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About The Class

] Requirements and Grading:

Homework & Project + Mid-term Test: 50%

* Final Exam : 50%
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About The Class

] Text book and reference:

= Signals & Systems (Second Edition)
by Alan V. Oppenheim, .7 T MV Hi ikt
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Introduction

- Signals
= Definitions, representations and classifications
= Fundamental signal transformations
= Typical signal examples

« Systems
= Concepts, representations, and classifications
= Basic properties of systems
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The Signals and Systems Abstraction

« Describe a system (physical, mathematical, or
computational) by the way it transforms an input signal
into an output signal.

signal signal
9 _— system |———» 9

in out
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Example: Mass and Spring

L 20
1 y(t)
y(t)
mass & /\
: . ,
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Example: Tanks

ro(t)

—
ol
r1(t)

ro(t) ra(t)

tank /\
f — — t

system
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Example: Cell Phone System

q qD) o
NN
D)'/'

sound in sound out

sound in

cell
t —» phone >

system
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Signals and Systems: Widely Applicable

- The Signals and Systems approach has broad application: electrical,

mechanical, optical, acoustic, biological, financial, ...

fl][f]l
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x(t)
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Check Yourself

- Computer generated music f(€)

f(®)
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M.
Little Test

e Listen to the following three manipulated

signals:
f1(t) fo(t) f3(t), try to find the correct
answer
~\
o () -f(t)
L () 0.5f(t)

Lo () f(2t)
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3.wav
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Check Yourself




M.l

Institute of Media,
Information, and Network

Check Yourself

—950 0 250
flz.y)

r=0
P2

r =10
r=2

0

T =2

I I

1
—250 0 250
Nlz,y) = f(2r,9) 7

— f1(0,y) = f(0,y)
— f1(250,y) = f(500,y)

— f2(0,y) = f(—250,y)
— f2(250,y) = f(250,y)

— f3(250,y) = (=500, y)
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1.1.1 Mathematical Representation of Signals

- Signals are represented mathematically as functions
of one or more independent variables

» Described by mathematical expression and
waveform

(In this book, we focus our attention on signals involving a
single independent variable as time)
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1.1.2 Classification of Signals

 Deterministic signal and Random Signal
- Continuous signal and Discrete Signal

- Energy Signal and Power Signal

« Periodic Signal and Non-periodic Signal
- Odd Signal and Even Signal

- Real Signal and Complex Signal
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1.1.2.1 Deterministic signal and Random Signal

 Deterministic signal
» Can be described by exact
Mathematic expression

= Given t and get Deterministic
result

- Random Signal

» Can not be described by exact
Mathematic expression

> Given t and get random result

—
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1.1.2.2 Continuous-Time (CT) and Discrete-
Time (DT) Signals:

» Continuous-Time (CT) Signals: x(t)

+ Independent variable (t) is continuous

» The signal is defined for a continuum of values of the
independent variable (t)

[ x(t)

example: x(t) =2e™ \

A J
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1.1.2.2 Continuous-Time (CT) and Discrete-
Time (DT) Signals:

- Discrete-Time (DT) Signals/Sequences: x[n]
- Independent variable (n) takes on only a discrete set of values, in
this course, a set of integer values only

- Signal is defined only at discrete times

2, n=-1 ] xnl
example: x[n] “ n=0

: =4
2, nh=1 I I
0

- others "

A J
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1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy in a physical system

: 1 2
- Instantaneous power ~ PO=vit) = |v()

- Total energy over time Itz o(t)dt = 1 j 2 ()| dt
. t1 R t1
interval [t,, t,]

time interval [t;,t,] -t t,—t R

« Average power over 1 o(t)dt 1 1 fz \v(t)\z "
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1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy definitions in the course

- Total Energy
E= [ %) dt E= Y x{n]’

» Average Power

A ] L 2 A 1 22 2
P=—— t)| dt P=



m " Institute of Media, g:ﬂ_
. .11 Information, and Network
1.1.2.3 Time-Limited and Power-Limited Signals
Power and energy definitions over an infinite interval
- Total Energy
Eo = Jim [T x(©l2dt  E = lim SY__ylx[n]]?
« Average Power
P, =—lim [ _|x(©)|?dt P, = lim ——¥N__,|x[n]|?
© 2T T~ T ® 7 Nooo 2N+1SM=N
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1.1.2.3 Time-Limited and Power-Limited Signals
o . 4 x(Hye
- Finite-Energy Signal
1«
E, < oo P,=0 example: .
0 1+ £+

