---
or

*(R)=+-®W, DWW, ®W, W, BW, ®- -
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« The expansion coefficients are calculated
Cj, (k)=<f (%), @, (X)> =I f(X)@;  (x)x
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FIGURE 7.15
A wavelet series
expansion of

2

y = x”using Haar
wavelets.

\ 112
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+ The complementary inverse DWT is
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ab
© |l

FIGURE 7.16

The continuous
wavelet transform
(cand d) and
Fourier spectrum
(b)ofa
continuous 1-D
function (a).
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The Fast Wavelet Transform

Computationally efficient implementation of the DWT

The relationship between the coefficients of the DWT at

adjacent scales

Also called Mallat's herringbone algorithm

Resembles the twoband subband coding scheme
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The Fast Wavelet Transform

» The multiresolution refinement equation

)=>"h (n)v2¢(2x-n)

» Scaling x by 2J, trans]ahng it by k, and letting m=2k+n gives

o(2'x—k)= Zh m—2k)«2p(2"" x—n)

» A similar sequence of operations—beginning with Eq. (7.2-28)—
provides an analogous result

w(2'x—k)= Zh m-2k)~/2p(2""x—n)
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The Fast Wavelet Transform

» Now consider the wavelet series expansion coefficients of
continuous function f(x), we get

=S, (- 206, (m)
k)= Zm:h(p(m_ZK)Cm(m)

» When f(x) is discrete, the coefficients of the wavelet series expansion
become the coefficient of the DWT

=Zhw(m—2k)W¢(j+1,m)

Zh m—2k)W, (j+1,m)
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n=2k,k>0

FIGURE 7.17

An FWT analysis
bank.
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oW, (J - 2.n)

—— e W,(J —2,n)

* hy(—n) | 2| W,(J — 1,n)

1 K hy(—n) 2l
|H(w)|
A

- V] -
Vi | |
| I
| I
| I
Viez Wi Wiy :
| I
| I
! |
0 /4 w/2 ™

a
b

FIGURE 7.18
(a) A two-stage or
two-scale FWT
analysis bank and
(b) its frequency
splitting
characteristics.
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é’%
&
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%

{=1/N2 ~3/NZ. 7/\Z. ~3/\2. 0}

|

W(2,n) =f(n) ¢—

= (1,4, -3,0} W(l,n) = {5/72, =3/} \

*{—INZINZ} [ 2 e Wy(lm) = (=372, ~32)

*{~1/\ZL1NZ} H 2

——® W,(0,0) = {4}

H x {12142} H 2

|

{L/NZ.5/NZ, 1N, ~3/\2. 0}

{—25,4,-1.5}

*{1/\2, 132} H 2

——— W,(0,0) = {1}

T

{25.1,-15}

FIGURE 7.19 Computing a two-scale fast wavelet transform of sequence {1, 4, —3, 0} using Haar scaling and

wavelet vectors.
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PR U

+>—o W (j+ 1,n)

W(p(jﬁ i"!) *—

21

* hy(n)

« The FWT * filter bank implements the computation

W, (5+1k)=h, (k) =W, (j,k)+h, (k)=W,* (j.k)

k>0
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W,(J — 2,n) @—

21 * hy(n)

Wi/ —2,n) e— 21 * h(n)

FIGURE 7.21
A two-stage or
two-scale FWT !

synthesis bank.
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{=3/2,0,=3/2, 0}

y {~15,15,—15,15,0}
Wi(Lom) = {~3/2. ~3/\2) @—] 21 | %{1/¥Z ~1/V2}
{4,0}
f {4/72, —4/+2, 0} _
i - () = W (2, )
W,(0,0) = {4} @— 21 [— *{1/\Z, ~1/\2) ?W@(MF 5148 —3/¥7] O Rt

G) ! T * {1732 1732 (25,25, -1.5,-15,0}

{5/72,0, =3/+2, 0}
W,(0,0) = {1} @— 21 *{1/72,1/2}
{ {1/+2,1/2, 0}

{1,0}

FIGURE 7.22 Computing a two-scale inverse fast wavelet transform of sequence {1, 4, —1.5V2, —1.5\/5}
with Haar scaling and wavelet functions.
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Frequency

a b c

FIGURE 7.23 Time-frequency tilings for the basis functions associated with (a) sampled
data, (b) the FFT, and (c) the FWT. Note that the horizontal strips of equal height
rectangles in (c) represent FWT scales.

