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ABSTRACT

This paper proposes a multiview video scheduling scheme
through asymmetric Nash bargaining for a tradeoff between
user satisfaction and view fairness. The interactions of view
streams queueing at the scheduler are modeled as a bargaining
problem, where packets of different views share the transmis-
sion opportunities via negotiation. A utility function based
upon the viewing angle is defined to indicate whether a view
is desired by a user, then a network utility maximization prob-
lem is solved by the Nash bargaining solution (NBS). The im-
pacts of the bargaining powers on both network performance
and view fairness are analytically investigated. Simulation
results are provided to compare the performances of three
scheduling schemes including fair scheduling, symmetric bar-
gaining, and proportional scheduling, which can be achieved
by adjusting the bargaining powers.

Index Terms— Interactive multiview video streaming,
scheduling, fairness, asymmetric bargaining game

1. INTRODUCTION

Advances in camera and display technologies have enabled
three-dimensional (3-D) video applications, such as 3-D tele-
vision and free viewpoint television, to home and mobile plat-
forms in the near future. Multiview video (MVV) [1], one
popular 3-D video format, has recently attracted considerable
attention. It consists of multiple video sequences that are cap-
tured simultaneously by closely deployed cameras from dif-
ferent viewpoints.

MVV representation requires massive amount of data.
The state of the art multiview video coding (MVC) standard
[2] compresses MVV efficiently by exploiting both temporal
and interview redundancies, its transmission bitrate is still
very high. MVC requires to transmit the entire multiview
sequence to each user, which is practically unnecessary for
the sake that, relying on the head position, the user in a period
might be only interested in a subset of the captured views.
Interactive MVV streaming [3] is designed to reduce band-
width utilization by only transmitting the desired views that
are currently requested by the users.

Due to users’ diverse preferences, the view sequence sub-
set to be injected into the network might be very large. For

current bandwidth-constrained infrastructures, it is hard to ac-
commodate such large amount of data. Therefore, view data
scheduling or dropping strategy should be employed to avoid
congestion. The existing works [4]-[7] on MVV streaming
mostly focused on efficient coding techniques and rate alloca-
tion schemes. In this paper, we consider the view scheduling
problem, which is seldom addressed in the literature.

When network congestion occurs, one scheduling strate-
gy is to satisfy the majority of the users and first transmit view
streams requested by the most users (i.e. popular views). This
strategy ignores user fairness. On one hand the users who re-
quired unpopular views might receive nothing, while on the
other hand the users who requested and also received more
than two popular views would be excessively satisfied, as t-
wo views are sufficient for creating 3-D perception. The oth-
er strategy is to schedule all the views fairly. Such strategy
does not specifically consider users’ requirements and lead-
s to a low network efficiency. It is critical to design a view
scheduling strategy that can achieve a high overall system per-
formance while guaranteeing fairness among users.

Bargaining game theory has been extensively used for
fairness-guaranteed resource allocation in wireless networks.
In this article, we are inspired to model the interactions of the
buffered view packets as a bargaining problem, where pack-
ets of different views share the transmission opportunities via
negotiation. Our main contributions are as follows: We pro-
pose an asymmetric Nash bargaining based view scheduling
scheme to enable interactive MVV streaming over the current
Internet. We investigate the impacts of asymmetric bargain-
ing power on both network performance and view fairness.
We show that a tradeoff between user satisfaction and view
fairness can be achieved by adjusting the bargaining powers.

The remainder of this paper is organized as follows: Sec.
II formulates the view scheduling problem as a bargaining
game. Simulation results are discussed in Sec. III. Finally,
Sec. IV concludes the paper.

2. VIEW SCHEDULING STRATEGY

2.1. System Architecture

The architecture of the proposed interactive MVV streaming
system is shown in Fig. 1. A scene of interest is captured
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by M cameras from different viewing angles. All the cap-
tured view videos then are transmitted to the media server. At
the server side, each view is encoded independently, with the
encoded view data stored a priori. At the user side, by using
autostereoscopic head-tracking display [8], the information of
the requested views is sent back to the server periodically. Af-
ter receiving the view requests of all users, the server selec-
tively sends out the desired view sequences with a particular
view scheduling strategy.
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Fig. 1. Architecture of interactive MVV streaming system

View scheduling strategy refers to the decisions made by
the scheduler (at the server or intermediate node) that whether
packets of a view should be forwarded or dropped. Different
scheduling strategies may lead to different results. For exam-
ple, as shown in Fig. 2, consider that there exist five view
video sequences to be transmitted to four users. The view re-
quirements of these four users are {1, 2}, {2, 3, 4}, {3, 4, 5},
and {4, 5}, respectively. Owing to limited network capacity,
only three view sequences can be forwarded by the sched-
uler. If the scheduler randomly selects view 1, 2, and 3, user
4 would receive nothing. If the scheduler transmits the most
popular views 3, 4, and 5, user 1 would receive nothing. If the
scheduler transmits view 2, 3, and 4 (or 5), all the users can
at least obtain a visual stream. Our goal in this work is to find
a view scheduling strategy that addresses issues of network
efficiency and user fairness.
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Fig. 2. Example of view scheduling strategy

2.2. Bargaining Game Model

Assume that there are M queues at a scheduler. Each queue m
is used for buffering packets of view m. When bandwidth is
insufficient, packets in the queues compete for limited trans-

mission opportunities. In the bargaining framework, the play-
ers in our problem are M queues (or views) that negotiate
with each other on the use of bandwidth resource.

