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Abstract—Classical context modeling and binarization algo-
rithms on multimedia do not fully exploit their spatial corre-
lations under the sequential assumption. This paper proposes
a novel entropy coding scheme incorporating regional context
modeling (RCM) and dynamic Huffman binarization (DHB) for
multimedia. RCM evaluates the context order with the line
distance in Cartesian coordinate system, so that the 2-D spatial
correlations can be directly exploited. RCM predicts each symbol
with the weighted estimation based on the line distance and
appearing frequency of its context, which coincides with the
principle for context-based prediction. On the other hand, DHB
is proposed to adaptively assign the length of bins based on
the estimated probability of symbols for coding. For optimal
prediction and coding, frequent symbols are assigned with short
bins to constrain the propagation of code redundancy. Applied
into multimedia coding, extensive experimental results show that
the proposed scheme achieves better coding performance than
the benchmark coders.

I. INTRODUCTION

With the increasing demands for multimedia dissemination
and broadcasting, the efficient coding of multimedia, e.g.
videos and images, is required. The common track of multi-
media coding splits the problem into two parts [1]: modeling
the statistics of the binarized source [2] and generate the
code assignment of the source based on such statistics [3].
Therefore, binarization and context modeling play a significant
role in improving the coding efficiency.

Classical context modeling algorithms [4], [5] construct
their contexts in a sequential manner, which is typically the
suffix of predicted subsequences. Among them, the state-of-
the-arts are context-tree weighting (CTW [6], [7]) and predic-
tion by partial matching (PPM [8]–[10]). CTW estimated the
weighted mixture over all finite-order models to asymptoti-
cally predict with the optimal model. While PPM adaptively
switched within a set of finite-order models to fit the statistics
of the source. In summary, they incorporate variable-order
Markov models [11] to adaptively represent the finite-order
statistics. However, their performance for multimedia coding
is degraded by the sequential and uni-directional modeling.
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As an alternative, non-sequential [12]–[15] and multi-
dimensional extensions [16], [17] are adopted. [12]–[14] com-
bined the predicted symbols with arbitrary positions to obtain
the contexts for predicting. While [15] enumerated models
with distinctive characterization and make an efficient estima-
tion by mixing all these models. As a bi-dimensional exten-
sion, [16] extended CTW to predict based on contexts in two
directions, but it could not be generalized to context trees with
three or more dimensions. CABAC [17] proposed a specific
binarization and context modeling scheme for video frames,
which is prevailing in the state-of-the-art video coding scheme,
e.g. H.264/AVC [18]. However, it can only construct contexts
with the neighboring samples and its static binarization scheme
generates and propagate additional code redundancy.

In this paper, we propose a novel regional context modeling
(RCM) and dynamic Huffman binarization (DHB) scheme for
adaptive entropy coding of multimedia. The contribution of
this paper is twofold. Firstly, regional context modeling is pro-
posed to exploit the spatial correlations in video frames. RCM
evaluates the context order with the line distance in Cartesian
coordinate system and predicts with the weighted estimation
based on the line distance. These weights depend on the line
distance of contexts and their appearing frequencies, which
coincides with the principle for context-based prediction. The
model redundancy for RCM is proven to solely depend on the
line distance of its contexts, but is independent of the data
size.

On the other hand, dynamic Huffman algorithm is adopted
for binarization. Due to the pre-determined precision for
CABAC, code redundancy is derived and propagated through
the static binarization scheme. To reduce the code redundancy,
DHB is proposed to adaptively assign the length of bins
based on the estimated probability of symbols for coding.
Consequently, frequent symbols are assigned with short bins
to constrain the propagation of code redundancy.

The remainder of this paper is organised as follows. Section
II proposes regional context model, including its formulation,
weighted prediction, and derivation of model redundancy.
Binarization with dynamic Huffman algorithm is adopted in
Section III. For validation, an extensive range of experimental
results for multimedia are provided in Section IV. Finally,
Section V draws the conclusion.



Fig. 1. Regional contexts with maximal line distance 3, where the line
distances of P1-P2, P3-P6 and P7-P12 are 1, 2, and 3, respectively.

II. REGIONAL CONTEXT MODELING

As we all know, spatial correlations come down with the
growth of distances from contexts to current symbol. In classi-
cal context modeling, separable modeling or sequentialization
of the morphology in local regions destruct the 2-D spatial
correlations in video frames. To directly exploit these correla-
tions, regional context modeling is proposed to generalize the
order of sequential contexts to their line distances.

