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for Lossless Image Coding
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Abstract— Inherent statistical correlation for context-based
prediction and structural interdependencies for local coherence
is not fully exploited in existing lossless image coding schemes.
This paper proposes a novel prediction model where the optimal
correlated prediction for a set of pixels is obtained in the sense of
the least code length. It not only exploits the spatial statistical cor-
relations for the optimal prediction directly based on 2D contexts,
but also formulates the data-driven structural interdependencies
to make the prediction error coherent with the underlying
probability distribution for coding. Under the joint constraints for
local coherence, max-margin Markov networks are incorporated
to combine support vector machines structurally to make max-
margin estimation for a correlated region. Specifically, it aims
to produce multiple predictions in the blocks with the model
parameters learned in such a way that the distinction between
the actual pixel and all possible estimations is maximized. It is
proved that, with the growth of sample size, the prediction error
is asymptotically upper bounded by the training error under
the decomposable loss function. Incorporated into the lossless
image coding framework, the proposed model outperforms most
prediction schemes reported.

Index Terms— Structured set prediction, max-margin Markov
networks, lossless image coding, discriminative model.

I. INTRODUCTION

ADVANCES in lossless image coding can be achieved
through either 1-D sequential data compression or

2D context predictive coding, since the concept of context is
constructed for universal sequential prediction by Rissanen [1].
A seminal work on sequential coding can be traced back to
the Lempel-Ziv (LZ) dictionary compression algorithm in a
raster-scanning order [2], which scans the input string till it
finds one substring that is not in the dictionary, e.g. GIF,
TIFF, and PNG coding. Specifically, wavelet-based branch
[3]–[8] has been developed to achieve lossless or near-lossless
compression and progressive reconstruction with the lifting
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structure. However, it is still inferior to pixel-domain predictive
coding in lossless image coding.

Recently, context-based adaptive linear predictors [9] have
achieved significant improvements through the fitting of the
varying statistics. Among which, the state-of-the-art includes
gradient adjusted predictor (GAP) in the context-based adap-
tive lossless image coder (CALIC [10]) and median edge
detector (MED) in the low-complexity lossless compres-
sion for images (LOCO-I [11]). GAP determines the active
predictor for the current pixel based on its neighboring
pixels’ gradients, while MED adaptively chooses the median
of the neighboring encoded pixels for the current pixel. Later,
MED was proven to achieve the minimum entropy when the
median of the mixture of symmetric distributed unimodels
coincides [12]. However, these stationary linear predictors are
not eligible in practice, as most natural images are far from
being stationary.

Recognizing the nonstationary property, least-square (LS)
autoregression based predictors have been considered as
a significant alternative. In [13], the LS-based adaptation
hypothesized that image signals were piecewise autoregressive
(PAR) and improved the predictive performance by optimizing
prediction coefficients. Traditionally, the contexts in LS-based
predictors are obtained with the sequentialization of predicted
pixels and the model parameters are estimated with the varying
contexts featuring local statistics. Such predictors have been
proven to be the maximum likelihood estimators for station-
ary Gaussian random processes. Furthermore, edge-directed
prediction (EDP) in [14] figured out the edge-directed property
of LS-based adaptation which inspired the LS optimization
exactly in the edge area [15], [16]. The further improvements
of LS-based adaptation involve weighting for the contexts
and sequentializing for multidimensional signals [17], [18].
Although it favors individual prediction, the morphology of
2D context region would be destructed accordingly and inher-
ent statistical correlation among the correlated region gets
obscure. As an alternative, spatial structure has been con-
sidered to compensate the pixel-wise prediction. Inspired by
the success of prediction by partial matching (PPM [19])
in sequential compression, [20] introduced the probabilistic
modeling of the encoding symbol based on its previous
context occurrences. In [21], super-spatial structure prediction
aims to find an optimal prediction of the structure compo-
nents, e.g. edges, patterns, and textures, within the previ-
ously encoded image regions instead of the spatial causal
neighborhood.
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To further enhance the coding efficiency, two-pass
prediction schemes were proposed to enable mixture distri-
bution and global image analysis beyond one-pass prediction.
Remarkably, TMW [22], [23] adopted a blending of multiple
probability distributions and a correlation-based segmentation
to achieve higher coding performance. In [24], an adaptive pre-
diction was achieved by choosing the predictor that minimizes
the energy of prediction error in a specified cluster of causal
pixels and updating its coefficients with the gradient descent
rule. To date, Matsuda et al. [25], [26] attained the minimum
rate predictor (MRP) with the best compression performance
by a generalized Gaussian model and block categorization
with variable size in terms of the variance. These generative
methods are limited by utilizing local statistics to smooth the
prediction error in a local region because the smoothing is
isolated without structural interdependencies. Moreover, two-
pass prediction requires to transmit side information.

In this paper, we propose a lossless image coding scheme
with discriminative structured set prediction (SSP) model
which incorporates max-margin Markov networks (M3Ns).
Contrary to LS-based adaptation, the proposed (SSP) model
maintains the inherent statistical correlations by avoiding
sequentialization and directly makes conditional prediction
based on the observed 2D contexts by discriminative learning.
Furthermore, the data-driven structural interdependencies are
formulated to regulate the set prediction in a correlated region.
This formulation is adaptively derived from the varying local
statistics to maintain the coherence of the set prediction.
Unlike the generative methods, the proposed model is opti-
mized to minimize the joint code length under the constraints
for local coherence.

