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• Some Basic Relationships Between Pixels 
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Some Basic Relationships Between Pixels 

• Neighbors of a Pixel 
 A pixel p at coordinates (x, y) has four horizontal and vertical neighbors 

whose coordinates are given by 

 

 This set of pixels, called the 4-neighbors of p, is denoted by N4(p). 

 The four diagonal neighbors of p has coordinates 

 

 and are denoted by Nd(p). These points, together with the 4-neighbors, 
are called the 8-neighbors of p, denoted by N8(p). 

       x 1, y , x 1, y , x, y 1 , x, y 1   

       x 1, y 1 , x 1, y 1 , x 1, y 1 , x 1, y 1       
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Some Basic Relationships Between Pixels 

• Adjacency, Connectivity, Regions, and Boundaries 
 Let V be the set of gray-level values used to define adjacency 

 In a binary image, V={1} 

 In a gray-scale image, V could be any subset of possible values 0 to 255. 

 (a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if 
q is in the set N4(p). 

 (b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if 
q is in the set N8(p). 

 (c) m-adjacency. Two pixels p and q with values from V are m-adjacent 
if  

 (i) q is in N4(p), or 

 (ii) q is in ND(p) and the set  has no pixels whose values are from V    4 4N p N q
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Some Basic Relationships Between Pixels 

• Adjacency, Connectivity, Regions, and Boundaries 
▫ Mixed adjacency is a modification of 8-adjacency. It is introduced to 

eliminate the ambiguities that often arise when 8-adjacency is used. 
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Some Basic Relationships Between Pixels 

• Adjacency, Connectivity, Regions, and Boundaries 
 A (digital) path (or curve) from pixel p with coordinates (x, y) to pixel q 

with coordinates (s, t) is a sequence of distinct pixels with coordinates 

 

  

 Where                  , and pixels     and 

 are adjacent for         . 

 If                 , the path is a closed path. 

 We can define 4-, 8-, or m-paths depending on the type of adjacency 
specified. 

 Note the absence of ambiguity in the m-path. 

     0 0 1 1 n nx , y , x , y , , x , y

       0 0 n nx , y x, y , x , y s,t   i 1 i 1x , y   i ix , y

1 i n 

   0 0 n nx , y x , y
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Some Basic Relationships Between Pixels 

• Adjacency, Connectivity, Regions, and Boundaries 
 Let S represent a subset of pixels in an image. Two pixels p and q are said 

to be connected in S if there exists a path between them consisting 
entirely of pixels in S. For any pixel p in S, the set of pixels that are 
connected to it in S is called a connected component of S. If it only has 
one connected component, then set S is called a connect set. 

 Let R be a subset of pixels in an image. We call R a region of the image if 
R is a connected set. The boundary (also called border or contour) of a 
region R is the set of pixels in the region that have one or more neighbors 
that are not in R. 

 Edges are formed from pixels with derivative values that exceed a preset 
threshold. 
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Some Basic Relationships Between Pixels 

• Distance Measures 
 For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), 

respectively, D is a distance function or metric if 

 (a) 

 (b) 

 (c) 

    D p,q 0 D p,q 0 iff p q  

   D p,q D q, p

     D p,z D p,q D q,z 
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Some Basic Relationships Between Pixels 

• Distance Measures 
 Euclidean distance 

 

 

 D4 distance (also called city-block distance) 

 

 

 D8 distance (also called chessboard distance) 

     
1

2 2 2

eD p,q x s y t    
 

 4D p,q x s y t   

   8D p,q max x s , y t  
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Some Basic Relationships Between Pixels 

• Distance Measures 
 D4 distance  &  D8 distance 

 

 

 

 

 

 

 Note that the D4 distance  &  D8 distance are independent of any 
paths that might exist between the points because these distances 
involve only the coordinates of the points. 