- Finite-Average Power Signal

P, < E, =0 example:  x[n]=4
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1.1.2.4 Periodic and Non-Periodic Signals

For continuous-time signals

 Definition:
If x(t) = x(t + T) for all values of t, x(t) is
periodic Then x(t) = x(t + mT) for all t and any
integral m

- Fundamental Period: the smallest positive value of
satisfying x(t) = x(t + T) for all ¢

If the signal is constant,
the fundamental period ?
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1.1.2.4 Periodic and Aperiodic Signals

For discrete-time signals

» Definition:
If x[n] = x[n + N] for all values of n, x[n]is
periodic Then x[n] = x[n + mN] for all n and any
integral m

- Fundamental Period: the smallest positive value of
satisfying x[n] = x[n + N] for all n

If the signal is constant,
the fundamental period ?
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1.1.2.5 Even and Odd Signals

» Definition:
x(t) or x[n] is even if it is identical to its time-
reversed counterpart

X(t) = x(-t) X[n] = X[—n]
Similarly x(t) or x[n] is odd if
X(t) = —x(-t) X[n] = —x[-n]

For odd signal X(t) , can one determine X(0) ?
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1.1.2.5 Even and Odd Signals

- Even-odd decomposition of a signal

X(t) = EAX(O}+ O, X0}
/ N\

Even part Odd part

E (KO} = 2 D) + (0] od{x(t)}%[x(t)—x(—t)]
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1.2.1 Time Shift

X(t) > x(t—t,) x[n] > x[n—n,]

A x(1)

A x(t-to0)

AN

>

t
e.g.: Radar, Sonar, Radio propagations

t

Notes: Each point in X(t)/x[n] occurs at a later/early time in x(t-t;)/x[n-ng],

when ty/n, is positive/negative, i.e.

* X(t-ty)/X[n-ng] is the delayed version of x(t)/x[n], for ty/n, >0
* X(t-t))/X[n-ng] is the advanced version of x(t)/x[n], for t,/n, <O
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1.2.2 Time Reversal

x(t) = X(~t) x[n] = x[-n]

4 (1) fx(-1)

> >

t t

e.g.: tape recording played backward
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1.2.3 Time Scaling

X(t) = x(at) X[n] — X[an]
A x(t) 4 x(21)

ad NI

t t

E.g. tape recording played:
fast forward a>1  Notes: al>1 —Compression
slow forward O<a<l1l
slow backward—1< a <0
fast backward a<-—1

al <1 —Extension
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1.2.4 A General Transform of the Independent
Variable

X(t) > X(at + ) X[n] = X[an + f]

A X1+

example : X(t) —> X(—3t — 2)

— 2+ =14 0 1+ £+

Rule:
1. time shift first
2. then reflection(time reversal) and time scaling
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Question: what

happens if
—shifting after
scaling/reflection

F x[—3.t - 2}4—'

& Xl:f,:ld-' Q X('3(t+2/3))
/ O
l - >
O
—20 =1l 0 1a -1+ e
x(E—2) e A x(Z-d)

1+ 24 Y L 5130 1a ‘o
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Example: x(t). x(2t). x(t/2)

b

(t)

S

N

x(21)

2

%{t/2)

_

— | ——
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1.3.1 Continuous-Time Complex Exponentials
Signals and Sinusoidal Signals

x(t) =C -e*

Where C and a are complex numbers

- Real Exponential Signals: when C and « are real
numbers, e.g. x(t) = e*"
s growing exponential, when «a >0
» decaying exponential, when <0
= constant a =0
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e Periodic Complex Exponential and Sinusoidal Signals:

when Cis real, a is purely imaginary, e.g.
then the fundamental period T, = 27 /w, [s] , angular
frequency wy[rad/s], and frequency f, =

Unless noted otherwise, in this course, we always call w0

frequency

=2 = 1/To[Hz]

2T

Euler’s Relation

e! = cosawyt + jsin wyt

Lt o o L
COS a)ot — E (ela)ot + e—Ja)ot) sin a)Ot — 2_ (ela)o'[ _e—Ja)ot)
J

o Important periodicity property :