Max-margin Markov networks leverage Markov networks
to combine support vector machines (SVMs) structurally in
order to make max-margin estimation for a set of pixels. Based
on the obtained contexts, multi-class SVMs are trained to
distinguish the actual value from other possible estimations.
They are desirable for single prediction task, but ignore the
structural interdependencies for local coherence of the set
prediction. On the other hand, Markov networks can enforce
local coherence by estimating the most likely joint probability
assignment to the set of pixels. However, such methods do not
usually achieve the prediction accuracy that is comparable to
the max-margin estimation [30]. Combining the advantages of
both, M3Ns unify Markov networks to enforce local coherence
for the set prediction with the max-margin estimation to
exploit statistical correlations for context-based prediction.

Therefore, the proposed model can jointly take into account
the context-based prediction and the data-driven structural
interdependencies in a local region. Concretely, the conditional
prediction for the SSP model is achieved for most probable
estimations based on the trained model parameters. The pro-
posed model incorporates the max-margin Markov network to
distinguish the actual values of the set of pixels from the other
possible estimations. Based on the randomly collected training
data, the model parameters (i.e. weighting vector) are itera-
tively optimized in the terms of log-Gaussian loss function.
The optimized solution to the max-margin Markov network
is obtained with the sequential minimal optimization (SMO)

Fig. 1. The lossless image coder diagram with structured set prediction
model.

over the generated junction trees. Under the decomposable loss
function, the clique-based estimation is able to be in parallel
for the reduction of computational complexity.

The proposed model is well-established in the view of
performance guarantee. The theoretical upper bound of its pre-
diction errors is developed, which is demonstrated to asymp-
totically approach the training error with decomposable loss
function and sufficient sampling. To validate the efficacy of the
lossless coder, the prediction residual of the proposed model
is coded by the available MRP engine [40] to generate the
practical bits. It is worth mentioning that the proposed model
is causal so that encoding and decoding can be synchronously
achieved in one-pass coding. For an extensive range of natural
images, the proposed lossless image coding scheme achieves
a maximum 0.1 bpp (bit per pixel) gain in code length in
comparison to MRP.

The rest of the paper is organized as follows. Section II
describes the lossless image coder scheme with the pro-
posed model. In Section III, the log-Gaussian loss function
is designed and the upper bound of the prediction error is
shown. Section IV provides the solution to the structured set
prediction model based on the max-margin Markov network.
Extensive experimental results are evaluated in Section V on
natural images and common grayscale test images. Section VI
concludes this paper.

II. GENERAL FRAMEWORK

This section presents a general framework of lossless image
coder with the SSP model, where the model parameters are
trained to optimize the loss function by jointly considering the
context-based spatial correlation and the structural interdepen-
dencies for local coherence.

A. The Proposed Coding Scheme

As shown in Fig. 1, each block of pixels will choose
an optimal predictor that achieves least code length by
comparing the proposed model with MRP. The set predic-
tion of each block is characterized by the parameter set
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Fig. 2. The graphical model for the structured set prediction model,
where {y(i)} is the set of pixels to be predicted, {x(i)} is the set of observed
pixels serving as contexts.

PARAM = {BLK_SIZE, cl,w}, where cl = {cl} is the set of
class identifications for blocks and w is the trained weighting
vector as model parameters. Note that, in the remainder of
this paper, we reserve bold face symbols to vector variables
and such symbols with superscripts to their components. The
proposed model predicts blocks of pixels with w, namely, the
predictor is subtracted from the currently encoding block to
generate the residual which is subsequently sent to the ranger
coder. Each class identification cl corresponds to one group
of model parameters w(cl). The coding cost of the proposed
model comes from coding its prediction residual and the class
identification of blocks.

JST RUCT = C (residual)+ C (cl) , (1)

where C (·) is the cost function indicating the assigned code
length. The coding cost of each block is evaluated and com-
pared with the MRP to decide the active predictor.

JM R P = C (residual)+ C (Class)

+ C (Threshold)+ C (Pred_Coeff) (2)

The structured set prediction model is formulated in
Section II-B and II-C, where the set prediction for block of
pixels and the training of model parameters are addressed,
respectively. Its solution is composed of derivation of prime-
dual formulation, generation of junction tree, message passing,
and max-margin prediction, as described in Section IV.

B. The Structured Set Prediction Model

The class of feature functions F = {fk (x, y)} is combined
through the linear model with trained weighting vector w
to make the joint prediction for block of pixels. The con-
ditional probabilistic model for prediction is constructed over
various contexts with structural interdependencies. Consider
that fk(x, y) is conditioned on the k-th pixel in context
x = {x(k)}K

k=1.

fk (x, y) = P
(

y|x(k)
)

In the graphical model of Fig. 2, y denotes the set of pixels
being predicted and x is the causal context. Within the block
of M pixels y = {

y( j )
}M

j=1 for predicting, each clique ψ of
the Markov network represents two neighboring pixels linked
with an edge. The set prediction is derived in a concurrent
form of the linear combination of feature functions.

ŷ = arg max
y

wT f (x, y), (3)

Fig. 3. Training of weighting vector w in structured set prediction model.
The training data {xi , yi } are sampled under the hypothesized structural
constraints {fk}. The max-margin Markov network is trained by combining
the class of feature functions {fk} with the weighting vector w.

where f is the collection of feature functions fk . As shown in
Section II-C, the training of the weighting vector w is modeled
as an optimization problem which considers both context-
based spatial correlation and the interdependencies among the
pixels for predicting.