Definition 1. For arbitrary symbols s1 and s2 with coordi-
nates (x1, y1) and (x2, y2) in 2-D Cartesian coordinate sys-
tem, their line distance l(s1, s2) is defined as the cumulation
of the distance on each dimension.

l(s1, s2) = lx + ly = |x1 − x2|+ |y1 − y2| (1)

In Definition 1, symbol generally represents “bin” or “pixel”
in compression. Therefore, line distances of symbols consist-
ing in contexts are obtained by fixing s2 with the current
symbol in Eq. (1). For simplicity, we fix the current symbol
at the origin of 2-D Cartesian coordinate system and select
its contexts from its neighboring causal region. As shown in
Fig. 1, P0 is the current symbol for prediction and P1-P12
are contexts taken in the causal neighborhood of P0. Line
distances of contexts are determined with their distance to the
current symbols in horizontal and vertical directions.

RCM predicts each symbol with the weighted estimation
based on various contexts ci, where the weights wi depends
on the line distance of all the symbols comprising ci. Without
loss of generality, we take it as the set of line distance for
context ci.

PRCM (s) =
∑
i

wi ({li})Pr (s|ci) (2)

To balance the estimation led by contexts with various line
distances and various frequencies of emerging combinations
of symbols under the same line distance, all possible contexts
are categorized into sub-contexts based on their line distances.
For each kind of sub-contexts, normalized factor are assigned
for the weighted estimation.

Definition 2. Given the maximal line distance D (from the
neighboring causal symbol to the current one), the normalized
factor Zi for the sub-context with the line distance i is defined
as

Zi(di) =

{
(D+2−i)di

(D+3−i)2i 1 <i <D
2dD

32D−1 i=D
(3)

where di is the count of sub-context with line distance i.

Eq. (3) implies that the normalized factor Zi for each sub-
context is affected by its line distance i and count di. It
varies inversely with the line distance i, but increases with
the growth of di. This observation coincides with the fact that
those contexts composed of symbols appearing close to the
current symbol tend to be significant in prediction.

In RCM, the line distance of contexts can range from 1
to D. Recalling Definition 1, given arbitrary line distance
i<D, its corresponding count di can be in the interval [0, 2i].
While dD ∈ [0, 2D − 1] for the maximal line distance D, as
the last symbol with line distance D must be selected in the
contexts. Taking Fig. 1 for example, P12 must be selected in
the contexts when i = 3. Consequently, Proposition 1 proves
that the normalized factor Zi given by Definition 3 satisfies
for contexts with arbitrary i ≤ D.

Proposition 1. Given arbitrary D>0, Zi(di) given by Defi-
nition 3 is the normalized factor for RCM.∑

di

Zi(di) = 1 (4)

Proof: Firstly, considering the case 1 < i < D, there are
Cdi

2i ways to obtain line distance di from the maximum value
2i. Thus, we can obtain∑
di

Cdi
2iZi(di) =

2i∑
di=0

Cdi
2i

(D + 2− i)di

(D + 3− i)2i
=

(D + 2− i+ 1)2i

(D + 3− i)2i

= 1. (5)

When i = D, dD takes values in the interval [0, 2D − 1].
Consequently, there are CdD

2D−1 ways to construct contexts with
line distance dD. It satisfies∑

dD

CdD

2D−1ZD(dD) =
2D−1∑
dD=0

CdD

2D−1

2dD

32D−1
= 1. (6)

As a result, Zi(di) normalizes the weights for arbitrary i ≤ D,
which means that it is the normalized factor for RCM.

The normalized factors serves as weights for contexts com-
posed of sub-contexts with various line distances and counts of
symbols. The weighted probability is estimated for predicting
each sub-context. Fig. 2 shows the normalized factor for each
context with maximal line distance 2.

The introduction of normalized factors is due to the fact that
contexts with same line distance can be composed of different
symbols. Therefore, an additional model redundancy is derived
to specify these contexts in prediction. Denote (d1, . . . , dD) the
counts of symbols with line distance from 1 to D. Comparing



Fig. 2. The context tree with the maximal line distance is 2 and the normalized factor

weighted estimation from RCM with the one from CTW, the
model redundancy ρRCM for RCM is derived.

