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Abstract

Conventional Compressive Sensing (CS) obscures the intrinsic structures of multidimen-
sional signals with the vectorized representation. Although tensor-based CS methods can
preserve the intrinsic multidimensional structures with reduced computational complex-
ity, their sampling efficiency and recovery performance are degraded with the assumption
of standard/simple sparsity. This paper proposes a general and adaptive model that in-
corporates structured sparsity into tensor representation to fit the varying nonstationary
statistics of multidimensional signals. To guarantee the block sparsity, subspace clustering
is adopted to adaptively generate the union of tensor subspaces with its basis of each tensor
subspace learned for optimized representation. For sampled tensors, the stable recovery
algorithm is developed to achieve desirable recovery performance using fewer degrees of
freedom. Moreover, the proposed model inherits the merit from tensor-based CS to allevi-
ate the computational and storage burden in sampling and recovery. Experimental results
demonstrate that the proposed model can achieve better recovery performance in video
sampling in comparison to the state-of-the-art tensor-based method.

1 Introduction

Compressive Sensing (CS)[1] has emerged as a promising framework for signal acqui-
sition and recovery. Recently, CS has been applied to video acquisition and recovery
[2]–[4], which relieves the burden of video encoder by relaxing the hardware limita-
tions and reducing the number of measurements to be sampled. Given certain basis,
effective reconstruction can guarantee the stable recovery from the sparse representa-
tion at the decoder side. However, vectorized representation of signals in conventional
CS would destroy the intrinsic structures of multidimensional signals or tensors, e.g.
images and videos. Thus, the sampling efficiency is degraded by the large-scale sam-
pling matrix led by the vectorization of high-dimensional signals.

To overcome the deficiency of sampling high-order tensors, multidimensional CS
techniques [6]–[9] have been developed for practical implementations. In [6] multidi-
mensional signals were reconstructed by finding the best rank-R tensor approxima-
tion. Later, the Kronecker-CS model[7] assumes that multidimensional signals admit
sparse representations over separable dictionaries constructed by Kronecker prod-
uct matrices. In [8], multi-way CS adopted Kronecker sensing structure to sample
tensors and fits a low-rank model in compressed domain. The low-rank CANDE-
COMP/PARAFAC(CP) tensor can be recovered by per-mode �0/�1 decompression.
Generalized Tensor Compressive Sensing (GTCS) [9] utilized Kronecker sensing struc-
ture and �1-minimization approach per mode for recovery. However, these methods

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.16

181

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.16

181



merely consider standard/simple sparsity by assuming that the signal of interest lives
in a single tensor subspace, which would be inapplicable and inefficient for images
and videos. To address this problem, structured sparsity [5, 11, 12] has been widely
considered for CS to enhance the simple sparsity with additional prior knowledge of
the underlying structures in signals, e.g. tree sparsity and block/group sparsity. For
example, tree-sparsity model utilizes the prior information of successive relationship
among wavelet coefficients based on the fact that nonzero wavelet coefficients tend
to live in a rooted and connected tree. While block-sparsity model supposes that
nonzero coefficients appear to cluster together in a few blocks. Inspired by block
sparsity, the union of subspaces (UoS [10]) model was studied to significantly reduce
the number of measurements, where sampled signals was supposed to live in a union
of subspaces with fixed linear operators. [12] developed a robust block sparse recovery
method with a mixed �2/�1 program constrained by block restricted isometry prop-
erty (RIP). Derived from orthogonal basis like wavelet and DCT, however, they are
rigid for signals with varying signal regularities, especially video sequences. Recently,
union of data-driven subspaces (UoDS [5]) model leveraged block sparsity to obtain
an adaptive and nonlocal basis for compressive video sampling. These models with
structured sparsity can make a stable and efficient recovery with a reduced degrees
of freedom. Thus, this paper proposes an adaptive general model with structured
sparsity for video sampling and reconstruction.

In this paper, we propose a compressive tensor sampling model with structured
sparsity for compressive video sampling, where Kronecker product framework is devel-
oped to admit block-sparse representation over the learned multilinear bases for tensor
modes. The union of data-driven subspaces are adaptively generated by sparse sub-
space clustering to decompose and represent multidimensional signals based on their
structured sparsity. To optimize the tensor subspace based representation, a multilin-
ear subspace learning (MSL) method is adopted to derive the basis for each subspace.
The proposed model maintains the intrinsic structures of tensors to be sampled with
reduced computational complexity and storage cost. Furthermore, multidimensional
signals can be recovered with a desirable performance using fewer degrees of freedom.
Stable recovery is demonstrated to be guaranteed by block sparse representation over
the derived adaptive bases.