1) the larger the magnitude of w, , the higher the oscillation

in the signal

2) the signal x(t) is periodic for any value of wq
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- A general representation, when C and a are complex
numbers, denoted as C = ‘C‘ejé’ , a=r+ jao, ,then

X(t) = |C| il glrian)t _ |C| o't pllert+0)

‘c‘ .e" is the envelop of the waveform
w, 1s the oscillation frequency

Example of real part of x(t)

Damped sinusoids r <0
\\

e
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1.3.2 Discrete-Time Complex Exponentials
Signals and Sinusoidal Signals

X[n]=C-a"
Where C and a are complex numbers

- Real Exponential Signals: when C and «a are real
= e.g. growing function, when |a| > 1

x[n]=2"
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= decaying function, when 0 < |a| < 1
X[n]

X[n]=(-1/2)

.
Sy

= constant, when |a| = 1

= alternates in set -c,c} , when |a| = -1
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e Complex Exponential and Sinusoidal Signals: when
C is real, a is a point on the unit circle, e.g.

X[n] = el or X[n] = Acos(w,n + @), Asin( w,N + @)
Its periodicity property? Similar to that of continuous-time
signals?

- A general representation, when C , @ are complex
numbers, denoted as C=|Cle’’, a=re’® then
x[n]=|c|-e" - r'e}*" =|c|-r" - g™

* |c|-r" is the envelop of the waveform
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 Periodicity Property of Discrete-time Complex

Exponentials  x[n]=e'""

= a) recall the definition of the periodic discrete-time signal
x[n] = x[n + N] forall n

= b)if it is periodic, there exists a positive integer N, which
satisfies e/@ont = g/ @o(M+N) — gjwongjwoNgq it requires
e/@N =1 ie wyN =2nm

= If there exists an integer satisfying that 2mm/w, is an
integer, i.e. 2m/wy is rational number , x[n]is periodic with
fundamental period of N = 2mrm/w, , where N, m are
integers without any factors in common.

otherwise, x[n] is aperiodic.

Different from that of continuous exponentials



m " Institute of Media,
. .11 Information, and Network

« Another difference from that of CT exponentials

since @l?" = g1{@o*2™MN o1 any integer m
the signal is fully defined within a frequency interval of
length27 : ((2m—1)7z, (2m +1)7z], for any integer m

Distinctive signals for different w, within any 27 region, i.e.
((2m —1)7z, (2m +1)7Z'] for any integer m

Without loss of generalization, for @ € (_ 7T, 711, the rate
of oscillation in the signal e'“*"increases with |?| increases

fromOtom

Important for discrete-time filter design!
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- Comparison of Periodic Properties of CT and DT
Complex Exponentials/ Sinusoids

X(t) = el

Distinct signals for distinct value
of w,

Periodic for any choice of w,

Fundamental angular frequency

@y

Fundamental period 27
W,

x[n] = el

|dentical signals for values of @,
separated by multiples of 2z

Periodic only of @, =2zm/ N
for some integers N >0 and m

Fundamental angular
frequency @,/m, if mand N do
not have any factors in common

Fundamental period m(Zﬂ'j

Wy
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1.4.1 Discrete-Time Unit Impulse and Unit Step
Sequences

 Unit Impulse Sequence
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e Relationship

o[n]=u[n]—-u[n-1] —1st difference
unl= > 8Tm] /un] = S s[n k] runing sum

« Sampling Property
X[n]- o[n] = x[0]- o[n]
x[n]-o6[n—ny]=x[ny]-S[n—n,]

- Signal representation by means of a series of delayed
unit samples Xn] = Z X[K]- 5T K]
K
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1.4.2 Continuous-Time Unit Step and Unit
Impulse Functions

 Unit Step Function

u(t):{o t<0 1

Lu(t)

1 t>0

v

Notes: u(t) is undefined at t = 0
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Can we find counterpart of the unit impulse
function in CT domain as that in DT domain ?

o[n] = u[n] ufn-1j —1st difference

u[n] = Zé[m] /u[n] = Z&[n K] —running sum

Does it exist §(t) satisfying the following
relationship

du(t)

o(t) = at —1st derivative ?

