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Background

• Objects are formed by connected regions of 
similar texture and intensity levels. 

• If the objects are small in size or low in contrast, 
we normally examine them  at high resolutions; 
if they are large in size or high in contrast, a    
coarse view is required.

Multiresolution processing
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Background

• Image Pyramids

An image pyramid is a collection of decreasing 
resolution images arranged in the shape of a 
pyramid

The base of the pyramid contains a high-resolution 
representation of the image being processed; the 
apex contains a low-resolution approximation.
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Known as a Gaussian Pyramid [Burt and Adelson, 1983]

• In computer graphics, a mip map [Williams, 1983]

• A precursor to wavelet transform
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Image Pyramids 
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Image Pyramids 

• Gaussian Pyramid

▫ Approximation pyramid

• Laplacian Pyramid

▫ Prediction residual pyramid
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Gaussian pyramid construction

Step:
Repeat {

• Filter

• Subsample

} Until minimum resolution reached 

• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!
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• Laplacian Pyramid (subband images)

Laplacian pyramid construction

Gaussian Pyramid

 Created from Gaussian pyramid by subtraction

Laplacian pyramid
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What are they good for?
• Improve Search

▫ Search over translations
 Like homework

 Classic coarse-to-fine strategy

▫ Search over scale
 Template matching

 E.g. find a face at different scales

• Precomputation
▫ Need to access image at different blur levels
▫ Useful for texture mapping at different resolutions 

• Image Processing
▫ Editing frequency bands separately
▫ E.g. image blending… next time!
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Background

• Subband Coding 

Another important imaging technique with ties to 

multiresolution analysis is subband coding

In subband coding, an image is decomposed into a set of 

bandlimited components, called subbands
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Subband Coding
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Subband Coding

• For perfect reconstruction, the impulse responses of the synthesis and 

analysis filters must be related in one of the following two ways:

• or
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Subband Coding

• The impulse responses of the synthesis and analysis filters can be shown to 

satisfy the following biorthogonality condition

• Of special interest in subband coding– and in the development of the fast 

wavelet transform– are filters that move beyond biorthogonality and 

require

which defines orthonormality for perfect reconstruction filter banks.

         , , , ,i jh 2n k g k i j n i j 0 1    

         , , , ,i jg n g n 2m i j m i j 0 1    
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Subband Coding

• Orthonormal filters can be shown to satisfy the following two conditions

     

     , ,

n
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Subband Coding

• 1-D orthonormal and biorthogonal filters can be used as 2-D separable 

filters for the processing of images.
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Subband Coding

Example 7.2 a four-band subband coding of vase
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Subband Coding

Example 7.2 a four-band subband coding of vase
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Subband Coding

Example 7.2 a four-band subband coding of vase
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Background

• The Haar Transform

▫ Haar transform is a special wavelet transform

▫ Its basis functions are the oldest and simplest orthonormal wavelets

▫ Haar transform can be expressed in a matrix form

TT HFH
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The Haar Transform

• Basis functions of Haar transform (continuous)
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The Haar Transform

• All of the basis functions are rectangular impulse pairs except

• The impulse pairs have different width, height and positions

• Width of nonzero region is descending

• Height of nonzero region is ascending

• The basis functions have the same characters as those of wavelet 

transform

 0h z
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The Haar Transform

• Basis functions of Haar transform (discrete)
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The Haar Transform

• The ith row of an N by N Haar transformation matrix contains the 
elements of           for

• 2×2 transformation matrix is

• 4×4 transformation matrix is

 ih z , , , ,
0 1 2 N 1

z
N N N N



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The Haar Transform

• 8×8 transformation matrix is
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The Haar Transform

• Transformation kernel is separable

• For N = 8 , the basis functions are
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The Haar Transform
• Example 7.3

Haar functions in 

a discrete wavelet

transform.
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Basic of Multiresolution Analysis
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Basic of Multiresolution Analysis

• Expansion of a signal f (x) :

( ) ( )k k

k

f x x 
:  real-valued expansion coefficients

( ) : real-valued expansion functions

k

k x





*( ), ( ) ( ) ( ) ( ): the dual function of ( )k k k k kx f x x f x dx x x      

If the expansion is unique, the          are called basis functions. ( )k x
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The function space of the expansion set          :( )k x  ( )k
k

V span x

If            is an orthonormal basis for V , then  ( )k x ( ) ( )k kx x 

If            are not orthonormal but are an orthogonal basis for V , 
then the basis funcitons and their duals are called biorthogonal.

