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About The Class

 Requirements and Grading: 

• Homework & Project + Mid-term Test: 50%
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Introduction

• Signals

▫ Definitions, representations and classifications

▫ Fundamental signal transformations

▫ Typical signal examples

• Systems

▫ Concepts, representations, and classifications

▫ Basic properties of systems



The Signals and Systems Abstraction

• Describe a system (physical, mathematical, or 
computational) by the way it transforms an input signal 
into an output signal.



Example: Mass and Spring



Example: Tanks



Example: Cell Phone System



Signals and Systems: Widely Applicable
• The Signals and Systems approach has broad application: electrical,

mechanical, optical, acoustic, biological, financial, ...



Check Yourself

• Computer generated music 𝑓(𝑡)

𝑓(𝑡)

1.wav


Little Test
• Listen to the following three manipulated 
signals:

𝑓1(𝑡) 𝑓2(𝑡) 𝑓3(𝑡), try to find the correct 

answer

𝑓1(𝑡)

𝑓2(𝑡)

𝑓3(𝑡)

-𝑓(𝑡)

0.5𝑓(𝑡)

𝑓(2𝑡)

1.wav
2.wav
3.wav


Check Yourself



Check Yourself 
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• Signals are represented mathematically as functions 
of one or more independent variables

• Described by mathematical expression and 
waveform

(In this book, we focus our attention on signals involving a 
single independent variable as time)

1.1.1 Mathematical Representation of Signals



• Deterministic signal and  Random Signal

• Continuous signal and Discrete Signal

• Energy Signal and Power Signal

• Periodic Signal and Non-periodic Signal

• Odd Signal and Even Signal

• Real Signal and Complex Signal

• ………………..

1.1.2 Classification of Signals



• Deterministic signal
▫ Can be described by exact 

Mathematic expression 

▫ Given t and get Deterministic 
result 

• Random Signal
▫ Can not be described by exact 

Mathematic expression

▫ Given t and get random result 

1.1.2.1 Deterministic signal and  Random Signal



1.1.2.2 Continuous-Time (CT) and Discrete-

Time (DT) Signals:

• Continuous-Time (CT) Signals: x(t)
 Independent variable (t) is continuous

 The signal is defined for a continuum of values of the 
independent variable (t)

: ( ) 2 texample x t e



1.1.2.2 Continuous-Time (CT) and Discrete-

Time (DT) Signals:

• Discrete-Time (DT) Signals/Sequences: x[n]
 Independent variable (n) takes on only a discrete set of values, in 

this course, a set of integer values only

 Signal is defined only at discrete times

2, 1

4, 0
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• Instantaneous power 

• Total energy over time

interval [𝑡1, 𝑡2]

• Average power over

time interval [𝑡1, 𝑡2]

1.1.2.3 Time-Limited and Power-Limited Signals
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1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy definitions in the course

• Total Energy
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• Total Energy

𝐸∞ = lim
𝑇→∞

𝑇−׬
𝑇
𝑥(𝑡) 2𝑑𝑡 𝐸∞ = lim

𝑁→∞
σ𝑛=−𝑁
𝑁 𝑥 𝑛 2

• Average Power

𝑃∞ =
1

2𝑇
lim
𝑇→∞

𝑇−׬
𝑇
𝑥(𝑡) 2𝑑𝑡 𝑃∞ = lim

𝑁→∞

1

2𝑁+1
σ𝑛=−𝑁
𝑁 𝑥 𝑛 2

1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy definitions over an infinite interval



• Finite-Energy Signal

𝐸∞ < ∞ 𝑃∞ = 0

• Finite-Average Power Signal

𝑃∞ < ∞ 𝐸∞ =∞

1.1.2.3 Time-Limited and Power-Limited Signals

example:

example:        𝑥 𝑛 =4



For continuous-time signals

• Definition:

If 𝑥 𝑡 = 𝑥 𝑡 + 𝑇 for all values of 𝑡, 𝑥 𝑡 is 
periodic Then 𝑥 𝑡 = 𝑥 𝑡 + 𝑚𝑇 for all 𝑡 and any 
integral 𝑚

 Fundamental Period:  the smallest positive value of            
satisfying 𝑥 𝑡 = 𝑥 𝑡 + 𝑇 for all 𝑡

1.1.2.4 Periodic and Non-Periodic Signals

If  the signal is constant, 

the fundamental period ?