C. Training Based Prediction Model

Fig. 3 illustrates training of the weighting vector w in
the SSP model. Denote S = {xi , yi }N

i=1 the training set
with sample size N , where yi is the i th block of pixels for
predicting and xi is the observed context for yi . For optimal
prediction of a single pixel yi , multi-class SVMs [29] with
soft margin can be utilized to train model parameters to relate
yi with its context xi , 1 ≤ i ≤ N and 1 ≤ j ≤ M .
⎧
⎪⎨
⎪⎩

min
1

2
‖w‖2 + C

∑
i

ξi

s.t. wT f (xi , yi )+ ξi ≥ max
y

[wT f (xi , y)+ � (yi , y)] ∀i

where ξi is the slack vector which allows for the violations
of the constraints at a cost proportional to ξi and C is a
constant. Evaluating with single loss function �(·), the actual
value of pixel yi is distinguished from the others to the
maximum margin. However, such a formulation is isolated
for predicting a set of pixels. Adopting joint loss function and
feature functions for set prediction, M3Ns make max-margin
estimation for a set of pixels regulated with local coherence for
structural interdependencies. Hence, the min-max formulation
based on the max-margin Markov network [27], [28], [41] is
attained.⎧
⎪⎨
⎪⎩

min
1

2
‖w‖2 + C

∑
i

ξi

s.t. wT f (xi , yi )+ ξi ≥ max
y

[wT f (xi , y)+ L (yi , y)] ∀i

(4)

where L(yi , y) is the joint loss function that measures the
distance between yi and y. The weighting vector w is the
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normal vector perpendicular to the hyperplane spanned by the
class of feature functions {fk}. To adjust w, the collection of
training data S = {xi , yi }N

i=1 is iteratively arranged from 1 to
N. C is related to the learning rate in the training based model.
A large C will lead to the fine adjustment �w of parameter
w but with a slow convergence rate.

According to Eq. (4), the adjustment of w is based on the
loss function L (yi , y). For practical lossless image coding,
the log-Gaussian loss function is designed to relate the struc-
tured set prediction with the actual code length, as shown in
Section III-A. With the class of feature functions F and the
log-Gaussian loss function L (yi , y), weighting vector w is
trained to achieve minimized code length for a set of pixels.

III. FORMULATION OF THE STRUCTURED SET

PREDICTION MODEL

A. Loss Function

Since there exists strong connection between the loss-scaled
margin and the expected loss of the training-based model,
we study the loss function for the loss-augmented inference.
Given the M-ary estimated output ŷ of the set of pixels y,
the prediction error is supposed to be measured by the loss
function L (ŷ, y

)
:

L (ŷ, y
) =

∑
1≤ j≤M

� j

(
ŷ( j ), y( j )

)
, (5)

where � j (·) is the loss function for the prediction ŷ( j ) of the
j -th pixel y( j ). Let ε j = ŷ( j ) − y( j ) be the j -th error in the
set of pixels, and σ 2 the variance derived by the M errors{
ε j
}M

j=1. The log-Gaussian function with a variance of σ 2 is
considered to measure prediction error.

� j

(
ŷ( j ), y( j )

)
= � j (ε j ) = − log2

1√
2πσ 2

+ ε2
j

2σ 2 log2 e (6)

where e is the base of natural logarithms. Contrary to the 0/1
loss, squared error loss function, and the deduced Hamming
distance function, the underlying loss function should be
designed to represent the exact code length from the struc-
tured set prediction. In the proposed model, the log-Gaussian
loss function is adopted to be compatible with the coder in
MRP [40], which estimates the Gaussian-like distributions for
prediction error from various classes. Hence, the log-Gaussian
loss function is related to the exact code length which can
be represented by the total amount of information on blocks
of prediction errors [32]. Later, the logarithm of generalized
Gaussian function has ever been introduced to adapt a series of
distributions including Laplacian and Gaussian [26]. However,
a mixture of distributions derived by various shape and nor-
malization parameters might not guarantee the decomposable
property of the loss function, which would affect its theoretical
upper bound. Furthermore, an upper bound for prediction
error shall be provided under the loss function, as shown in
Section III-B.

As follows, we define the decomposable loss function for
the derivation of upper bound.

Definition 1. The loss function L (ŷ, y
)

is of decomposable,
if it holds over the cliques in the graphical model G

L (ŷ, y
) =

∑
c∈G

�
(
ŷc, y

)
, (7)

where ŷc is the estimations of pixels in clique c.
According to Definition III-A, the designed log-Gaussian

loss function is decomposable.
Proposition 1. The loss function L (ŷ, y

)
is decomposable.

Proof: Please refer to Appendix A.
Since the loss function is decomposable, the loss in predic-

tion and training can be viewed as a combination of loss from
all individual pixels. Hence, the upper bound for the prediction
error can be developed.

B. Upper Bound for the Prediction Error

Hereinafter, the upper bound for prediction error is shown to
be asymptotically equal to the training error. In turn, the pre-
diction error shall not diverge with the well-tuned weighting
vector w. As mentioned, the structured set prediction model
minimizes the cumulative coding length of a correlated region
in terms of the log-Gaussian loss function. Inspired by [27],
we define the average prediction error L

(
wT f, y

)
for the set

of M pixels.

L(wT f, y) = 1

M
L
(

arg max
ŷ

wT f
(
x, ŷ
)
, y
)

To estimate the extreme case of the log-Gaussian loss function,
its tight upper bound L

(
wT f, y

)
is obtained.