 ( )k x

0 ,
Biorthogonal: ( ), ( )

1 ,
j k jk

j k
x x

j k
  


  



Basic of Multiresolution Analysis

How to construct such orthonormal basis?
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• Scaling functions

Basic of Multiresolution Analysis

 / 2 2

, ( ) 2 (2 ), for  and ( )j j

j k x x k k x L     Z R

The subspace spanned over k for any j :

 , ( )j j k
k

V span x
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Basic of Multiresolution Analysis

• Requirements of scaling function:

1. The scaling function is orthogonal to its integer translates. 

2. The subspaces spanned by the scaling function at low scales are 
nested within those spanned at higher scales. 
That is 

3. The only function that is common to all      is               .
That is 

4. Any function can be represented with arbitrary precision. 
That is, 

1 0 1 2V V V V V V        

 0V 
jV ( ) 0f x 

  2V L  R
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Basic of Multiresolution Analysis

Are these scaling functions orthonormal basis?



http://ivm.sjtu.edu.cn

• Wavelet function

/ 2

, ( ) 2 (2 )j j

j k x x k  

spans the difference between any two adjacent scaling subspaces
and  

jV 1jV 

for all           that spans the space kZ
jW

where  , ( )j j k
k

W span x

The wavelet function can be expressed as a weighted sum of shifted, 
double-resolution scaling functions. That is,

where the           are called the wavelet function coefficients.  

( ) ( ) 2 (2 )
n

x h n x n  
( )h n

It can be shown that ( ) ( 1) (1 )nh n h n   

Basic of Multiresolution Analysis
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2 1 1 0 0 1V V W V W W    

0V
0W

1W

1 0 0V V W 

The scaling and wavelet function subspaces are related by 

We can express the space of all measurable, square-integrable function as 

or 

1j j jV V W  

 2

0 0 1 2L V W W W    R

 2

2 1 0 1 2L W W W W W       R

Basic of Multiresolution Analysis

Are these wavelet functions orthonormal basis?
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A Tour of Wavelets
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Wavelet Transforms in One Dimension

• The wavelet series expansions

• The expansion coefficients are calculated

and

         , ,0 0 0

0

j j k j j k

k j j k

f x c k x d k x 




  

         , ,= ,
0 0 0j j k j kc k f x x f x x dx  

         , ,= ,j j k j kd k f x x f x x dx  
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Wavelet Transforms in One Dimension
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Wavelet Transforms in One Dimension

• The discrete wavelet transform

• The complementary inverse DWT is

     

     

,

,

,
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00 j k
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
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Wavelet Transforms in One Dimension

• The continuous wavelet transform

where

• The inverse continuous wavelet transform

where

     ,, sW s f x x dx  



 

   
 ,

,
s

20

x1
f n W s dsd

C s








 

 


  

 ,s

1 x
x

ss



 

 
  

 

 
2

C d











 
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Wavelet Transforms in One Dimension

• The Mexican hat wavelet
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The Fast Wavelet Transform

• Computationally efficient implementation of the DWT

• The relationship between the coefficients of the DWT at 

adjacent scales 

• Also called Mallat's herringbone algorithm 

• Resembles the twoband subband coding scheme 
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The Fast Wavelet Transform

• The multiresolution refinement equation

• Scaling x by 2j, translating it by k, and letting m=2k+n gives

• A similar sequence of operations—beginning with Eq. (7.2-28)—

provides an analogous result

     j j 1

m

2 x k h m 2k 2 2 x n     

     j j 1

m

2 x k h m 2k 2 2 x n     

     
n

x h n 2 2x n  
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The Fast Wavelet Transform

• Now consider the wavelet series expansion coefficients of 

continuous function f(x), we get

• When f(x) is discrete, the coefficients of the wavelet series expansion 

become the coefficient of the DWT

     j j 1

m

d k h m 2k c m  

     j j 1

m

c k h m 2k c m  

     , ,
m

W j k h m 2k W j 1 m    

     , ,
m

W j k h m 2k W j 1 m    
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The Fast Wavelet Transform

• We can write

     
,

, ,
n 2k k 0

W j k h n W j 1 m    
  

     
,

, ,
n 2k k 0

W j k h n W j 1 m    
  
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The Fast Wavelet Transform
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The Fast Wavelet Transform

• Example 7.10 Computing a 1-D fast wavelet transform
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The Fast Wavelet Transform