For discrete-time signals

• Definition:

If 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all values of 𝑛, 𝑥[𝑛] is 
periodic Then 𝑥[𝑛] = 𝑥[𝑛 +𝑚𝑁] for all 𝑛 and any 
integral 𝑚

 Fundamental Period:  the smallest positive value of            
satisfying 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all 𝑛

1.1.2.4 Periodic and Aperiodic Signals

If  the signal is constant, 

the fundamental period ?



• Definition:

𝑥(𝑡) or 𝑥[𝑛] is even if it is identical to its time-
reversed counterpart

Similarly 𝑥(𝑡) or 𝑥[𝑛] is odd if

1.1.2.5 Even and Odd Signals

)()( txtx  ][][ nxnx 

)()( txtx  ][][ nxnx 

For odd signal         , can one determine          ?)(tx )0(x



• Even-odd decomposition of a signal

1.1.2.5 Even and Odd Signals

)}({)}({)( txOtxEtx dv 

Even part Odd part
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1.2.1 Time Shift

x(t)

t

x(t-t0)

t

)()( 0ttxtx  ][][ 0nnxnx 

e.g.：Radar, Sonar, Radio propagations

Notes: Each point in x(t)/x[n] occurs at a later/early time in x(t-t0)/x[n-n0], 

when t0/n0 is positive/negative, i.e.

• x(t-t0)/x[n-n0] is the delayed version of x(t)/x[n], for t0/n0 >0

• x(t-t0)/x[n-n0] is the advanced version of x(t)/x[n], for t0/n0 <0



1.2.2 Time Reversal

x(t)

t

x(-t)

t

)()( txtx  ][][ nxnx 

e.g.：tape recording played backward



1.2.3 Time Scaling

x(t)

t

x(2t)

t

)()( txtx  ][][ nxnx 

E.g.   tape recording played:

fast forward 

slow forward

slow backward

fast backward

1

1

Notes： —Compression

—Extension

1
10 
01  
1



1.2.4 A General Transform of the Independent 

Variable 

)()(   txtx ][][   nxnx

)23()(  txtx

Rule:

1. time shift first

2. then reflection(time reversal) and time scaling

example :



Question: what 

happens if 

shifting after 

scaling/reflection

x(-3(t+2/3))



Example: x(t)、x(2t)、x(t/2) Example: x[n]、x[2n]
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• Real Exponential Signals: when 𝐶 and 𝛼 are real 
numbers, e.g. 

▫ growing exponential, when

▫ decaying exponential, when

▫ constant 

1.3.1 Continuous-Time Complex Exponentials 

Signals and Sinusoidal Signals

teCtx )(

Where 𝐶 and 𝛼 are complex numbers 

tetx 2)( 

0
0
0



• Periodic Complex Exponential and Sinusoidal Signals: 

when 𝐶is real, 𝛼 is purely imaginary, e.g.                       
then the fundamental period 𝑇0 = 2𝜋/𝜔0 [s] , angular 

frequency 𝜔0[rad/s], and frequency 𝑓0 =
𝜔0

2𝜋
= 1/𝑇0[Hz] 

Unless noted otherwise, in this course, we always call ω0 
frequency

▫ Important periodicity property :
▫ 1) the larger the magnitude of 𝜔0 , the higher the oscillation 

in the signal

▫ 2) the signal 𝑥(𝑡) is periodic for any value of 𝜔0
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• A general representation, when 𝐶 and 𝛼 are complex 
numbers, denoted as                                              , then

is the envelop of the waveform 

is the oscillation frequency

Example of real part of 𝑥(𝑡)