« If you want precise information about, you must accept some
vagueness about frequency, and vice versa. This is the Heisenberg
uncertainty principle applied to information processing



‘ IVM http://ivm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

Wavelet Transform in Two Dimensions

- In two-dimensions, a two-dimensional scaling function, (X Y) and
three two-dimensional wavelets, v" (x.y), v’ (xy), and v° (X, Y),
are required

« The separable function

o(xY)=o(X)p(y)

and separable, directionally sensitive wavelets
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Wavelet Transform in Two Dimensions

+ We first define the scaled and translated basis functions

(Dj,m,n(xi Y)=2j/2(0(2jx—m 2jy—n)
v, (xy)=2"%'(2'x-m,2'y-n),i={HV,D]

» Rather than an exponent, i is a superscript that assumes the values
H, V, and D. the discrete wavelet transform of image f(x, y) of size M
by N is then

<

W, () = e 33 (0Y), 0 (509)
Wi m) = S5 (1), ()i = {H.V.D)
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Wavelet Transform in Two Dimensions

» Inverse discrete wavelet transform

f(xy )\/MEZZW Jo,mn)gojmn(xy)

m n

M. HZVD,Z}ZZW )yl (xy)

» Like the 1-D discrete wavelet transform, the 2-D DWT can be
implemented using digital filters and downsamplers. With separable
two-dimensional scaling and wavelet functions, we simply take the
1-D FWT of rows of f(x, y), followed by the 1-D FWT of the resulting
columns
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hy, (—m) 2
Rows
hy(—m)—2 4
W, (j+1,mn) Rows
hy, (—m) 2 3
hy(—n)—2 \ RoOWwS
Columns h@ (—m) 1
Rows

W, (j.m.n)

W, (j.m, n)

Wgh(js m, H)

The two-dimensional FWT — the analysis filter.
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h, (—m)

hy (=)

Wf (j.m,n)—2 T h, (—m)
Rows 27 hy(—n)

Columns

Wy, mn)——2 T —\h,(—m)

Bows

The two-dimensional FWT — the synthesis filter bank.
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W, (j+1,m,n)

W, (3, m, n) | W " (j,m,n)

W, (J+1,m,n)

A 4

y (J,m,

Two-scale of two-dimensional decomposition
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ab
@ |l

FIGURE 7.25
Computing a 2-D
three-scale FWT.
(a) the original
image; (b) a one-
scale FWT; (c) a
two-scale FWT;
and (d) a three-
scale FWT.
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Io(m) = he(=n) () = hy(=n)
12 05

o.fls - ?T

0.6
0.4
0.2

0

[
-0.2 -1
0

g1(n) = hy(n)

0.5

-15
0

(x)e(y)
15

1

0.5

0

b

d

f
g

FIGURE 7.26
Fourth-order
symlets: (a)-(b)
decomposition
filters; (c¢)—(d)
reconstruction
filters; (e) the
one-dimensional
wavelet; (f) the
one-dimensional
scaling function;
and (g) one of
three two-
dimensional
wavelets, /" (x, y).
See Table 7.3 for
the values of
hg(n) for
O=n="7.
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- Step 3. Compute the inverse transform.
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FIGURE 7.27
Modifying a DWT
for edge
detection: (a) and
(c) two-scale
decompositions
with selected
coefficients
deleted; (b) and
(d) the
corresponding
reconstructions.
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FIGURE 7.28
Modifying a DWT
for noise removal:
(a) anoisy CT of a
human head; (b),
(c) and (e) various
reconstructions
after thresholding
the detail
coefficients;

(d) and (f) the
information
removed during
the reconstruction
of (c) and (e).
(Original image
courtesy
Vanderbilt
University
Medical Center.)
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Wavelet in image compression

Wavelet .. | Entropy

: , — bitstream
coding Quantization aeriting

image —»

A 4

- Quantization  a,(m.n)=sign(y,(m,n) PW" . ”)|‘

= uniform scalar quantization |

s separate quantization step-sizes for each subband
- Entropy coding

= Huffman coding

= Arithmetic coding
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DCT-based Wavelet-based
Image compression Image compression

Original image

CR =11.2460
RMS = 4.1316
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DCT-based Wavelet-based
Image compression Image compression

Original image

CR = 27.7401 CR =26.4098
RMS = 6.9763 RMS = 6.8480
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DCT-based Wavelet-based
Image compression Image compression

Original image

CR =53.4333 CR =51.3806
RMS = 10.9662 RMS = 9.6947
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