L(wT f, y) = max
ŷ:wT f(x,y)≤wT f(x,ŷ)

1

M
L (ŷ, y

)
(8)

Note that the upper bound is derived by picking all proper
ŷ (satisfies wT f(x, y) ≤ wT f(x, ŷ)) that can maximize the
log-Gaussian loss function from y. It is called tight because
only when y = arg maxŷ wT f(x, ŷ), L(wT f, y) = L(wT f, y)
holds. Relating the average prediction error to the margin of
the predictors, the upper bound L(wT f, y) is extended with the
γ -margin hypersphere. The γ -margin relaxed loss is defined
as:

Lγ(wT f, y) = sup
ŷ:‖wT f(x,y)−wT f(x,ŷ)‖≤γL(ŷ,y)

1

M
L (ŷ, y

)
. (9)

The γ -margin relaxed loss Lγ
(
wT f, y

)
similarly picks ŷ in

a γL (ŷ, y
)

wider hypersphere, which is closed to the loss in
the max-margin formulation Eq. (4).

Now, we show the consistency between prediction and
training. In Proposition 2, we prove that the prediction and
training are asymptotically consistent, which means that the
prediction error is upper-bounded by the empirical γ -margin
relaxed loss in training with the exception of an inversely
growing additional term.
Proposition 2 Given the trained weighting vector w and
arbitrary constant η > 0, with sufficient sampling, there exists
ε(L, γ , N, η)arrow0 satisfying

P[sup[EX L(wT f, y)− ESLγ (wT f, y)] ≤ ε] > 1 − η,

(10)
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where EX L(wT f, y) and ESLγ (wT f, y) are the average pre-
diction error and the average relaxed training error derived
by the γ -margin relaxed loss, respectively.

Proof: Please refer to Appendix B.
In view of the average prediction error, Proposition 2 can be

translated as: given the trained normal vector w and arbitrary
η > 0, with probability of at least 1 − η, the prediction error
satisfies

EX L(wT f, y) ≤ ESLγ (wT f, y)+ ε(L, γ , N, η). (11)

In Eq. (11), the first term on the right side indicates the training
error based on w. The average training error ESLγ (wT f, y)
can be reduced with the well-tuned weighting vector w, such
that the performance of prediction can be upper-bounded by
the low training error ESLγ (wT f, y) and high margin γ . The
second term is the excess loss corresponding to the complexity
of the predictor. Eq. (24) in Appendix B shows that the excess
loss vanishes with the growth of sample size N . Thus, the
expected per-pixel prediction error is asymptotically equivalent
to the γ -margin relaxed loss in training.

Proposition 2 ensures the predictive performance by relat-
ing the theoretical upper bound for prediction to the tun-
able one for training. Actually, since the loss derived by
the log-Gaussian loss function meets with the actual coding
length [32] by the prediction error, the average loss can
be viewed in the sense of practical coding. It implies that,
with sufficient sampling, the max-margin Markov network can
asymptotically minimize the average coding length to the well-
tuned loss over training data.

In learning-based methods, prediction tends to be efficient
for the regions with regular features. From Proposition 2, the
prediction with better performance is prospected by catching
the local regular features in the training process. Applying
Proposition 2 to the proposed model with log-Gaussian loss
function, its prediction error is upper-bounded in Corollary 1.
Corollary 1. Given the log-Gaussian loss function and the
well-tuned parameter w from training, the average prediction
error asymptotically approaches zero.

Proof: Please refer to Appendix C.
Corollary 1 implies that the prediction error derived from the

proposed model approaches zero with the well-tuned training
parameter w and sufficient sampling. Thus, the predictive
performance of the proposed model is assured.

IV. SOLVING STRUCTURED SET PREDICTION MODEL

The standard quadratic programming (QP) for Eq. (4) is
often prohibitive in the structured set prediction model with
large state space. We obtain its dual and solve Eq. (4) by
the coordinate dual ascent method similar to the sequential
minimal optimization (SMO [33]). It extends SMO to the
structured set prediction.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

[∑
i,y
αi (y)L (yi , y)

− 1
2‖∑

i,y
αi (y) (fi (xi , yi )− fi (xi , y)) ‖2

]

s.t.
∑
y
αi (y) = C, αi (y) ≥ 0, ∀i

(12)

Fig. 4. Junction tree for the generated Markov network. (a, up-left)
The triangulation of the graphical model by adding some dashed edges;
(b, up-right) The intermediate result of construction of junction tree;
(c, bottom) Two proper junction trees derived from the graphical model.

Eq. (12) can be solved by SMO, which breaks it into a series
of small QP problems and takes an ascent step to update a
least number of variables.{

max
[
vi
(
ŷ
)− vi

(
ŷ′)] δ − 1

2 C‖f
(
x, ŷ
)− f

(
x, ŷ′) ‖2δ2

s.t. αi (y)+ δ ≥ 0, αi
(
ŷ′)− δ ≥ 0

(13)

where vi (y) = wT f(x, y)+L(yi , y). The minimization process
chooses the SMO pairs with respect to the KKT condi-
tions [34]. The KKT conditions are the sufficient and necessary
criteria for optimality of the dual solution, which allow certain
locality with respect to each example for repeatedly searching
the optimal solution. The max-margin Markov network is built
for each block with variable αi and vi . Their marginals are
calculated to validate KKT conditions for deciding SMO pairs.

A. Junction Tree Based Solution

Since the generated Markov netwrok is not a chordal graph,
it should be triangulated into a corresponding junction tree
of all available cliques. The construction of junction tree is
illustrated in Fig. 4, where the junction tree is not unique for
the given graphical model. Henceforth, we choose the chain-
like junction tree for simplicity in the training and prediction,
and denote {Ji } the nodes in the junction tree.