0,CC  jre j  ＝

)()( 00)(
 


tjrttjrj eeceectx

rtec 

0

Damped  sinusoids 0r



• Real Exponential Signals: when 𝐶 and 𝛼 are real 
numbers

▫ e.g. growing function, when 𝛼 > 1

1.3.2 Discrete-Time Complex Exponentials 

Signals and Sinusoidal Signals

Where 𝐶 and 𝛼 are complex numbers 

nCnx ][

nnx 2][ 

n

x[n]



▫ decaying function, when 0 < 𝛼 < 1

▫ constant, when 𝛼 = 1

▫ alternates in set              , when 𝛼 = −1

 nnx 2/1][ 

n

x[n]

 CC,



• Complex Exponential and Sinusoidal Signals: when        

𝐶 is real, 𝛼 is a point on the unit circle, e.g.

or

Its periodicity property? Similar to that of continuous-time 
signals?

• A general representation, when 𝐶 , 𝛼 are complex 
numbers, denoted as                                       ,then 

• is the envelop of the waveform

nj
enx 0][


 )sin(),cos(][ 00   nAnAnx

0,CC
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)n(nn 00][
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jjnj ercerecnx
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• Periodicity Property of Discrete-time Complex    
Exponentials
▫ a) recall the definition of the periodic discrete-time signal  
𝑥 𝑛 = 𝑥 𝑛 + 𝑁 for all 𝑛

▫ b)if it is periodic, there exists a positive integer 𝑁, which 

satisfies 𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0(𝑛+𝑁) = 𝑒𝑗𝜔0𝑛𝑒𝑗𝜔0𝑁so, it requires 

𝑒𝑗𝜔0𝑁 = 1, i.e. 𝜔0𝑁 = 2𝜋𝑚

▫ If there exists an integer satisfying that 2𝜋𝑚/𝜔0 is an 
integer, i.e. 2𝜋/𝜔0 is rational number ,  𝑥 𝑛 is periodic with 
fundamental period of N = 2𝜋𝑚/𝜔0 ,  where 𝑁,𝑚 are 
integers without any factors in common.

otherwise, 𝑥 𝑛 is aperiodic.  

Different from that of continuous exponentials

nj
enx 0][


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• Another difference from that of CT exponentials

since                                       for any integer

the signal is fully defined within a frequency interval of 

length       :                                               , for any integer

Distinctive signals for different 𝜔0 within any 2π region, i.e.

for any integer m

Without loss of generalization, for                               ,  the rate 

of oscillation in the signal           increases with         increases

from 0 to 𝜋

Important for discrete-time filter design!                            
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• Comparison of Periodic Properties of CT and DT 
Complex Exponentials/ Sinusoids 

Distinct signals for distinct value 

of 

Identical signals for values of         

separated by multiples of 

Periodic for any choice of Periodic only of                          

for some integers              and             

Fundamental angular frequency Fundamental angular 

frequency            , if m and N do 

not have any factors in common 

Fundamental period Fundamental period
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• Unit Impulse Sequence

• Unit Step Sequence

1.4.1 Discrete-Time Unit Impulse and Unit Step 

Sequences
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• Relationship

• Sampling  Property

• Signal representation by means of a series of delayed 
unit samples

]1[][][  nunun
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• Unit Step Function

1.4.2 Continuous-Time Unit Step and Unit 

Impulse Functions
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Notes: 𝑢(𝑡) is undefined at 𝑡 = 0



Can we find counterpart of the unit impulse 
function in CT domain as that in DT domain ?