 The Dm distance between two points is defined as the shortest m-
path between the points. 
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Today 

• Some Basic Relationships Between Pixels 

• Intensity Transformation 

• Spatial Filtering 
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Basics 

•The spatial domain processes can be denoted by 
the expression 

 
•        is the input image,      is the output 
image, and T is an operator on f defined over a 
neighborhood of point (x, y) 
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Basics 

•The neighborhood along with a predefined operator is 
called spatial filter (also referred to as a spatial mask, 
kernel, template, or window), as we will discuss in detail in 
Section 3.4 
•The smallest possible neighborhood is of size            .In this 
case, g depends only on the value of f at a single point (x, y) 
and T becomes intensity transformation function 
 
 

Also called gray-level transformation, mapping, or point 
processing. s and r are variables denoting, respectively the 
intensity of g and f at any point (x, y) 
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Point Processing 
• What can they do ? 

• What’s the form of T ?   
• Important: every pixel for himself – spatial information 
completely lost! 
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Point Processing 

•Some basic intensity transformation functions 
•Image negatives 
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Point Processing 

•Some basic intensity transformation functions 
•Image negatives 

 

 

 

 

 

 

 

 

 

•Inverse the colors 



 http://ivm.sjtu.edu.cn 

Point Processing 

•Some basic intensity transformation functions 
•Image negatives 

 

 

 

 

 

 

 

 

 

•Inverse the brightness of each pixel 
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Point Processing 

•Some basic intensity transformation functions 
•Log transformations 
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Point Processing 

•Some basic intensity transformation functions 
•Log transformations 
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Point Processing 

•Some basic intensity transformation functions 
•Log transformations 
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Point Processing 

•Some basic intensity transformation functions 
•Power-Law (Gamma) transformations 

 

 

 

 

•Account for an offset 
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Point Processing 

•Some basic intensity transformation functions 
•Power-Law (Gamma) transformations 
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Point Processing 

•Some basic intensity transformation functions 

•Piecewise-linear transformations 

•Contrast stretching 

Contrast stretching is a process that expands the range of intensity 

levels in an image so that it spans the full intensity range of the 

recording medium or display device. 
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Point Processing 

•Piecewise-linear transformations 

•Contrast stretching 
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Point Processing 

•Piecewise-linear transformations 

•Intensity-level slicing 
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Point Processing 

•Piecewise-linear transformations 

•Bit-plane slicing 

Pixels  are digital numbers composed of bits. The intensity of 

each pixel in a 256-level gray-scale image is composed of 8bits. 
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Point Processing 

•Piecewise-linear transformations 

•Bit-plane slicing 
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Point Processing 

•Piecewise-linear transformations 

•Bit-plane slicing 
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Point Processing 

•False contour 

•Discrete gray levels 

•Lack of effective gray levels 
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Point Processing 

•False contour 
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Point Processing 

•False contour 
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Point Processing 

•Histogram processing 
▫ Histograms are the basis for numerous spatial domain processing 

techniques 

▫ Histograms are the statistical diagrams of gray level distribution 

•For continuous gray level 

 

 
   

r 0

A r r A r
p r lim

r A 

 


 
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Point Processing 

•Histogram processing 

•For discrete gray level 

 

where rk is the kth intensity value and nk is the number of pixels in the image 

with intensity rk. Thus, a normalized histogram is given by 

 

 

M and N are the row and column dimensions of the image. And we have 

   k k kh r n , r 0, L 1  

 k kp r n MN , for k 0,1,2, ,L 1  

 
L 1

k k

k 0

p r 1





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Point Processing 

•Histogram processing 
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Point Processing 

•Histogram processing 
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Point Processing 



 http://ivm.sjtu.edu.cn 

Histogram  usage 
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Point Processing 

•Histogram processing 

•Histograms haven’t any position information 

Reshuffling all pixels within the image 

 

 

 

 

Its histogram won’t change.  No point processing will be affected… 

Spatial information is discarded 
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Point Processing 