The SMO pairs are the pairs of possible estimations that
maximize the margin. For each junction Ji , its potential is
obtained by cumulating the potentials of its cliques.

ψ (Ji ) =
∏

C∈Ji

ψC (xC , yC ) (14)

When selecting the SMO pairs, the estimations of cliques in
certain junction Ji are fixed, and the others are inferred based
on them. These cliques are inferred by passing the messages
between the neighboring junctions. For each junction, its most
probable estimation and corresponding largest marginal proba-
bility are calculated with the max-sum algorithm. Fig. 5 shows
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Fig. 5. Message passing in the generated junction tree.

the propagation of the local messages. For junction Jp , the
messages that it sends and receives are

μg→p
(

Jp
) = max

ne(g)\p

⎡
⎣ln g

(
Jp, Jm

)+
∑

m∈ne(g)\p

μm→g (Jm)

⎤
⎦

(15)

μp→g
(

Jp
) =

∑
h∈ne(p)\g

μh→p
(
Jp
)

(16)

where the neighboring factors g and h of junction p are
associated with the definition of {αi (·)} or {vi (·)}. The max-
imum marginal probability and the most probable estimation
for junction Jp can be calculated as:

pmax = max
Jp

∑
g∈ne(p)

μg→p
(
Jp
)

(17)

J max
p = arg max

Jp

∑
g∈ne(p)

μg→p
(
Jp
)

(18)

The potential for each junction is maximized.

maxψ
(

Jp
) = max

∏
C∈Jp

ψC (xC , yC) (19)

The maximization process is required to traverse over all the
‖A‖‖Jp‖ possible estimations in Jp for the alleged alphabet
A, which is too large even for the grayscale natural images.
To simplify, we exchange the product and the maximization
for the parallel solution to reduce the volume of possible
estimations.

maxψ
(

Jp
) =

∏
C∈Jp

maxψC (xC , yC) (20)

According to the Holder inequality, we can obtain

max
∏

C∈Jp

ψC (xC , yC) ≤
∏

C∈Jp

maxψC (xC , yC).

Such that {xC , yC }C∈Jp
that achieve maximization in Eq. (19)

can satisfy Eq. (20). On the other hand, the neighboring
cliques in the same junction are conditional independent
according to the D-separation property [35]. Consequently,
the multiplication and the maximization in Eq. (19) can be
exchanged. According to Eq. (20), the maximization of each
junction is implemented by combining the maximized results
of all its cliques. With the max-sum algorithm, the most
probable estimations for all the junctions can be obtained as
the candidate for sequential minimal optimization. The SMO
process is briefly described in Algorithm 1. The detailed KKT
conditions for SMO pairs can be referred to [27].

Algorithm 1 Implementation with SMO

Fig. 6. Two examples of the training and prediction of the structured set
prediction model. In each example, the selection of training data and contexts
are indicated. For the specific block of pixels, its weights for combining the
feature functions {fi } indicating structural information are learned over the
training data while such pixels are constrained with the Markov network in
the form of the pixel states transition.

B. Discussion on the Structured Set Prediction Model

To clarify the philosophy of the proposed model, Fig. 6
shows the contexts and training data selection of the pro-
posed model for a block of pixels. It shows that anisotropic
distributions are constructed for weighting vector w with
various class identifications. The potential for clique ψ j is
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Fig. 7. The residual images for “Lena” with iterations 1, 2, 5 and 10. The first order entropy of the residual images is 3.977, 3.951, 3.928 and 3.904 bpp,
respectively. (a) Iteration 1. (b) Iteration 5. (c) Iteration 10. (d) Iteration 50.

Fig. 8. The residual images for “Barb” with iterations 1, 2, 5 and 10. The first order entropy of the residual images is 3.916, 3.901, 3.890 and 3.884 bpp,
respectively. (a) Iteration 1. (b) Iteration 5. (c) Iteration 10. (d) Iteration 50.

Fig. 9. Two sets of test images used in our experiments. (a) Test image set 1. From left-top to right-bottom: “Airplane”, “Baboon”, “Lena”, “Peppers”,
“Balloon”, “Barb”, “Barb2”, “Goldhill”, “Couple”, and “Cameraman”. (b) Test image set 2. From left-top to right-bottom: “Boat1”, “Boat2”, “House”, “Man”,
“Sailboat”, “Cafe”, “Monarch”, “Beacon”, “Clown”, and “Milk”.

obtained by

ψ j
(
yψ j , x

) =
∑

k

wkfk
(
yψ j , x

)

where weights wk depend on the class identification of the
block. The feature function fk

(
yψ j |x(i)

)
implies the spatial

statistics over the observed contexts.

fk
(
yψ j , x

) = P
(

yψ j |x(k)
)

The set of pixels yψ j that achieves the minimum loss for the
linear combination is selected as the prediction of the proposed
model. The feature function for different cliques ψ j and ψ j ′

can be merged by

fk

(
yψ j , yψ j ′ , x

)
= fk

(
yψ j , x

)
fk

(
yψ j ′ , x

)
I

(
yψ j , yψ j ′

)
,

where I(·) is the ising function. Accordingly, the feature
function for the block of M pixels can be obtained.