2 Compressive Tensor Sampling with Structured Sparsity

2.1 Tensor representation with structured sparsity

Given arbitrary tensor X, it can be represented according to standard multilinear
algebra [15],

X = Θ×1 Ψ
(1) ×2 Ψ

(2) × · · · ×N Ψ(N) = ( Ψ(1) ⊗Ψ(2) ⊗ · · · ⊗Ψ(N))Θ(1)

where Θ is the tensor representation for X, based on the n-mode orthogonal basis
matrixΨ (n) = (ψ

(n)
1 ψ

(n)
2 · · ·ψ(n)

In
), ×n denotes the n-mode product of a tensor by a

matrix, and ⊗ is the Kronecker product. Given the matrixΨ (n), the n-mode product
of Θ is defined as

X = Θ×n Ψ
(n) ⇔ X(n) = Ψ(n)Θ(n), (2)
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Figure 1: Illustrative diagram of the n-mode unfolding of Tensor X ∈ R
I1×I2×I3 , where

n = 1, 2, 3. X(n) is the n-mode unfolding matrix for n = 1, 2, 3.

where X(n) is the n-mode unfolding matrix of tensor X. Fig.1 illustrates the n-mode
unfolding of tensor X with n ≤ 3.

When X lies in a tensor subspace S, the n-mode vectors admit simple sparse
representation over the n-mode basis. To incorporate the structured sparsity into
tensor representation, we assume that the tensor X to be sampled is lying on a
union of data-driven subspaces (UoDS[5]) U∗ =

⋃
i Si. Given the training set of

tensors X = [X1, X2, . . . , Xp], we first generate t groups G = [G1, . . . , Gt] by subspace
clustering (e.g. SSC[13]), with each group Gi containing pi tensors belong to the same
subspace Si, and

∑t
i=1 pi = p.

Subsequently, the basisΨ i of each tensor subspace Si can be learned from training
set G = [G1, G2, . . . , Gt] by using multilinear subspace learning. We adopt MPCA[17]
for each cluster Gi to learn corresponding linear tensor subspace separately. MPCA
obtains a tensor subspace that captures most of the variation in the original tensor
objects and projects Xj ∈ Gi, j = 1, . . . , pi from the original tensor space R

I1 ⊗
R

I2 ⊗ · · · ⊗R
IN onto the tensor subspace Si = R

P1 ⊗R
P2 ⊗ · · · ⊗R

PN with Pn � In.

The projection (representation)Θ j = Xj ×1 Ψ
(1)T

i ×2 Ψ
(2)T

i × · · · ×N Ψ
(N)T

i , basis

Ψ
(n)
i ∈ RIn×Pn spans the n-mode linear space R

Pn of Si. Thus, MPCA solves the
problem:

{Ψ(n)
i , n = 1, . . . , N} = arg max

Ψ
(1)
i ,...,Ψ

(N)
i

pi∑

j=1

‖Θj − Θ̄i‖2F (3)

where the mean tensor projection Θ̄ = (1/pi)
∑pi

j=1 Θj, pi is the number of tensors in
the i-th group Gi.

Therefore, we can obtain the basis Ψ̂ = Ψ(1) ⊗ Ψ(2) ⊗ · · · ⊗ Ψ(N) of the union of
tensor subspaces U∗, where Ψ(n) = [ Ψ

(n)
1 ,Ψ

(n)
2 , . . . ,Ψ

(n)
t ] is the set of bases learned
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from the group Gi. In comparison to previous multidimensional CS models, the
basis Ψ̂ is adaptively derived so that it can capture the non-stationarity in multi-
dimensional signals. Furthermore, each mode of tensors to be sampled admits block-
sparse representation overΨ (n), which can reduce the degrees of freedom for solution,
and consequently, make a stable and efficient recovery. Remarkably, the basisΨ (n) ∈
R

In×rn should be over-complete with rn = tPn > In. In the following subsections,, we
formulate the compressive tensor sampling and recovery for multidimensional signals.