• Histogram Equalization & Histogram Specification 
▫ Histogram equalization 

 The histogram of is a uniform histogram 

▫ Histogram specification 
 The histogram of has a specified shape 

▫ Histogram equalization is a special example of histogram 
specification 

▫ Theoretical argument of histogram equalization 
 Principle of the biggest entropy 

 

 

 While the histogram is equalized, the entropy of the image is biggest, which 
means that the human visual system can obtain the maximum information 

 

   
max

min

r

c
r

H p r log p r dr 
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Histogram Equalization 

 Transformation function 

 

 Assume that: 

 (a) T(r) is a monotonically increasing function in the interval 

 

 (b)       

 In some formulations to be discussed later, we use the inverse 

 

 change condition (a) to 

  (a’) T(r) is a strictly monotonically increasing function in the 
interval 

 s T r 0 r L 1   

0 r L 1  

 0 T r L 1 for 0 r L 1     

 1r T s 0 s L 1   

0 r L 1  
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Histogram Equalization 
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Histogram Equalization 

• pr(r) and ps(s) denote the PDFs of r and s, respectively. pr(r) 
and T(r) are known and T(r) is continuous and differentiable. 
Then the PDF of the transformed variable s can be obtained 
using the simple formula 

 

 

• A transformation function of particular importance in image 
processing has the form 

   s r

dr
p s p r

ds


     
r

r
0

s T r L 1 p w dw   
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Histogram Equalization 

r

r

s s

 rp r

 sp s

 T r

dr

ds
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Histogram Equalization 

 

   

   

r

r
0

r

dT rds

dr dr

d
L 1 p w dw

dr

L 1 p r



  
  

 



   

 
   

s r

r

r

dr
p s p r

ds

1
p r

L 1 p r

1
0 s L 1

L 1






   

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Histogram Equalization 
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Histogram Equalization 

• For discrete values, we deal with probabilities (histogram 
values) and summations instead of probability density 
functions and integrals. The condition s of monotonicity 
stated earlier apply also in the discrete case 

 

 

• A plot of pr(rk) versus rk is commonly referred to as a 
histogram 

  k
r k

n
p r k 0,1,2, ,L 1

MN
  
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Histogram Equalization 

• The discrete form of the transformation is 

     
k

k k r j

j 0

k

j

j 0

s T r L 1 p r

L 1
n k 0,1,2, ,L 1

MN





  


  




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Histogram Equalization 

• Example 3.4 & 3.5 
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Histogram Equalization 
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Histogram Equalization 
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Histogram Equalization 

• The inverse transformation from s back to r is defined by 

 

 

 

 

• Problem 3.10(3rd edition) 

• Problem 3.9(2nd edition) 

 1

k kr T s k 0,1,2, ,L 1  
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Histogram Matching 

• Histogram equalization automatically determines a 
transformation function that seeks to produce an output 
image that has a uniform histogram. 

• Histogram matching (or histogram specification), 
generates a processed image that has a specified 
histogram. 
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Histogram Matching 

• Start from continuous intensities 

▫ r and z denote the intensity levels of the input and output 
images, respectively 

▫ pr(r) and pz(z) denote their continuous PDFs, while pr(r) is 
estimated from given input image and pz(z) is the specified 
PDF that we wish to have 

▫ Let s be a random variable with the property 

     
r

r
0

s T r L 1 p w dw   
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Histogram Matching 

▫ Define another random variable z with the property 

 

 

▫ From these equations that 

 

 

▫ That z must satisfy the condition 

     
z

z
0

G z L 1 p t dt s  

   G z T r

  1z G T r
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Histogram Matching 

r

r

 rp r  zp z

z

z

 T r  G z

   T r s G z 
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Histogram Matching 

▫ Discrete formulation 

 

 

 

 

     

 

q

k k r j

j 0

k

j

j 0

s T r L 1 p r

L 1
n k 0,1,2, ,L 1

MN





  