Furthermore, we consider the consistency between training
and prediction of the proposed model. Figs. 7 and 8 show the
predictive results for “Lena” and “Barb” with the weighting
vector w trained under 1, 5, 10, 50 iterations, respectively.
In the iterative process, the weighting vector w is tuned with
step �w = 0.00625. Obviously, the predictive performance
becomes increasingly well with the growth of iterations.
According to Proposition 2, the prediction performance will
approach an upper bound. The residual in edge structure of the
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TABLE I

COMPARISON WITH THE MINIMUM RATE PREDICTOR WITH FIXED AND VARIABLE BLOCK SIZE (bpp)

TABLE II

CODING PERFORMANCE (bpp) FOR THE PROPOSED (SSP) MODEL, EDP AND MRP IN OSCILLATORY REGIONS

TABLE III

CODING PERFORMANCE (bpp) FOR THE PROPOSED (SSP) MODEL, EDP AND MRP IN FLAT REGIONS

Fig. 10. Selected 32 × 32 blocks in oscillatory and flat regions, respectively. (a) Selected 32 × 32 blocks in oscillatory regions for lossless coding. The
left-up coordinates of the selected blocks are (353, 6) and (225, 511) in “Barb2”, (391, 415) and (43, 366) in “Barb”, and (435, 64) and (41, 63) in “Baboon”,
respectively. (b) Selected 32 × 32 blocks in flat regions for lossless coding. The left-up coordinates of the selected blocks are (33, 33) and (577, 481) in
“Barb2”, (321, 193) and (289, 33) in “Barb”, and (1, 1) and (257, 1) in “Lena”, respectively.

Algorithm 2 Proposed Scheme for Lossless Image Coding

selected block is suppressed and the first order entropy also
decreases, which provides sufficient evidence that the weight-
ing vector tends to represent the anisotropic local statistics.

V. EXPERIMENTAL RESULTS

A. Implementation

The size of each block for set prediction is 4×4 (M = 16).
Corresponding to the boundary pixels neighboring leftside
or upside to the blocks for prediction, the feature functions
{fk}K

1 are utilized to imply the spatial correlations directly
conditioned on K = 13 contexts. For each block of pixels,
w is selected according to its class identification. The class
identifications of the proposed model are partly associated with
MRP. Blocks of pixels are classified with 64 class identifica-
tions, which consider 8 variance intervals with 8 directions.
The 8 variance intervals depend on the classes in MRP. Given
a maximum D classes in MRP, the d-th variance interval in
SSP is [
(d − 1) × D/8�, �d × D/8
]. The training set S
randomly collects 100 samples for each class, which means
N = 6400 in this paper.

In the training process, the learning rate C is 50 to fine-tune
the weighting vectors w which are obtained by optimizing loss
function constrained by the local structures F over training
data. Hence, the parameters are not required to be encoded
and transmitted to the decoder. The procedure of the proposed
scheme can be referred to Algorithm 2, where prediction resid-
ual from the SSP model is coded by ranger coder [36]. Two
sets of grayscale test images (20 test images shown in Fig. 9)



DAI et al.: LARGE DISCRIMINATIVE STRUCTURED SET PREDICTION MODELING 549

Fig. 11. Prediction error maps for test image “Lena” obtained by the proposed scheme, MRP and EDP. Their first order entropy from left to right is 3.901,
4.025, and 4.237 bpp, respectively. (a) Proposed. (b) MRP. (c) EDP.

Fig. 12. Prediction error maps for test image “Barb” obtained by the proposed scheme, MRP, and EDP. Their first order entropy from left to right is 3.881,
3.918, and 4.352 bpp, respectively. (a) Proposed. (b) MRP. (c) EDP.

Fig. 13. Prediction error maps for test image “Barb2” obtained by the proposed scheme, MRP, and EDP. Their first order entropy from left to right is 4.447,
4.471, and 4.790 bpp, respectively. (a) Proposed. (b) MRP. (c) EDP.

Fig. 14. The zoomed detail of “hair” regions in “Lena” obtained by the proposed scheme, MRP, and EDP, respectively. (a) Proposed. (b) MRP. (c) EDP.

are: The first set is evaluated by MRP and TMW whose coding
performance is directly taken from the benchmark [40]; The
second set is natural images selected from the standard test
sets, such as KODAK, USC SIPI, and etc.

B. Predictive Performance Compared to MRP With Fixed and
Variable Block Size

Since the block size in the proposed model is 4 × 4, more
bits are consumed for class identifications of blocks, especially
in the smooth blocks with a large scale. Table I provides the
coding gain of 4.2% on average over MRP with 4 × 4 block
size, and up to 3% over MRP with variable block size ranging
from 32 × 32 to 4 × 4. Therefore, more improvements can be
achieved by designing the proposed model with variable block
size.

C. Predictive Performance for Oscillatory and Flat Regions

The proposed SSP model is evaluated by coding 32 × 32
blocks, and Table II and III provide the coding performance
in oscillatory and flat regions compared to MRP and EDP.
Table II shows that the proposed model (SSP) is obviously
more effective in oscillatory regions. In flat regions, it is
slightly inferior to MRP because the prediction accuracy of the
training-based model is interfered with the slight differences
of pixel values. Thus, it is promising to combine the pro-
posed SSP model with MRP to improve the universal coding
performance.