2.2 Compressive tensor sampling and stable recovery

For multidimensional signals like images and videos, the efficiency of conventional
compressive sampling is degraded by the large-scale sampling matrix led by the vec-
torization. Thus, this paper proposes the compressive tensor sensing (CTS) that
directly samples the Nth-order tensor (multidimensional signal) in each of its mode
under the assumption that the tensor lives in a union of tensor subspaces with lower
dimensions.

Definition 1 (Compressive Tensor Sampling) Given an N th-order tensor X ∈
R

I1×I2×···×IN who is K1-K2-. . .-KN -block-sparse, the compressive tensor sampling (CTS)
is defined by:

Y = Φ̂X = ( Φ1 ⊗ Φ2 ⊗ · · · ⊗ ΦN)X

= X×1 Φ1 ×2 Φ2 × · · · ×N ΦN , (4)

where ⊗ is the Kronecker product, Y ∈ R
M1×M2×···×MN , and Φn ∈ R

Mn×In is the
sensing matrix for n-mode. Here, Kn < Mn � In, n = 1, . . . , N .

Recalling the Kronecker product form of X in Eq. (1),

X = Ψ̂Θ = (Ψ(1) ⊗Ψ(2) ⊗ · · · ⊗Ψ(N))Θ. (5)

X can be sampled with Ψ and Φ by combining Eq. (4) and (5).

Y = Φ̂X = Φ̂Ψ̂Θ = (Φ1 ⊗ Φ2 ⊗ · · · ⊗ ΦN)(Ψ
(1) ⊗Ψ(2) ⊗ · · · ⊗Ψ(N))Θ

= ( Φ1Ψ
(1) ⊗ Φ2Ψ

(2) ⊗ · · · ⊗ ΦNΨ
(N))Θ = (A(1) ⊗ A(2) ⊗ · · · ⊗ A(N))Θ(6)

Here, A(n) is the n-mode sensing matrix. Fig. 2 provides an example for compressive
tensor sampling.

For self-containment of this paper, Proposition 1 demonstrates the uniqueness
and stability conditions for the compressive tensor sampling. For each mode n, given
the convex hull S(n)

ij of two different data-driven tensor subspaces S(n)
i

⋃S(n)
j , the

maximum dimension of S(n)
ij is defined as kmax = maxi �=j dim(S(n)

ij ). Thus, we derive
the following conditions for arbitrary linear sampling operator.

Proposition 1 Linear sampling operator Φn : U∗(n) → R
Mn is invertible for U∗(n)

if Mn ≥ kmax.
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Figure 2: 1, 2, 3-mode compressive sampling by projecting tensor X ∈ R
16×10×8 onto tensor

Y ∈ R
8×5×4, where Y = X ×1 Φ1 ×2 Φ2 ×3 Φ3 is obtained with sampling matricesΦ 1, Φ2,

andΦ 3.
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Figure 3: 1, 2, 3 mode recovery of tensor X∗ ∈ R
16×10×8 from tensor Y ∈ R

8×5×4, where
Y = X×1Φ1×2Φ2×3Φ3 with sampling matricesΦ 1, Φ2, andΦ 3, and basisΨ (1), Ψ(2), and
Ψ(3) for the three modes, respectively.

Although U∗ is data-driven, the proposed sampling method can still satisfy the
properties similar to the UoS model. This conclusion can be proved similarly to the
Proposition 3 in [10]. Proposition 1 implies that the minimum number of samples
needed to guarantee a stable reconstruction for each mode.

Given the sensing matrix A(n) and the difference u = θ1− θ2 of two k-block sparse
column vectors ofΘ (n), Proposition 2 provides the conditions for stable recovery.
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Algorithm 1 The proposed compressive tensor sampling

Input: Tensor X ∈ R
I1×I2×···×IN , training set G = [G1, . . . ,Gt], random Gaussian

sampling matrixΦ 1, . . . ,ΦN .
Output: Tensor measurements Y, recovered tensor X∗, basis Ψ̂.
1 Sampling: Sample X to derive measurements Y with Eq. (4).
2 Training:

for n = 1 to N do
for i = 1 to t do
Apply MPCA to Gi and obtain the corresponding n-mode basisΨ

(n)
i ∈ R

In×Pn

Form the n-mode basisΨ (n) ← [Ψ(n),Ψ
(n)
i ]

end for
end for
Derive the overall basis Ψ̂ = [ Ψ(1) ⊗Ψ(2) ⊗ · · · ⊗Ψ(N)]