Does it exist         satisfying the following 
relationship 

]1[][][  nunun
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• Unit Impulse Function

▫ Since 𝑢(𝑡) is undefined at 𝑡 = 0, formally  it is not 

differentiable, then define an approximation to the unit 
step 𝑢∆(𝑡) ,which rises from 0 to 1 in a very short 
interval ∆

▫ So

▫ And  
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• Unit Impulse Function

▫ Dirac Definition

▫ We also call such functions as singularity function or 
generalized functions, for more information, please refer to 
mathematic references
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with unit integral from         to        , i.e. from      to       



• Relationship

• Sampling  Property

• Scaling Property
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• Example:  to derive the 1st derivative of  x(t) 
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• Example: to determine the following signals/values 









d

nnx

dttt

tt

t

















3

2

3

3

2

2

)2()1(.4

]1[]3[.3

)2()1(.2

)2()1(.1



Topic

 1.0  INTRODUCTION 

1.1 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS

1.2 TRASFORMATION OF INDEPENDENT VARIABLE

1.3 EXPONENTIAL AND SINUSOIDAL SIGNALS

1.4 THE UNIT IMPULSE AND UNIT STEP FUNCTIONS

1.5 Definitions and Representations of Systems

1.6 BASIC SYSTEM PROPERTIES



1.5.1 System Modeling

• RLC Circuit

• Mechanism System
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1.5.1 System Modeling

• Observations:

▫ Very different physical systems may be modeled 
mathematically in very similar ways.

▫ Very different physical systems may have very 
similar mathematical descriptions.
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1.5.1 System Modeling

• Typical Systems and their block illustrations

▫ Amplifier

y(t)=cx(t) 

▫ Adder

y(t)=x1(t)+x2(t)

▫ Multiplier

y(t) =x1(t)*x2(t)

▫ Differentiator/Difference

y(t)=dx(t)/dt,    y[n]=x[n]-x[n-1]

▫ Integrator/Accumulator

…



1.5.2 System Analysis

• Memory vs. Memoryless

• Invertibility: Invertible vs. noninvertible 

• Causality: Casual vs. non-Casual

• Linearity: Linear vs. non-Linear

• Time-invariance: Time-invariant vs. Time-
varying

• Stability: Stable vs. non-Stable



1.5.3 System Interconnections
• The concept of system interconnections

▫ To build more complex systems by interconnecting 
simpler subsystems

▫ To modify response of a system

• Signal flow (Block) diagram

Cascade

Parallel

Feedback



Topic

 1.0  INTRODUCTION 

1.1 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS

1.2 TRASFORMATION OF INDEPENDENT VARIABLE

1.3 EXPONENTIAL AND SINUSOIDAL SIGNALS

1.4 THE UNIT IMPULSE AND UNIT STEP FUNCTIONS

1.5 Definitions and Representations of Systems

1.6 BASIC SYSTEM PROPERTIES



1.6.1 Systems with and without Memory

• Systems with memory: if the current output of the system is 
dependent on future and/or past values of the inputs and/or 
outputs, e.g.:

▫ Capacitor system:

▫ Accumulator system:

• Memoryless systems: if the current output of the system is 
dependent on the input at the same time, e.g. 

▫ Identity system: 
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• Examples: to determine the memory property of 
the following systems:

▫ Amplifier, adder, multiplier

▫ Integrator, accumulator, differentiator, time inverse system, 
time scalar, decimator, interpolator,  …



1.6.2 Invertibility: Inverse vs. non-

inverse systems
• Inverse systems: distinct inputs lead to distinct 

outputs, e.g. 

• Non-inverse systems: distinct inputs may lead to 
the same outputs, e.g. 

• Importance of the concept: encoding for channel 
coding or lossless compress

)(
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1.6.3 Causality

• A system is causal if the output does not anticipate future 
values of the input, i.e., if the output at any time depends 
only on values of the input up to that time

▫ All real-time physical systems are causal, because time only 
moves forward. Effect occurs after cause. (Imagine if you 
own a non-causal system whose output depends on 
tomorrow’s stock price.)