D. Predictive Performance for Natural Images

To evaluate the performance of the proposed model, we
compare the first order entropy of its residuals with other
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TABLE IV

FIRST ORDER ENTROPY (bpp) OF THE NATURAL TEST IMAGES OBTAINED BY THE PROPOSED SCHEME, MRP AND EDP, RESPECTIVELY

TABLE V

COMPARISON WITH EXISTING LOSSLESS IMAGE CODERS (bpp) FOR TEST IMAGE SET 1

TABLE VI

COMPARISON WITH EXISTING LOSSLESS IMAGE CODERS (bpp) FOR TEST IMAGE SET 2

predictors, including MRP, EDP, and etc. The orders of EDP
and MRP are fixed at 12. Table IV shows the first order entropy
of the residuals, where the proposed model achieves 0.07 bpp
and 0.40 bpp on average less than MRP and EDP, respectively.
It implies that the histogram of residual is more concentrated.
To reflect the effect of capturing regular features in images,
Figs. 11–13 illustrate the residual maps obtained by the pro-
posed model, MRP and EDP. These residual maps are refined
by magnifying the contrast of its prediction errors. It can
be observed that the proposed model is apt to characterize
the varying local statistics, which is even evident around the
oscillatory and texture regions. Fig. 14 shows three zoom-in
examples of prediction residue where the proposed model
achieves most illegible effect.

Table V and VI provide the lossless code lengths of the nat-
ural images achieved by the proposed scheme in Section II-A.
For validation, it is compared with benchmarks in existing
lossless image coders and spans a wide rage in bit rates
over the test images. It can be seen that the proposed model
is competitive as it achieves the shortest code length, and

outperforms MRP, the best predictor reported, by an average
margin of 0.054 bpp and the coding gain of up to 3%. In a
note of practical interest, it achieves an approximately 10%
and 14% improvement in bit rates over the JPEG 2000 lossless
mode and JPEG-LS standard on average.

E. Computational Complexity

Once the weighting vector w is trained, the computa-
tional complexity of the proposed model is equivalent to
the complexity of the max-sum algorithm. Given L cliques
with alphabet size ‖y‖ in each block, its complexity is
O
(
L‖y‖2

)
, which means that it is linear with the number of

cliques. For the graphical model of Mx × My block, there are
L = (Mx − 1)My + Mx

(
My − 1

)
cliques in total.

In practice, the encoder and decoder operate on a PC
with a 3.2GHz Intel Core i7 processor and complied with
VC++ 9.0 with same configuration (“DEBUG” mode). Given
a 4 × 4 block, L is set to 24 and ‖y‖ is 256 for the 8 bits
grayscale images. In the encoder side, the proposed model
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TABLE VII

COMPUTATIONAL COMPLEXITY OF THE PROPOSED MODEL AND THE MINIMUM RATE PREDICTOR (MRP). RUN-TIME RATIOS (%)

ARE ASSESSED AS: RT_RATIO = tP RO P /tM RP × 100%

TABLE VIII

SELECTION RATIO (%) OF THE SSP MODEL UNDER VARIOUS TRAINING ITERATIONS IN TEST IMAGES “LENA”, “BARB”, AND “BARB2”

Fig. 15. Binary maps indicating where the proposed structured set prediction model performs better when compared with MRP in practical coding. In detail,
the counts of pixels for “Lena”, “Barb”, and “Barb2” are 38224 (14.58%), 60336 (14.55%), and 61424 (14.81%), respectively. (a) Lena. (b) Barb. (c) Barb2.

would be selected in the sense of least code length. Table VII
shows the decoding speed of the proposed scheme and the
minimum rate predictor (MRP), where run-time ratio over
MRP with both VBS and FBS is used to assess computational
complexity. Depending on the selection ratio of the proposed
SSP model, the run-time ratio ranges from 175% to 600%.
The encoding speed is approximately 600 pixels per second.
In fact, the complexity of the max-sum algorithm can be
improved by a stochastic gradient decent algorithm [39] which
solves large scale prediction problems with a decomposable
and differentiable loss function.

F. Selection Ratio

Fig. 15 shows the selection map of the proposed model
when compared with MRP in test images, e.g., “Lena”,
“Barb”, and “Barb2”. It reveals that the proposed model
is mainly distributed in the regions of edges or textures.
Table VIII shows the selection ratio varies with the growth
of iterations in training. With the growth of iterations, the
performance of the proposed model is improved and the
selection ratio of the structured set prediction model increases.

It demonstrates that the predictive performance approaches an
upper bound derived by the training error.

VI. CONCLUSION

In this paper, a structured set prediction model with max-
margin Markov networks is proposed for lossless image cod-
ing. It exploits the decomposition and combinatorial struc-
ture of the local prediction task, and makes the conditional
prediction with multiple max-margin estimation in a correlated
region. With the well-defined decomposable loss function rel-
evant to actual code length, the max-margin Markov network
combines support vector machines structurally and obtain the
model parameters to make a maximized distinction between
the actual pixel and all possible estimations. The prediction
error is demonstrated to be asymptotically upper bounded by
the training error with sufficient sampling, and the theoretical
upper bound of prediction errors is also provided. For the
practical coder, the data are arranged in form of blocks and
classified with their variance and orientation. The structured
set model is optimized to minimize the joint code length for the
prediction residual, and outperforms most prediction schemes
in literature.
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APPENDIX A

PROOF OF PROPOSITION 1

When formulated with the grid-like Markov network, the
cumulative probability distribution of the correlated pixels is
the production of all node and edge cliques. As shown in
Fig. 2, each edge in the graphical model corresponds to one
clique. According to the Markovian property, we can find

p (y) =
∏

1≤i≤M

p
({

yne(i)
}

|y(i)
)

(21)

where {yne(i)} includes all neighboring nodes y( j ) locating
downside or rightside to y.{

yne(i)
}

=
{

y( j )| j > i, j ∈ ne (i)
}

According to D-separation theorem, y(i) and its set of neigh-
boring nodes

{
yne(i)

}
are conditional interdependent. Thus, it

holds
p
({

yne(i)
}

|y(i)
)

=
∏

j>i, j∈ne(i)

p
(

y( j )|y(i)
)

Consequently, we obtain

p (y) =
∏

1≤i≤M

∏
j>i, j∈ne{i}

p
(

y( j )|y(i)
)

= p (y1) ·
∏
C

ψC (yC)

= 1

Z

∏
C

ψC (yC) . (22)

In Eq. (22), ψC (·) is the potential function for the clique C ,
which corresponds to the edge in the graphical model, and
Z is the normalized parameter. Referring to Eq. (6), the
distribution over the states {yi } is hence decomposable over
the edges in the graphical model. Since the log-Gaussian
function for errors {εi } is decomposable over these errors and
the errors is linear with the variation of estimation

{
ŷi
}
, the

log-Gaussian loss function is decomposable over the cliques
in the graphical model.