• A fast inverse transform for the reconstruction of f(n) from the 

results of the forward transform can be formulated

• The filter bank implements the computation

         , , ,2 2

k 0
W j 1 k h k W j k h k W j k    

 


    

1FWT 
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The Fast Wavelet Transform
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The Fast Wavelet Transform

• Example 7.11 computing a 1-D inverse fast wavelet transform.
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The Fast Wavelet Transform

• Time-frequency tilings for the basis functions

• If you want precise information about, you must accept some 

vagueness about frequency, and vice versa. This is the Heisenberg 

uncertainty principle applied to information processing
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Wavelet Transform in Two Dimensions

• In two-dimensions, a two-dimensional scaling function,                and 

three two-dimensional wavelets,                 ,                , and               , 

are required

• The separable function

and separable, directionally sensitive wavelets

 ,x y

 ,D x y ,V x y ,H x y

     , =x y x y  

     

     

     

, =

, =

, =

H

V

D

x y x y

x y x y

x y x y

  

  

  
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Wavelet Transform in Two Dimensions

• We first define the scaled and translated basis functions

• Rather than an exponent, i is a superscript that assumes the values 

H, V, and D. the discrete wavelet transform of image f(x, y) of size M 

by N is then

   

     
, ,

, , , , ,

, , , , ,
j m n

j 2 j j

j m n

i j 2 i j j

x y 2 2 x m 2 y n

x y 2 2 x m 2 y n i H V D

 

 

  

   

     

       
, ,

, ,, , , , ,

, , , , , , ,

0

j m n

M 1 N 1

0 j m n

x 0 y 0

M 1 N 1
i i

x 0 y 0

1
W j m n f x y x y

MN

1
W j m n f x y x y i H V D

MN









 

 

 

 



 




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Wavelet Transform in Two Dimensions

• Inverse discrete wavelet transform

• Like the 1-D discrete wavelet transform, the 2-D DWT can be 

implemented using digital filters and downsamplers. With separable 

two-dimensional scaling and wavelet functions, we simply take the 

1-D FWT of rows of f(x, y), followed by the 1-D FWT of the resulting 

columns

     

   
, ,

, ,

, ,

, , , ,

, , ,

0

j m n

0

0 j m n

m n

i i

i H V D j j m n

1
f x y W j m n x y

MN

1
W j m n x y

MN










 







 
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Wavelet Transform in Two Dimensions

The two-dimensional FWT  the analysis filter. 
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Wavelet Transform in Two Dimensions

The two-dimensional FWT  the synthesis filter bank.
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Wavelet Transforms in Two Dimension

( 1, , )W j m n 

( , , )W j m n ( , , )HW j m n

( , , )VW j m n ( , , )DW j m n

Two-scale of two-dimensional decomposition

( 1, , )W j m n 

( , , )W j m n ( , , )HW j m n

( , , )VW j m n ( , , )DW j m n

Two-dimensional decomposition
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Wavelet Transform in Two Dimensions

• Example 7.12  computing a 2-D fast wavelet 
transform.
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Wavelet Transform in Two Dimensions
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Wavelet in image processing

• Wavelets in image processing 

▫ As in the Fourier domain, the basic approach is to

 Step 1. Compute a 2-D wavelet transform of an image.

 Step 2. Alter the transform.

 Step 3. Compute the inverse transform.
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Wavelet in image processing
• Example 7.13 wavelet-based edge detection. 
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Wavelet in image processing
• Example 7.14

Wavelet-based noise

removal
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Wavelet in image compression

Wavelet 
coding

Quantization
Entropy 
coding

image bitstream

• Quantization

▫ uniform scalar quantization 

▫ separate quantization step-sizes for each subband

• Entropy coding

▫ Huffman coding

▫ Arithmetic coding

( , )
( , ) sign( ( , ))

j

j j

j

W m n
q m n y m n

 
  

  
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Original image
DCT-based 
image compression 

Wavelet-based 
image compression 

CR = 11.2460 
RMS = 4.1316 

CR = 10.3565
RMS = 4.0104 
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Original image
DCT-based 
image compression 

Wavelet-based 
image compression 

CR = 27.7401
RMS = 6.9763 

CR = 26.4098
RMS = 6.8480 
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Original image
DCT-based 
image compression 

Wavelet-based 
image compression 

CR = 53.4333
RMS = 10.9662 

CR = 51.3806
RMS = 9.6947 
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Thank You!