3 Recovering:
for n = 1 to N do

n-Mode Recovery: Calculate each column vector θ ofΘ (n) with Eq. (8)

Calculate X∗
(n) = Ψ(n)Θ(n)

end for

Proposition 2 The n-mode sensing matrix A(n) is stable for every 2k-block sparse
vector u if and only if there exists C1 > 0 and C2 <∞ such that

C1‖u‖22 ≤ ‖A(n)u‖22 ≤ C2‖u‖22 (7)

Proof: Eq. (6) shows that A(n) = ΦnΨ
(n) for the orthonormal basisΨ (n) of U∗(n)

obtained by MPCA and the i.i.d. random matrixΦ n. According to Proposition 4
and Proposition 5 in [10], we can easily obtain Proposition 2. �

Definition 2 (n-Mode Recovery) Provided that each column vector θ of Θ(n) is
k-block-sparse, θ can be recovered by solving:

min ‖θ‖1,2, s.t. y(n) = ΦnΨ
(n)θ = A(n)θ, (8)

Here A(n) satisfies the block-RIP condition with δ2k ≤
√
2− 1, and y(n) is the corre-

sponding column vector of the n-mode unfolding matrix Y(n).

We can reconstruct θ by group-BP algorithm[14] for each mode. Fig. 3 provides
an example for recovering a 3-order tensor. Algorithm 1 elaborates the proposed
compressive tensor sampling method.

2.3 The proposed model for video sampling and recovery

Fig. 4 depicts the proposed model for video sampling and recovery with compressive
tensor sampling. Given each group of pictures (GOP) in the video sequence, it is
decomposed into a set of reference frames (RFs) and the remaining CS frames(CSFs).
We first fully sample RF while CS patches x of CSFs are sampled with low sampling
rate according to Eq.(4). Then, the recovered RF is decomposed into t data-driven
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Figure 4: The proposed model for compressive tensor sampling with structured sparsity

groups G = G1, . . . , Gt by SSC. The corresponding baseΨ (1),Ψ(2) can be derived
by MSL. Finally, each block-sparse vector θ of the n-mode unfolding representation
matrixΘ (n) is derived according to Eq. (8), and utilized to recover the CS patches by
x∗(n) = Ψ(n)Θ(n),n = 1, 2.

3 Experimental Results and Discussion

In this section, experiments are conducted on a variety of video sequences with CIF
(352×288) resolution (i.e., Akiyo, Bike, Bus, Football, Foreman, NBA). The proposed
method is compared with the state-of-the-art tensor-based method GTCS[9], which
utilizes DCT basis to make video compressible in DCT domain. For 2D case, the
video sequence is decomposed into 32 × 32 patches frame by frame. In the proposed
method, we choose the first frame of each GOP and split the first Reference frame into
overlapping 32×32 tensors to get the training set. The training set is partitioned into
10 groups by SSC. For each group, 1-mode and 2-mode basis are derived by MPCA
with P1 = P2 = 5 and Ψ(1),Ψ(2) ∈ R32×50. For GTCS, DCT and Harr basis are
taken as 1-mode and 2-mode basis for validation, respectively. For both methods, we
sample 32×32 non-overlapping patches from 4 consecutive frames with i.i.d. random
Gaussian matrixΦ 1,Φ2 ∈ R

32SR×32 with zero-mean and unit-variance for 1-mode
and 2-mode sampling ,respectively. Therefore, the number of measurements for each
patches is SR2 · 1024. For 3D case, each GOP in video sequence is represented by a
352× 288× 5 tensor. Besides, 1-mode and 2-mode basis for the 2D case. DCT basis
is adopted to derive the 3-mode basis in the proposed method. For both methods,
we sample 32× 32× 4 non-overlapping sub-video cubes with i.i.d. random Gaussian
matrixΦ 1,Φ2 ∈ R

32SR×32 with zero-mean and unit-variance for 1-mode and 2-mode
sampling like 2D case respectively and use the 4 × 4 identity matrix for 3-mode
full sampling. Similarly, the number of measurements for each sub-video cube is
SR2 · 16384 for 3D case. In the experiments, we set SR from 0.4 to 0.8. For the
recovery of each mode, the SPGL1 Matlab solver[14] is employed for both schemes.
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Table 1: Average PSNR in dB for various video sequences obtained by the proposed method
and GTCS with DCT and Harr basis with 32× 32 block in both 2D and 3D cases, respec-
tively.