▫ Causality does not apply to spatially varying signals. (We 
can move both left and right, up and down.)

▫ Causality does not apply to systems processing recorded 
signals, e.g. taped sports games vs. live show.



1.6.3 Causality

• Mathematical definition: A system x(t) →y(t) is 
casual if 

when       x1(t) →y1(t)      x2(t) →y2(t) 

and          x1(t) = x2(t)      for all t≤ t0

Then        y1(t) = y2(t)      for all t≤ t0

• If two inputs to a casual system are identical up 
to some point in time t0, the corresponding 
outputs are also equal up to the same time.



• Examples: Considering the causality property of 
the following signals 



1.6.4 Linearity: Linear vs. non-Linear

• Many systems are nonlinear. For example: many circuit 

elements (e.g., diodes), dynamics of aircraft, 
econometric models,…

• But why we investigate linear systems?

▫ Linear models represent accurate representations of 
behavior of many systems (e.g., linear resistors, 
capacitors, other examples given previously,…)

▫ Can often linearize models to examine “small signal” 
perturbations around “operating points”

▫ Linear systems are analytically tractable, providing 
basis for important tools and considerable insight



• Mathematical definition: A system x(t) →y(t) is linear if 
it has the following additivity property and scaling 
property （可加性和齐次性）

If   x1(t) →y1(t)    and     x2(t) →y2(t)

Additivity property:  x1(t) + x2(t)  → y1(t) + y2(t)

Scaling property:     ax1(t)    → ay1(t) 

• Equivalent sufficient and necessary condition:  superposition 
property:

If           x1(t) →y1(t)    and     x2(t) →y2(t)

then      ax1(t) + bx2(t)   → ay1(t) + by2(t)

• Examples, considering the  linearity and causality properties of the 
following signals：

y[n] = x2[n]        Nonlinear,  Causal

y(t) = x(2t)          Linear, Non-causal



1.6.5 Time-invariance (TI): 

• Informal definition: a system is time-invariant (TI) if its 
behavior does not depend on what time it is.

• Mathematical definition:

▫ For a DT system: A system x[n] → y[n] is TI if for any 
input x[n] and any time shift n0, 

If                       x[n] →y[n]

then            x[n -n0] →y[n -n0]

▫ Similarly for a CT time-invariant system, 

If                       x(t) →y(t)

then             x(t –t0) →y(t –t0) 



• Examples: 

Considering the time-variance property of 
the following systems:

▫ 1. y[n]=nx[n]            Time-varying system

▫ 2. y(t)=x2(t+1)         Time-invariant system



Consider the periodic property of the output of a 
Time-invariant system with the input signal of 
period T

▫ Suppose           x(t + T) = x(t) 

and                   x(t)      → y(t)

Then by TI： x(t + T) →y(t + T). 

▫ 3. y(t)=cos(x(t))                     Time-invariant system

▫ 4. Amplitude modulator: 

y(t)=x(t)cosωt                     Time-varying system



Linear Time-Invariant (LTI) Systems

• By exploiting the superposition property and time –invariant 
property, if we know the response of an LTI system to some inputs, 
we actually know the response to many inputs

• If we can find sets of “basic” signals so that

▫ a) We can represent rich classes of signals as linear combinations of 
these building block signals.

▫ b) The response of LTI Systems to these basic signals are both simple 
and insightful.

• So in this course we will study some powerful analysis tools 
associated with LTI systems



Stability

• If a system satisfies that the input to the system 
is bounded, i.e. with finite magnitude, the output 
is also bounded (BIBO) 

• Examples:

when                ,  determine whether or not the

following systems are stable?

Unstable

Stable

Mtx )(

)()( txtty 

)()( txety 



• Homework
 BASIC PROBLEMS WITH ANSWER: 1.10, 1.11, 1.17, 

1.18

 BASIC PROBLEMS: 1.21, 1.22, 1.25, 1.26, 1.27



Many Thanks 

Q & A
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