u(t) = J.t o(r)dr —running sum
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e Unit Impulse Function
= Since u(t) is undefined at t = 0, formally it is not
differentiable, then define an approximation to the unit
step u,(t) ,which rises from 0 to 1 in a very short
interval A
50 5,0=2%0)
= And §(t) = lim 5, (t)

& ull) A ouy i)

| _)#1/]_%£ % "
> | > > *

0 £ A £ 0 A { {

Notes: the amplitude of the signald (t) at t = 0 is infinite, but
with unit integral from —o0 to o ,i.e.from Qto 0F
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e Unit Impulse Function
= Dirac Definition +S(t)

r

[ s(dt=1 i
o(t)=0 t=0

v

Notes: the amplitude of the signal O (t)at t = 0 is infinite, but
with unit integral from —ooto © ,i.e. from 0"to 07

s We also call such functions as singularity function or
generalized functions, for more information, please refer to
mathematic references
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e Relationship

du(t)
dt

u®) = [ s(x)dz

S(t) =

—1st derivative

—running sum

« Sampling Property

X(t)-o(t) = x(0)- (1)

x(t)- ot _to) = X(to) ot _to)

» Scaling Property  d(ku(t))

dt

— kS (t)

Can we represent
x(t) by using a
series of unit
samples as that
for DT signal?
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- Example: to derive the 15t derivative of x(t)

& x(6)

2 X(t)=2u(t-1) —-3u(t—2)+2u(t—4)

A ()

%:25(t—1)—35(t—2)+25(t—4) ] l N \
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- Example: to determine the following signals/values

1. (t°-Do(t-2)
2. i(t2—1)5(t—2)dt
3. ;<[n—3]5[n+1]

4. j(fz -1Do(r—2)dr
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1.5.1 System Modeling

« RLC Circuit

—

V, () -V, () v, (1)

_l_

n () = it)=C-

1 R dt
_Qjc - L v v

RC RC

« Mechanism System

f dv(t) 1

it REUR2EU)

—

QO

. dv(t)+'0v(t): f(t)
dt m m
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1.5.1 System Modeling

« Observations:

dy(t)
dt

+ay(t) = bx(t)

s Very different physical systems may be modeled
mathematically in very similar ways.

= Very different physical systems may have very
similar mathematical descriptions.
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1.5.1 System Modeling

e

- Typical Systems and their block illustrations
= Amplifier
y(t)=cx(t)
= Adder
y(t)=x1(t)+x2(t)
= Multiplier
y(t) =x1(t)*x2(t)
= Differentiator/Difference

y(t)=dx(t)/dt, ylnl=x[n]-x[n-1]
= Integrator/Accumulator
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1.5.2 System Analysis

- Memory vs. Memoryless

« Invertibility: Invertible vs. noninvertible

- Causality: Casual vs. non-Casual

- Linearity: Linear vs. non-Linear

- Time-invariance: Time-invariant vs. Time-
varying

- Stability: Stable vs. non-Stable
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1.5.3 System Interconnections

« The concept of system interconnections

= To build more complex systems by interconnecting
simpler subsystems

= To modify response of a system
- Signal flow (Block) diagram

Cascade —— ] —

Parallel — _ %ﬂ—'
Feedback , (E , .
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1.6.1 Systems with and without Memory
« Systems with memory: if the current output of the system is
dependent on future and/or past values of the inputs and/or
outputs, e.g.:
= Capacitor system:
1 ¢t . 1
u = [ i)dz v =2 [ x(@)dz
s Accumulator system:
n n-1
y[n]= > x[k] y[n]= > x[k]+x[n]=y[n—-1]+x[n]

k=—o0 k=—c0

- Memoryless systems: if the current output of the system is
dependent on the input at the same time, e.g.

- Identity system: y(t) = x(t) y[n] = X[n]
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- Examples: to determine the memory property of
the following systems:

= Amplifier, adder, multiplier
= Integrator, accumulator, differentiator, time inverse system,
time scalar, decimator, interpolator, ...
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1.6.2 Invertibility: Inverse vs. non-

inverse systems

- Inverse systems: distinct inputs lead to distinct
outputs, e.g.