APPENDIX B

PROOF OF PROPOSITION 2

Since the loss function L (ŷ, y
)

is proven to be decompos-
able in Proposition I, the results in [31] can be extended for
the decomposable loss function here. Given arbitrary constant
ε > 0 and the decomposable loss function L : R

M → [0, 1],
the prediction error can be asymptotically upper-bounded by
the γ -margin relaxed loss over training data.

P[sup[EX L(wT f, y)− ESLγ (wT f, y)] ≤ ε]
> 1 − 4E[N∞(L, γ , X N

1 )]e− Nε2
32 (23)

where N∞ (L, γ ,S) is the infinity covering number of the
sample S. Denote N∞ (L, γ , N) = supX N

1
N∞

(L, γ , X N
1

)
the

supremum of the infinity covering number. Defining

η = 4N∞ (L, γ , N) e− Nε2
32 ,

ε = ε (L, γ , N, η) can be formulated as

ε =
√

32

N

(
ln 4N∞ (L, γ , N) + ln

1

η

)
. (24)

For the M-ary decomposable loss function, the upper bound
of its infinity covering number is derived in [28]

lnN∞ (L, γ , N) ≤ 36 (p − 1)
a2b2

γ 2 ln (2
4ab/γ �N + 1).

where ‖x‖p ≤ b, ‖w‖q ≤ a and 1/p + 1/q = 1, such that we
can draw the conclusion that with sufficient sampling,

32

N
· ln 4N∞ (L, γi ,S) ∼ o

(
log N

N

)
→ 0. (25)

Consequently, given arbitrary η, ε in Eq. (24) vanishes when
N → ∞. As a conclusion, since

E

[
N∞

(
L, γ , X N

1

)]
≤ sup

Xn
1

N∞
(
L, γ , X N

1

)
= N∞ (L, γ , N),

(26)

Proposition 2 is drawn from Eq. (23) and (25).

APPENDIX C

PROOF OF COROLLARY 1

At first, we recall the γ -margin relaxed loss function
Lγ
(
wT f, y

)
:

Lγ
(

wT f, y
)

= max
ŷ:wT f(x,y)≤wT f(x,ŷ)+γL(ŷ,y)

1

M
L (ŷ, y

)
.

Lγ
(
wT f, y

)
is derived from the loss function L (ŷ, y

)
, which

is defined as the logarithms of multivariate Gaussian with zero
mean and variance σ 2.

L (ŷ, y
) = L (ε) =

∑
i

�i (εi ) =
∑

i

⎛
⎝− log2

1√
2πσ 2

i

e
− ε2

i
2σ2

i

⎞
⎠

where ε = y−ŷ. Since the loss function is decomposable, each
of its component can be considered individually. Without loss
of generality, we consider the i th component �i (εi ).

�i (ε) = − log2
1√

2πσ 2
i

e
− ε2

i
2σ2

i .

For y(i), it is relaxed by γ �i
(
ŷ(i), y(i)

)
.

wT
i f
(

x, y(i)
)

≤ wT f
(

ˆx, y(i)
)

+ γ �i

(
ŷ(i), y(i)

)

The γ -margin relaxed loss function is tight when y(i) =
arg maxŷ(i)

[
wT

i f
(
x, ŷ(i)

)+ γ �i
(
ŷ(i), y(i)

)]
, which is also the

boundary of the γ -margin relaxed region of y. Such that the
loss function �i is relaxed by ε(i)γ :

ε
γ
i = arg max

ŷ(i)

[
wT

i f
(

x, ŷ(i)
)

+ γ �i

(
ŷ(i), y(i)

)]

− arg max
ŷ(i)

wT
i f
(

x, ŷ(i)
)

According to the definition of the γ -margin relaxed loss
function in Eq. 9, we can obtain that

�
γ
i (εi ) = �

γ
i

(
y(i), ŷ(i)

)
=
{
�i
(
εi − ε

γ
i

)
εi ≤ ε

γ
i

�i (εi ) εi > ε
γ
i /2

(27)
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In Eq. (27), the mean of �γi (εi ) is ε
γ
i /2. Such that we

can derive the mean vector εγ of the γ -margin relaxed loss
function Lγ

(
wT f, y

)
. It is obvious that εγ is zero when

y = arg max
ŷ

wT f
(
x, ŷ
)+ γL (ŷ, y

)
(28)

Eq. (28) can be achieved or approximately achieved by tuning
the parameters w. When given margin γ and sampled data S
in training, the mean can be closed to zero with the well-tune
parameter w. Moreover, since the excess term ε (L, N, γ , η) is
shown to vanishes with the growth of N in Proposition 2, the
mean of the prediction error asymptotically equals to the one
of training error. As a result, the average prediction error can
be zero with the well-tuned parameters w and the log-Gaussian
loss function.
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