  





     
q

q z i

i 0

G z L 1 p z


  

 1

q kz G s

 q kG z s
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Histogram Matching 

• Example 3.7, 3.8 
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Histogram Matching 

• Example 3.7, 3.8 
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Histogram Matching 

• Histogram equalization is not always good 
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Histogram Matching 

• Histogram equalization is not always good 
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Today 

• Some Basic Relationships Between Pixels 

• Intensity Transformation 

• Spatial Filtering 
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Spatial Filtering 

• The mechanics of spatial filtering 

 

 

▫ For  a mask of size 3 by 3 

         

       

g x, y w 1, 1 f x 1, y 1 w 1,0 f x 1, y

w 0,0 f x, y w 1,1 f x 1, y 1

       

     
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Spatial Filtering 

• The mechanics of spatial filtering 

▫ Generally , for a mask of size m by n, we assume that 
m=2a+1 and n=2b+1,where a and b are positive integers. 

▫ Linear spatial filtering of an image of size M by N with a 
filter of size m by n is given by the expression 

     
a b

s a t b

g x, y w s,t f x s, y t
 

  
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Spatial Filtering 

• Some yucky details 
▫ What about near the edge? 

 the filter window falls off  

 the edge of the image 

 need to extrapolate 

 methods: 

 clip filter (black) 

 wrap around 

 copy edge 

 reflect across edge 

 vary filter near edge 
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Spatial Filtering 

• Relationship between spatial correlation and 
convolution 
▫ Page 168, section 3.4.2, DIP(3rd Edition) 
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Spatial Filtering 

• Vector representation of linear filtering 

 

 

 

 

 
▫ where the ws are the coefficients of an m by n filter and the zs are 

the corresponding image intensities encompassed by the filter 

1 1 2 2 mn mn

mn

k k

k 1

R w z w z w z

w z


   






Tw z



 http://ivm.sjtu.edu.cn 

Spatial Filtering 

• Vector representation of linear filtering 
▫ As an example 

 

 

 

 

 
▫ where the ws are 9-dimensional vectors formed from the 

coefficients of the mask and the image intensities encompassed 
by the mask, respectively 

1 1 2 2 9 9

9

k k

k 1

R w z w z w z

w z


   






Tw z
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Smoothing Spatial Filters 

• Image smoothing is used for blurring and for 
noise reduction 
▫ Blurring is used in preprocessing steps, such as removal of 

small details from an image prior to object extraction, and 
bridging of small gaps in lines or curves 

▫ Noise reduction can be accomplished by blurring with a 
linear filter and also by nonlinear filtering 

• Disadvantage of image smoothing 
▫ edges or details in the image will be blurred 

• Principle of image smoothing 
▫ remain most of the details in the image 
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Smoothing Spatial Filters 

• Smoothing linear filters 

▫ Use of first filter yields the  

 standard averages of the pixels 

 under the mask. A spatial  

 averaging filter in which all coefficients are equal 
sometimes called a box filter 

▫ The second mask yields a so-called weighted average, 
giving more weight to some pixels at the expense of the 

others. (Gaussian kernel) 
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Smoothing Spatial Filters 

• Smoothing linear filters 

▫ The general implementation for filtering an M by N image 
with a weighted averaging filter of size m by n (m and n 
odd) is given by the expression 

 
   

 

a b

s a t b

a b

s a t b

w s,t f x s, y t

g x, y

w s,t

 

 

 


 

 
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Smoothing Spatial Filters 

• Smoothing linear filters 
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Smoothing Spatial Filters 

• Smoothing linear filters 
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Smoothing Spatial Filters 

• Order-statistic filters 

▫ Order-statistic filters are nonlinear spatial filters whose 
response is based on ordering the pixels contained in the 
image area encompassed by the filter, and then replacing 
the value of the center pixel with the value determined by 
the ranking result. 

▫ Median, max, min filtering. 