YO =2x®) — w(t) =§y<t)

- Non-inverse systems: distinct inputs may lead to
the same outputs, e.g.
y(t) = x*(t) yln]=0
- Importance of the concept: encoding for channel
coding or lossless compress
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1.6.3 Causality

- A system is causal if the output does not anticipate future
values of the input, i.e., if the output at any time depends
only on values of the input up to that time
= All real-time physical systems are causal, because time only

moves forward. Effect occurs after cause. (Imagine if you

own a non-causal system whose output depends on
tomorrow’s stock price.)

= Causality does not apply to spatially varying signals. (We
can move both left and right, up and down.)

= Causality does not apply to systems processing recorded
signals, e.g. taped sports games vs. live show.
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1.6.3 Causality

- Mathematical definition: A system x(t) —y(t) is
casual if
when  x1(t) —yi1(t) x2(t) —y2(t)
and x1(t) =x2(t) forallt<to

Then yi(t) =y2(t) forallt<to

- If two inputs to a casual system are identical up
to some point in time to, the corresponding
outputs are also equal up to the same time.
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- Examples: Considering the causality property of
the following signals

y(t) = a°(t — 1)

y(t) =zt +1)

y|n| = x[—n]
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1.6.4 Linearity: Linear vs. non-Linear

e Many systems are nonlinear. For example: many circuit
elements (e.g., diodes), dynamics of aircraft,
econometric models,...
- But why we investigate linear systems?
= Linear models represent accurate representations of
behavior of many systems (e.g., linear resistors,
capacitors, other examples given previously,...)

= Can often linearize models to examine “small signal”
perturbations around “operating points”

= Linear systems are analytically tractable, providing
basis for important tools and considerable insight



Institute of Media,
Information, and Network

]

- Mathematical definition: A system x(t) —y(t) is linear if
it has the following additivity property and scaling

property A A A SR D

If x(t)—y,(t) and x,(t) =y, (1)
Additivity property: x,(t) + x,(t) — y,(t) +y,(t)
Scaling property: ax,/(t) — ay,(t)
- Equivalent sufficient and necessary condition: superposition
property:
If x1(t) —y1(t) and x2(t) —y2(t)
then axi(t) + bx2(t) — ayi(t) + by2(t)
- Examples, considering the linearity and causality properties of the
following signals:

y[n] = x2[n] Nonlinear, Causal
y(t) = x(2t) Linear, Non-causal

& o ul
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1.6.5 Time-invariance (TI):

- Informal definition: a system is time-invariant (T1) if its
behavior does not depend on what time it is.

« Mathematical definition:

= For a DT system: A system x[n] — y[n] is TI if for any
input x[n] and any time shift no,

It x[n] —yln]
then x[n -no] —y[n -no]

= Similarly for a CT time-invariant system,
It x(t) ~y(t)

then x(t —to) —y(t —to)
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- Examples:
Considering the time-variance property of

the following systems:

s 1. y[n]=nx[n] Time-varying system

= 2, y(t)=x2(t+1) Time-1nvariant system
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Consider the periodic property of the output of a
Time-invariant system with the input signal of
period T
= Suppose x(t + T) = x(t)
and x(t) —  y()
Then by TI: X(t+T) =yt +T).

= 3. y(t)=cos(x(t)) Time-invariant system

= 4. Amplitude modulator:
y(t)=x(t)coswt Time-varying system
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Linear Time-Invariant (LTI) Systems

- By exploiting the superposition property and time —invariant
property, if we know the response of an LTI system to some inputs,
we actually know the response to many inputs

If zpn] —  yr[n

Then Zﬂkﬂlk[ﬂ] — Zﬂkyk[n]
ke k

- If we can find sets of “basic” signals so that

: a) We can represent rich classes of signals as linear combinations of
these building block signals.

= b) The response of LTI Systems to these basic signals are both simple
and insightful.
« So in this course we will study some powerful analysis tools
associated with LTI systems
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Stability

- If a system satisfies that the input to the system

is bounded, i.e. with finite magnitude, the output
is also bounded (BIBO)

- Examples:
when X®)<M  determine whether or not the
following systems are stable?
y(t) =t - x(t) Unstable
y(t) = eX® Stable
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« Homework

- BASIC PROBLEMS WITH ANSWER: 1.10, 1.11, 1.17,
1.18

- BASIC PROBLEMS: 1.21, 1.22, 1.25, 1.26, 1.27
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