Proposition 2. In comparison to CTW, the additional model
redundancy for RCM depends solely on its maximal line
distance D. For arbitrary regional context models with counts
(d1, . . . , dD), its additional model redundancy is

ρRCM = − log k(d1,...,dD), (7)

where k(d1, . . . , dD) is the cumulative normalized factor for
the actual model with counts (d1, . . . , dD).

k(d1d2...dD) = [
D−1∏
i=1

Zi(di)] · ZD(dD) (8)

Proof: The additional model redundancy led by RCM is
formulated as

ρRCM (x) = log
1

PRCM (x)
− log

1

PCTW (x)
, (9)

where x is the source for prediction and PCTW (·) is the
prediction from CTW. Since CTW is the sequential context

modeling, it is a specific case for RCM. ρRCM is derived as

ρRCM (x) = log
PCTW (x)

PRCM (x)
= log

PCTW (x)∑
i k(d1d2...dD)Pi(x)

= ρCTW − log k(d1d2...dD) (10)

In Eq. (10), the derivation of ρCTW can be referred to
[6], and k(d1, . . . , dD) is the cumulative normalized factor
for the actual model with counts (d1, . . . , dD). Thus, the
additional model redundancy is associated with the cumulative
normalized factor for the actual model, which depends solely
on D.

Proposition 2 shows that the additional model redundancy
for RCM depends on its line distance, but it is not the double
exponential function [16] of maximal order and number of
dimensions. This fact implies that the empirical entropy for
coding vanishes with the growth of source size. Remarkably,
RCM can be naturally extended to multi-dimensional cases by
considering the components with their line distances in all the
dimensions.

Proposition 3. Given the maximal line distance D, there
exist [

∏D−1
i=1 [

∑2i
di=0 C

di
2i ]] × [

∑2D−1
dD=0 C

dD

2D−1] contexts with



normalized factor [
∏D−1

i=1 Zi(di)]× ZD(dD).[
D−1∏
i=1

[
2i∑

di=0

(Cdi
2iZi(di))]] ·

2D−1∑
dD=0

[CdD

2D−1Zi(dD)

]
= 1 (11)

Proof: For contexts with counts for line distance
(d1, · · · , dD), its corresponding normalized factors are
Z1(d1), · · · , ZD(dD). Consequently, for 1 ≤ i < D, it holds

2i∑
di=0

Cdi
2iZi(di) = 1. (12)

While it holds for i = D

2D−1∑
dD=0

C2D−1dDZD(dD) = 1. (13)

As a conclusion, Proposition 3 is drawn by combining Eq.
(12) and (13).

Given the maximal line distance D, the computational
complexity of RCM is [

∏D−1
i=1 [

∑2i
di=0 C

di
2i ]]×[

∑2D−1
dD=0 C

dD

2D−1]
times the one of CTW in theory.

III. DYNAMIC HUFFMAN BINARIZATION

CABAC [17] empirically predefines a specific binarization
along with a context modeling scheme for video frames,
which is prevailing in the state-of-the-art video coding scheme,
e.g. H.264/AVC [18]. However, additional code redundancy
is led by the static binarization in CABAC, especially when
the probabilities of symbols are close to 0 or 1. For each
most probable symbol(MPS) x, the actual interval of its
estimated probability Px is restricted to [0.01875,0.98125].
Thus, overflow tends to occur after 128 successive times of
the MPS, as the minimum step for state range change is 2 and
the threshold is 256. Consequently, the code redundancy ρc
led by CABAC is derived as

ρc(MPS|PMPS>0.98125) ≈ 2
256 − log2

1
Px

= 1
128 + log2 Px.

(14)

In the static binarization, CABAC gives each symbol sev-
eral methods to generate bins, including Unary binarization,
Golomb binarization, Exponential-Golomb binarization, and
etc. The code redundancy rises when the number of bins
in MPS increases. Therefore, Huffman code would give the
lower redundancy for binarization by assigning proper MPS
probability.

The proposed DHB scheme adopts dynamic Huffman al-
gorithm to adaptively conduct binarization for each syntax
element (SE). For various SEs, DHB consider the number of
bins they have and estimates their probabilities. Constructing
Huffman tree for these symbols, the MPS probability is esti-
mated for the corresponding bins in the tree. Algorithm 1 and
2 describes the dynamic Huffman algorithm for binarization
in the CABAC encoding and decodeing procedure, repectively.
The proposed DHB scheme considers the probability distribu-
tion for the cases of double, triple, and quadruple symbols. For
each bin, various numbers of bins are assigned and a Huffman

tree is accordingly constructed to estimate their probabilities.
The probabilities for bins are estimated and adjusted to reduce
the code redundancy, as CABAC cannot deal with those bins
with probabilities outside interval [0.01875, 0.98125].