Sequence Algorithm Sampling Rate (Mi/Ii, i = 1, 2.)
0.4 0.5 0.6 0.7 0.8

Akiyo

Proposed(2D) 25.75 28.09 30.28 31.95 34.81
GTCS-DCT(2D) 21.88 24.55 26.86 28.64 32.84
GTCS-HARR(2D) 21.40 24.34 26.80 29.00 33.48
Proposed(3D) 23.69 25.33 26.25 29.28 32.42
GTCS-DCT(3D) 21.62 25.42 25.94 29.26 32.32
GTCS-HARR(3D) 22.07 24.94 26.07 29.17 32.26

Bike

Proposed(2D) 16.96 19.05 21.00 23.15 26.92
GTCS-DCT(2D) 16.41 18.00 19.61 21.32 24.66
GTCS-HARR(2D) 16.35 17.93 19.49 21.17 24.12
Proposed(3D) 16.51 17.72 18.54 21.34 23.45
GTCS-DCT(3D) 16.13 17.86 18.60 20.61 23.43
GTCS-HARR(3D) 16.12 17.77 18.62 20.45 22.24

Bus

Proposed(2D) 17.82 19.96 21.72 24.25 27.77
GTCS-DCT(2D) 15.82 18.44 19.79 21.85 25.07
GTCS-HARR(2D) 16.03 18.52 19.97 22.13 25.16
Proposed(3D) 17.00 17.72 19.88 21.41 23.35
GTCS-DCT(3D) 16.12 17.77 19.91 21.43 22.99
GTCS-HARR(3D) 16.26 17.95 20.15 21.75 22.57

Football

Proposed(2D) 21.19 23.36 25.51 26.86 29.54
GTCS-DCT(2D) 18.12 20.53 22.37 24.14 28.16
GTCS-HARR(2D) 17.97 20.16 21.87 23.53 27.07
Proposed(3D) 17.63 20.24 20.47 23.51 27.28
GTCS-DCT(3D) 17.67 20.50 21.22 23.02 24.96
GTCS-HARR(3D) 17.83 19.69 20.85 22.72 23.99

Foreman

Proposed(2D) 24.09 26.85 28.50 29.99 31.82
GTCS-DCT(2D) 19.12 20.99 23.23 26.03 30.11
GTCS-HARR(2D) 19.10 20.89 23.26 26.05 30.28
Proposed(3D) 19.96 21.87 22.97 26.17 28.65
GTCS-DCT(3D) 19.47 21.52 22.43 25.50 28.42
GTCS-HARR(3D) 18.01 20.81 22.87 25.09 28.52

NBA

Proposed(2D) 16.42 17.76 20.13 22.31 25.41
GTCS-DCT(2D) 14.67 15.80 17.62 19.55 23.14
GTCS-HARR(2D) 14.49 15.55 17.25 18.99 22.01
Proposed(3D) 11.30 15.79 17.44 19.02 21.69
GTCS-DCT(3D) 11.68 15.16 16.78 18.83 20.80
GTCS-HARR(3D) 10.82 14.84 16.48 18.20 19.94

The proposed method is implemented based on the MATLAB Tensor Toolbox [18] in
a workstation with 3.2-GHz CPU and 12-GB RAM.

Fig. 5 compares the visual quality of reconstructed frames obtained by the pro-
posed method and GTCS. For both 2D and 3D cases, it shows that the proposed
method can achieve better visual quality in comparison to GTCS with DCT and Harr
basis. Table. 1 provides the average reconstruction performance in terms of PSNR
under various sampling rates. When compared with GTCS, the proposed scheme can
achieve a gain ranging from 0.5 to 5 dB in both 2D and 3D cases. This fact implies
that the adaptive basis for each mode of the tensors to be sampled is more flexi-
ble and effective to capture varying nonstationary statistics in video sequences than
DCT basis and Harr basis in GTCS. It should be noted that the proposed method
can achieve perfect recovery with fewer necessary measurements based on the block
sparsity for each tensor mode.
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(a) The 4th  CSF

(b) PSNR: 31.18dB
Proposed(2D)

(d) PSNR: 28.40dB
GTCS-HARR(2D)

(c) PSNR: 29.81dB
GTCS-DCT(2D)

(e) PSNR: 25.89dB
Proposed(3D)

(g) PSNR: 25.04dB
GTCS-HARR(3D)

(f) PSNR: 25.42dB
GTCS-DCT(3D)

Figure 5: The reconstructed frame in the sequence Football obtained by the proposed
method and GTCS with DCT and Harr basis with 32× 32 patches under SR=0.8 in both
2D and 3D cases, respectively.