Scheduling strategy: Scheduling strategy X = {x1, . . . , xM}
represents the decision of the scheduler that which view is
selected for transmission. That is,

xm =

{
1, if view m is selected for transmission;
0, otherwise.

Since the scheduler can not select more than one view at the
same time, we have

∑M
m=1 xm = 1.

View demands: The demands for a view can be calculated
by using the angle between the user and the view as in [10].
Let O⃗m denote the orientation of view m given by the normal
of its image plane, and the user view is represented by its
orientation O⃗n, then user n’s demands for view m is

dnm = cos θnm, (1)

where θnm is the angle between O⃗m and O⃗n. Generally, view
m is supposed to be desired by user n, if dnm is larger than a
pre-defined threshold T , 0 ≤ T ≤ 1.

We now define a utility function un,m as:

un,m =

{
1, dnm ≥ T ;

0, dnm < T.
(2)

Given a scheduling strategy X, the utility of view m is

um(X) = xm ·
N∑

n=1

un,m, (3)

where
∑N

n=1 un,m is the number of users who requested view
m, which we call it view popularity in this paper.

To find a scheduling strategy that provides network util-
ity maximization with guaranteed fairness, we formulate the
optimization problem as:

max
M∏

m=1

(xm ·
N∑

n=1

un,m − umin
m )δm

s. t.
∑M

m=1
xm = 1,

xm = {0, 1}, m = 1, ...,M,

xm ·
N∑

n=1

un,m ≥ umin
m , m = 1, ...,M,

(4)

where δm is view m’s bargaining power that is normalized as∑M
m=1 δm = 1.
The value of the minimum utility umin

m has a great im-
pact on the outcome of the bargaining game. To schedule the
popular views first, we let umin

m of view m proportional its
popularity.

umin
m = ε · (

∑N

n=1
un,m)2, (5)
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where ε ≤ ε0 is a positive constant, and ε0 is the positive root
of the equation ε ·

∑M
m=1

∑N
n=1 un,m = 1.

The optimization problem in (4) is an integer program-
ming problem. Its solution is usually achieved by an exhaus-
tive search that has a high computational complexity. To ef-
ficiently solve the problem, we relax the constraint xm =
{0, 1} to continuous values with 0 ≤ xm ≤ 1, as in [11].
Then, xm can be viewed as the probability that view m is s-
elected by the scheduler. Correspondingly, the outcome X of
the game becomes a probability vector.

The problem in (4) with the continuous relaxation is a
convex optimization problem [12]. Its solution or the Nash
bargaining solution (NBS) is given by

x∗
m = δm(1− ε ·

M∑
m=1

N∑
n=1

un,m) + ε ·
N∑

n=1

un,m. (6)

As the view request information of all the users are sub-
mitted to the server, the players (or the queues) in our game do
not need to mutually bargain for an optimal outcome. Instead,
the server can play the game for these players in a centralized
manner. Thus, the computational complexity and communi-
cation overhead of our scheme is very low.

2.3. Impact of Bargaining Powers

It can be seen from Eq. (6) that xm is a strictly increasing
function with respect to δm. Therefore, we can adapt our
scheduling strategy to different scenarios by adjusting the bar-
gaining power settings. Here we consider three cases.

Case 1: symmetric bargaining. In this case, all the views
have the same bargaining power, i.e., we have δm = 1/M for
all m. View m’s scheduling probability is therefore given by

xm =
1

M
(1− ε ·

M∑
m=1

N∑
n=1

un,m) + ε ·
N∑

n=1

un,m

=
1

M
+ ε · (

∑N

n=1
un,m − 1

M
·

M∑
m=1

N∑
n=1

un,m).

(7)

This is a typical symmetric bargaining case in which the
view fairness and utility performance are both taken into ac-
count. The first term in Eq. (7) guarantees the fairness by
assigning equivalent scheduling probability to all the views,
while the second term can be regarded as an offset determined
by the gap between a view’s demands and the average de-
mands of all the views.

Case 2: fair scheduling. By setting

δm =
1/M − ε ·

∑N
n=1 un,m

1− ε ·
∑M

m=1

∑N
n=1 un,m

, (8)

our scheme becomes an absolutely fair scheduling where each
view is scheduled with the same probability xm = 1/M , re-
gardless of its specific demands.