Algorithm 1 Dynamic Huffman algorithm for binarization in
the CABAC encoding procedure

1: Initialize Bin for each SE.
2: Construct Huffman tree for current SE by considering its

initial distribution.
3: For two-symbol distribution {x1, x2|P (x1) =
P1, P (x2) = P2, P1 ≤ P2}, one bin is required. Its
MPS probability is PMPS = P2

P1+P2
.

4: For three-symbol distribution {x1, x2, x3|P (x1) =
P1, P (x2) = P2, P (x3) = P3, P1 ≤ P2 ≤ P3}, two bins
are required. A three-tuple Huffman tree is constructed to
estimate their MPS probability.

5: For four-symbol distribution, combine the two least fre-
quent symbols and repeat step 4.

6: Seek the node corresponding to current symbol in binary
tree.

7: Encode the bins of the node by CABAC.
8: Update the access count of the obtained node and update

current tree.
9: Goto step 2 to encode next symbol.

Algorithm 2 Dynamic Huffman algorithm for binarization in
the CABAC decoding procedure

1: Initialize Bin for each SE.
2: Construct Huffman tree for current SE by considering its

initial distribution.
3: For two-symbol distribution {x1, x2|P (x1) =
P1, P (x2) = P2, P1 ≤ P2}, one bin is required. Its
MPS probability is PMPS = P2

P1+P2
.

4: For three-symbol distribution {x1, x2, x3|P (x1) =
P1, P (x2) = P2, P (x3) = P3, P1 ≤ P2 ≤ P3}, two bins
are required. A three-tuple Huffman tree is constructed to
estimate their MPS probability.

5: For four-symbol distribution, combine the two least fre-
quent symbols and repeat step 4.

6: Decode the bins of the node by CABAC.
7: Seek the node corresponding to current bins in binary tree.
8: Update the access count of the obtained node and update

current tree.
9: Goto step 2 to decode next symbol.

If the size of the symbol set is n, the computational
complexity of constructing Huffman tree for DHB is O(n2)
and the average computational complexity of searching node
in Huffman tree for DHB is O(log2 n).

IV. EXPERIMENTAL RESULTS

To validate the efficacy of the proposed entropy coding
scheme incorporating regional context modeling and dynamic



TABLE I
IMPROVEMENT OF COMPRESSION PERFORMANCE (%) OF DHB IN COMPARISON TO CABAC FOR JAVA CLASS FILES. THE COMPRESSION RATIO IS

OBTAINED BY (ORIGINAL BYTES − COMPRESSED BYTES)/ORIGINAL BYTES × 100%.

Object Utf8 length Integer Float Long Double Class
∆CR 0.075 9.822 12.772 2.920 6.688 0.702
Object String FieldRef MethodRef InterfaceRef NameAndType ConstantPool
∆CR 0.047 0.676 0.048 0.840 0.046 27.780

TABLE II
IMPROVEMENT OF COMPRESSION PERFORMANCE (%) OF DHB IN COMPARISON TO CABAC FOR DNA SEQUENCES.

Sequence HuRef
Chromosome chr1 chr2 chr3 chr4 Average
∆CR 5.68 6.95 6.74 6.01 6.35
Sequence FraVesHawaii 1.0
Chromosome chrLG1 chrLG2 chrLG3 chrLG4 Average
∆CR 7.37 6.84 7.03 6.81 7.01

Huffman binarization, we employ it on a wide range of
multimedia, e.g. video sequences, Java class files, and DNA se-
quences, respectively. To be concrete, DHB is compared with
CABAC over Java class files and DNA sequences. While RCM
is validated by comparing with the classical context modeling
methods over video sequences. Finally the entropy coding
scheme incorporating RCM and DHB is applied in the video
coding for evaluation with CABAC. In RCM, the maximal line
distance is 3. In practice, both the encoder and decoder operate
on a PC with a 2.8GHz Intel Core i5 processor and complied
with VC++ 10.0 with same configuration (“DEBUG” mode).

A. Class File Compression

Java class file contains a Java bytecode to be executed on
the Java Virtual Machine [19], which is the prevailing platform
in multimedia dissemination. DHB conducts binarization for
class files according to the data contained in the constant pool.
Table I shows the compression performance gain of DHB over
CABAC for 11 kinds of data in the constant pool. DHB is more
effective in immutable type data, e.g. Float and Integer.