4 Conclusions

This paper proposes a general and adaptive model that incorporates block sparsity
into tensor representation to capture the varying statistics of nonstationary signals like
images and video sequences. The proposed model inherits the merit from tensor-based
CS to alleviate the computational and storage burdens in sampling and recovery.
Furthermore, it can achieve desirable recovery quality for tensors using fewer degrees
of freedom. To enable the block sparsity, a subspace clustering method is adopted
to generate a union of tensor subspaces with their bases adaptively learned from the
training set. The recovery algorithm is demonstrated to be stable with a provable
performance. Experimental results show that the proposed model can achieve better
performance in comparison to the state-of-the-art tensor-based sampling method. In
future, we would investigate sophisticated subspace clustering methods and dictionary
learning methods to improve the performance of the proposed method.

References

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactoins on Information Theory, vol.
52, pp. 1289-1306, April 2006.

[2] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R.
Baraniuk, “Compressive imaging for video representation and coding,” in the Proceed-
ings of Picture Coding Symposium, Beijing, China, April 2006, pp. 1-6.

[3] S. Mun and J. E. Fowler, “Residual reconstruction for block-based compressed sensing
of video,” in Proceedings of the IEEE Data Compression Conference, Snowbird, UT,
March 2011, pp. 183-192.

189189



[4] Ying Liu, Ming Li, and Dimitris A. Pados, “Motion-Aware Decoding of Compressed-
Sensed Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
23, no. 3, pp. 438-444, March 2013.

[5] Y. Li and H. Xiong, “Union of data-driven subspaces via subspace clustering for com-
pressive video sampling,” in Proceedings of the IEEE Data Compression Conference,
Snowbird, UT, USA, March 2014, pp. 63-72.

[6] L. Lim and P. Comon, “Multiarray signal processing: Tensor decomposition meets
compressed sensing,” Comptes Rendus Mecanique, vol. 338, no. 6, pp. 311-320, June
2010.

[7] M. F. Duarte, R. G. Baraniuk, “Kronecker Compressive Sensing,” IEEE Transactions
on Image Processing, vol. 21, no. 2, pp. 494-504, February 2012.

[8] N. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing for sparse low-rank
tensors,” IEEE Signal Processing Letters, vol. 19, no. 11, pp. 757-760, 2012.

[9] S. Friedland, Q. Li, D. Schonfeld, “Compressive Sensing of Sparse Tensors,” IEEE
Transactions on Image Processing, vol.23, no.10, pp. 4438-4447, October 2014.

[10] Yue M. Lu and Minh N. Do, “A Theory for Sampling Signals From a Union of Sub-
spaces,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2334-2345, June
2008.

[11] J. Huang and T. Zhang, “The benefit of group sparsity,” Annals of Statistics, vol. 38,
no. 4, pp. 1978-2004, 2010.

[12] Yonina C. Eldar, and Moshe Mishali, “Robust Recovery of Signals From a Structured
Union of Subspaces,” IEEE Transactions on Information, vol. 55, no. 11, pp. 5302-
5316, November 2009.

[13] E. Elhamifar and R. Vidal. “Sparse subspace clustering: Algorithm, theory, and ap-
plications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 11, pp. 2765-2781, March 2013.

[14] E. van den Berg and M. P. Friedlander, “Sparse optimization with least-squares con-
straints,” SIAM Journal on Optimization, vol.21, no.4, pp. 1201-1229, 2011.

[15] J. Ye, “Generalized low rank approximations of matrices,” Machine Learning, vol. 61,
no. 1-3, pp. 167-191, November 2005.

[16] X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, December 2005, pp. 499-
506.

[17] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA: Multilinear principal
component analysis of tensor objects,” IEEE Transactions on Neural Network, vol. 19,
no. 1, pp. 18-39, January 2008.

[18] T. G. Kolda et al., MATLAB Tensor Toolbox Version 2.5, January 2012. [Online].
Available: http://www.sandia.gov/~tgkolda/TensorToolbox/

190190