▫ The median filters are the best known and particularly 
effective in the presence of impulse noise 
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Smoothing Spatial Filters 

• A Median Filter operates over a window by selecting the 
median intensity in the window. 

•   Is median filtering linear? 



 http://ivm.sjtu.edu.cn 

Smoothing Spatial Filters 
• What advantage does median filtering 

have over Gaussian filtering? 
▫ Robustness to outliers 
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Smoothing Spatial Filters 
Salt-and-pepper noise Median filtered 
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Smoothing Spatial Filters 
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Sharpening Spatial Filters 

• Image sharpening is used to highlight fine detail in an 
image or to enhance detail that has been blurred 
▫ Blurred detail in the image is either in error or as a nature effect 

of a particular method of image acquisition 

• Applications of image sharpening 
▫ Electronic printing, medical imaging, industrial inspection, 

autonomous guidance in military systems 

• Principle of image sharpening 
▫ Image differentiation can enhance edges and other 

discontinuities (such as noise) and deemphasize areas with slowly 

varying gray-level values 
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Sharpening Spatial Filters 

• Foundation 

▫ Any definition of a first derivative 

 Must be zero in areas of constant intensity 

 Must be nonzero at the onset of  an intensity step or ramp 

 Must be nonzero along ramps 

▫ Any definition of a second derivative 

 Must be zero in constant areas 

 Must be nonzero at the onset and end of  an intensity step or ramp 

 Must be zero along ramps of constant slope 
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Sharpening Spatial Filters 

• First-order derivative of a one-dimensional function is the 
difference 

 

 

 

 

• Second-order derivative of a one-dimensional function is the 
difference 

 

   
f

f x 1 f x
x


  



     
2

2

f
f x 1 f x 1 2 f x

x


    


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Sharpening Spatial Filters 
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Sharpening Spatial Filters 
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Sharpening Spatial Filters 

• The Laplacian 

▫ Laplacian operator 

 

 

▫ X-direction 

 

 

 

▫ Y-direction 

2 2
2

2 2

f f
f

x y

 
  

 

     
2

2

f
f x 1, y f x 1, y 2 f x, y

x


    



     
2

2

f
f x, y 1 f x, y 1 2 f x, y

y


    


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Sharpening Spatial Filters 

• The discrete Laplacian of two variables 

           2 f x, y f x 1, y f x 1, y f x, y 1 f x, y 1 4 f x, y         
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Sharpening Spatial Filters 

• For image sharpening 

     2g x, y f x, y c f x, y    
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Sharpening Spatial Filters 

• Unsharp masking and highboost filtering 

▫ Unsharp masking 

 Blur the original image 

 Subtract the blurred image from the original (the resulting 
difference is called the mask) 

 Add the mask to the original 

     

     

mask

mask

g x, y f x, y f x, y

g x, y f x, y k g x, y

 

 
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 

0.4
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image=imread('lena512.bmp'); 
im=mat2gray(image); 
g= fspecial('gaussian', 25,4); 
imblur = conv2(im,g,'same'); 
figure; imshow(imblur); 
figure; imshow(im-imblur); 
figure; imshow(im-imblur,[]); 
figure; imshow(im+0.4*(im-imblur)); 
 

So, what does blurring take away? 

Unsharp Masking (MATLAB) 
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Sharpening Spatial Filters 
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Sharpening Spatial Filters 

• Using first-order derivatives for image sharpening – the 
gradient 
▫ The gradient of f at (x, y) 

 

 

 

 

▫ Magnitude 

 
x

y

f

g x
f grad f

fg

y

 
   
        
  

    2 2

x y

x y

M x, y mag f g g

g g

   

 
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Sharpening Spatial Filters 
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Sharpening Spatial Filters 

 



 http://ivm.sjtu.edu.cn 

Homework   
problem 3.7, 3.11, 3.23 
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Requirements of Project One 

 now posted! 
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Thank You! 