B. DNA Sequence Compression

Storage and delivery of DNA sequences are widely con-
cerned by both academic and industrial society [20]. DNA
sequences are composed of repeated patterns of nucleotide
symbols with the exception of insertion, deletion, and substi-
tution. Obviously, they are not characterized with sequential
statistics. In this paper, DHB is compared with CABAC
over eight chromosomes: first four chromosomes of fragaria
vesca sequence FraVesHawaii 1.0 and homo sapiens sequence
HuRef1, respectively. Table.II shows that DHB can improve
the compression performance for DNA sequence by 6.35%
and 7.01% in average, when compared with CABAC.

C. Video Sequence Compression

To evaluate RCM, we compare it with the classical context
modeling methods in lossless video coding. For RCM, video

1 DNA sequences can be downloaded from NIH website ftp://ftp.ncbi.nih.gov/
genomes.

frames are predicted based on weighted estimation and their
prediction errors are encoded with range coder. Table III shows
the compression performance of RCM, LPAQ [15], PPMZ2,
and 7Zip, respectively. Among them, PPMZ2 and 7zip are
the improved version of PPM algorithm with variable order
Markov models. While LPAQ is the optimal lossless predictor
that enumerates models with distinctive characterization and
make an efficient estimation by mixing all these models.
Table III implies that RCM predicts more accurately than the
classical context modeling methods. The margin of gain over
LPAQ is up to 4%.

Finally, we validate the proposed entropy coding scheme
based on DHB and RCM over six video sequences with
the YUV 4:2:0, two resolutions including CIF (352 × 288)
and 576p (704 × 576). The proposed scheme is compared
with CABAC, where the codec of SEs such as mb type,
intra predmode, unary binarization, ExpGolomb has
been modified to improve the coding performance. However,
the proposed scheme is unsuitable for SE like ExpGolomb,
as coding performance is degraded by excessive nodes in the
Huffman tree.

Table IV shows that the proposed scheme improves the
coding performance by 3% to 8% for frame-based coding.
Since the reference software for CABAC resets bin state at
the begin of the slice encoding, we also applied the proposed
scheme into slice-based mode for H.264/AVC. There is also
a gain up to 0.53% for the slice-based mode. In Table
IV, Rall stands for the compression ratio for frame-based
mode and Rslice for slice-based mode, respectively. At the
meantime, the computational complexity is slightly increased
in comparison to CABAC, which mainly lies on modeling
for extensive symbols and adaptive binarization. Denote Tenc
and Tdec the encoding and decoding time. Table IV suggests
that the proposed scheme increases the encoding and decoding
complexity by 2.1% and 3.02% in average, respectively.

V. CONCLUSION

This paper proposes a novel entropy coding scheme in-
corporating regional context model and dynamic Huffman



TABLE III
COMPRESSION PERFORMANCE (%) OF RCM IN COMPARISON WITH CLASSICAL CONTEXT MODELING METHODS FOR VIDEO SEQUENCES.

Sequence Size RCM LPAQ PPMZ2 7Zip
Akiyo

176 × 144
82.1 78.0 79.4 82.8

Foreman 53.0 50.5 48.3 45.8
Salesman 58.1 49.4 54.8 63.6
Foreman 352 × 288 43.9 43.0 40.0 36.9

TABLE IV
IMPROVEMENT OF COMPRESSION PERFORMANCE (%) AND INCREMENT OF COMPUTATIONAL COMPLEXITY IN COMPARISON TO CABAC FOR VIDEO

SEQUENCES.

Sequence Size Rall Rslice Tenc Tdec

City

704 × 576

6.38 0.08 3.52 5.07
Crew 3.00 0.53 3.83 2.05
Harbour 5.46 0.36 0.91 0.28
Soccer 5.13 0.20 1.40 0.34
Football

352 × 288
8.09 0.25 2.26 5.50

Foreman 3.90 0.02 0.68 4.85
Average 5.33 0.24 2.10 3.02

binarization. RCM derives the normalized factor according to
line distance and count of contexts for the weighted estimation
for prediction. The excess model redundancy depends solely
on the maximal line distance, which vanishes with the growth
of source size. DHB assigns bins with estimatd MPS to syntax
elements in an adaptive manner, which is demonstrated to
reduce the code redundancy led by binarization. Extensive
experimental results on multimedia shows that the proposed
scheme based on RCM and DHB improves the coding perfor-
mance with a slight increment of computational complexity,
when compared with the benchmark coders.
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