Case 3: proportional scheduling. When view m’s bargain-
ing power is set to

δm =

∑N
n=1 un,m∑M

m=1

∑N
n=1 un,m

, (9)

the proposed scheme turns into a proportional scheduling. In
this case, the fairness is ignored and view m’s scheduling
probability is determined only by its popularity, i.e.,

xm =

∑N
n=1 un,m∑M

m=1

∑N
n=1 un,m

, (10)

3. SIMULATION RESULTS

The simulations are conducted on a 8-view “Racel” sequence.
Each view is encoded independently with 640x480 resolution
by using H.264/AVC reference software. The average bitrate
and peak signal noise ratio (PSNR) for each view is shown in
Table I. In simulations, 8 views are equally spaced between
each other with the angles θm from 20 to 160 degrees. We
consider two user classes. Class 1 are the users with nor-
mal viewing position, whose viewing angles θn are uniform-
ly distributed on the interval [45◦, 135◦]. The users in Class
2 are viewing with special posture, whose viewing angles are
uniformly distributed within either [0◦, 45◦] or [135◦, 180◦].
Correspondingly, the views requested by Class 1 are likely to
be popular views, while those desired by Class 2 are possibly
unpopular views. Assume that all the requested view streams
are queuing at the scheduler.

Table 1. Average bitrate and PSNR value of each view
View No Bitrate (Kbps) PSNR (dB)

1 1831.11 38.75
2 1721.26 38.94
3 1788.82 38.80
4 1623.92 39.06
5 1262.65 39.95
6 1176.61 40.42
7 2058.77 38.08
8 1737.20 38.78

We introduce two metrics view fairness and user satisfac-
tion. View fairness, measured by a fairness index F , reveal-
s the fairness among the views in terms of their scheduling
probabilities. Based upon the Jain’s fairness index [13], we
have

F =
(
∑K

m=1 xm)
2

K ·
∑K

m=1 xm
2
, (11)

where K ≤ M is the number of the queueing views. The val-
ue of F ranges from 0 to 1. It is maximum when all the views
are scheduled at the same probability, and decreases with the
increase of the disparity of the scheduling probabilities.
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User satisfaction, measured by a satisfaction index Sn, in-
dicates the satisfaction of user n with the views selected by
the scheduler. Similarly, Sn assumes values in [0,1]. It reach-
es maximum when all the desired views of user n have been
forwarded by the scheduler. On the contrary, if none of the
requested views have been scheduled, Sn becomes zero. Let
Vn = {v1, · · · , vKn} be the set of views requested by user
n, then the satisfaction index of user n is defined as:

Sn =
1

Kn

Kn∑
m=1

γn,m, (12)

where

γn,m =

{
1, if view m is selected by the scheduler,
0, otherwise.

Fig. 3 compares the view fairness of fair scheduling,
symmetric bargaining, and proportional scheduling. For fair
scheduling, as its fairness is always equal to 1, thus is not
shown in Fig. 3. It is observed that symmetric bargaining
has a better performance than proportional scheduling. When
Class 2 users share a small percentage (e.g. 10%) of the
overall users, symmetric bargaining obviously outperforms
proportional scheduling as it considers the scheduling of the
unpopular views . Then, the difference of these two strategies
reduces with the increase of Class 2 users. When Class 2
users account for 50%, the fairness index of these two strate-
gies are both very close to 1. The reason lies in that, once
the share of Class 2 equals to Class 1, each view is likely to
equally demanded by the users, thus becoming very similar
to fair scheduling.
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Fig. 4 shows the satisfactions of the users, where the per-
centage of Class 1 users is 0.8. It is found that the user satis-
faction of fair scheduling goes relatively smooth as it focuses
on the fairness and considers each user’s requirement. In con-
trast, proportional scheduling causes large satisfaction dispar-
ities among different users. For example, user 20 and 33 who
asked for the popular views have a high satisfaction. While
the satisfactions of user 13 and 25 are very low, since all their
required views are unpopular ones, most of which might be
dropped by the scheduler due to insufficient bandwidth.
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Fig. 5. Average user satisfaction vs. available bandwidth. (a)
Users in Class 1 (b) Users in Class 2

Fig. 5 shows the impact of the available outgoing band-
width on user satisfaction, where the percentage of Class 1
users is 0.8. It is seen that the average user satisfactions of
both classes under all three strategies increase with the avail-
able outgoing bandwidth, as more views would be forwarded
by the scheduler with the increasing bandwidth. In Class 1,
proportional scheduling always has the highest user satisfac-
tion, because it chooses the most popular view first so as to
satisfy the majority of the users. The proportional schedul-
ing guarantees the forwarding of popular views at the cost
of unpopular views, thus resulting in its lowest user satis-
faction in Class 2. Compared with proportional scheduling,
fair scheduling treats each view the same and obtains com-
pletely reverse results. When the available bandwidth reaches
14 Mbps that is enough for accommodating all the views, al-
l users’ demands can be fully satisfied whatever strategy is
used.

4. CONCLUSION

This paper presented an asymmetric Nash bargaining solution
for scheduling the requested view streams, where each view
is assigned a bargaining power indicating its scheduling pri-
ority. A simple centralized solution was proposed in which
the server instead of the view players plays the game and im-
plements the view scheduling. By using different bargaining
power settings, a flexible compromise between the utility and
the fairness performance can be achieved.
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