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ABSTRACT
As an emerging research topic, fine-grained visual catego-
rization has been attracting growing attentions in recent
years. Due to the large inter-class similarity and intra-class
variance, recognizing objects in fine-grained domains is ex-
tremely challenging, and sometimes even humans can not
recognize them accurately. Traditional bag-of-words model
could obtain desirable results for basic-level category classi-
fication by weak alignment using spatial pyramid matching
model, but may easily fail in fine-grained domains since the
discriminative features are not only subtle but also extreme-
ly localized. The fine differences often get swamped by those
irrelevant features, and it is virtually impossible to distin-
guish them.
To address the problems above, we propose a new frame-

work for fine-grained visual categorization. We strengthen
the spatial correspondence among parts by including fore-
ground segmentation and part localization. Based on the
part representations of the images, we learn a large set of
mid-level features which are more suitable for fine-grained
tasks. Comparing with the low level features directly ex-
tracted from the images, the learned one-vs-all mid-level
features enjoy the following advantages. First, the dimen-
sion of the mid-level features is relatively small. In order
to obtain high classification accuracy, the dimension of the
low level features usually reaches several thousand to ten-
s of thousand, and becomes even larger when introducing
spatial pyramid model. However, the dimension of our mid-
level features is related to the number of classes, which is far
less. Second, each entry of the proposed mid-level features
is meaningful, which forms a more compact representation
of the image. Third, the mid-level features are more robust
than the low level ones, which is helpful for classification.
Fourth, the learning process of the mid-level features is inde-
pendent and can be easily combined with other techniques
to boost the performance. We evaluate the proposed ap-
proach on the extensive fine-grained dataset CUB 200-2011
and Stanford Dogs, by learning the mid-level features based
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on the popular Fisher vectors and convolutional neural net-
work, we boost the classification accuracy by a considerable
margin and advance the state-of-the-art performance in fine-
grained visual categorization.
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1. INTRODUCTION
As an emerging research topic, fine-grained visual catego-

rization discriminates typically hundreds of sub-categories
belonging to the same basic-level category. It lies between
the basic-level category classification (e.g. The PASCAL
VOC dataset including bikes, boats, cars and so on) and
the identification of individual instances (e.g. face recogni-
tion). The major challenge lies in great intra class variation
and sometimes small inter-class variation. Taking the wide-
ly used fine-grained dataset CUB 200-2011 as an example,
as shown in Fig. 1, it is even difficult for the humans to rec-
ognize them accurately. The basic-level categorization such
as distinguishing a car from a dog is easy because there are
plenty of helpful visual cues to tell them apart, while for
fine-grained visual categorization, there are much fewer dis-
criminative features compared with that at the basic-level.
The differences between fine-grained classes are very subtle
and extremely localized, e.g. only the shape of the beak or
the color of the crown matter when recognizing similar birds
species.

Traditional Bag-of-Features [7] framework has been wide-
ly used in various image classification applications due to
its simpleness and effectiveness. However, with the igno-
rance of spatial layout information of the features, it suffers
severely limited descriptive capability. A standard way to
introduce weak geometry in Bag-of-Features representation
is the use of spatial histogram [17], which defines pooling re-
gions based on a uniform grid at predefined scales (typically
the whole image, then quadrants, sixteenths, etc.). The s-
patial pyramid matching method is effective for basic-level
category classification, but suffers in fine-grained domains
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(a) Black-footed Albatross

Arctic Tern Caspian Tern Common Tern Forsters Tern
(b) Tern

Figure 1: Sample images from the CUB-200-2011
dataset, which shows (a) great intra class variance
and (b) small inter-class variance. It’s hard even for
humans to recognize them accurately.

due to the highly localized nature of distinguished features.
The fact implies that a stronger correspondence should be
considered to achieve higher classification accuracy. Hence,
all of current works on fine-grained visual categorization use
part-based features in one way or another. As a matter of
fact, fine-grained visual categorization conveniently enables
part-based models, as all the sub-categories share the same
type of parts and attributes. For example, all birds should
have beaks, wings and legs. Once the discriminative parts
are determined, they are encoded into different parts of vi-
sual words, enabling the classifier to pick up the differences
based on parts. On the other hand, it is well known that
the background information often offers useful clues in basic-
level categorization. For example, the background road is
helpful for classifying cars from other categories. However,
backgrounds are seldom discriminative for fine-grained visu-
al categorization because all of them are in the similar scene.
For example, all birds are usually either on trees or flying
in the sky. Hence, ignoring the background information is a
reasonable operation. In the light of these observations, it is
necessary to incorporate foreground segmentation and part
localization into fine-grained categorization to improve the
classification accuracy.
Most of current classification tasks follow the pipeline of

extracting basic descriptors like SIFT and HOG, quantizing
the descriptors into compact visual words and pooling the
visual word histograms for image representation. Howev-
er, these low level features may not be optimal for specific
classification tasks due to the well-known semantic gap [18]
between low level features and high-level image semantic-
s. Furthermore, extremely large dimension of the low level
features, especially for Fish vectors, leads to overfitting in a
discriminative hyperplane spanned by the linear classifiers,
which degrades the classification accuracy and increases the
computational complexity. Various methods are proposed to
address these problems. Since single descriptor might fail to
capture the rich information within local pathes, it is reason-
able to extract multiple descriptors for compensation. They
are more discriminative for classification as they describe
the image from multiple aspects. By simply concatenat-
ing different descriptors together, [3] has outperformed the
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Figure 2: An overview framework of our proposed
algorithm. Foreground segmentation and part lo-
calization are performed before feature extraction.
The fused one-vs-all mid-level features are defined
by specifying any part, fusing classes with similar
parts into one super-class, and supervised learning
one-vs-all mid-level features with SVM, then anoth-
er SVM classifier is learned based on the mid-level
features to get the final classification results.

state-of-the-art result using single descriptor. The others
[25], [4], [29] learn semantic representations of the images by
aggregating neighboring descriptors to form micro-features
or visual phrases. In comparison to the low level features,
they are more meaningful. However, they are de facto low
level features suffering from the dimension dilemma.

This paper proposes a new framework for fine-grained vi-
sual categorization based on the above observations. As
shown in Fig. 2, first, we infer the foreground objects and
localize the parts to enable part-based feature extractions.
Coarse-to-fine part localization is obtained according to the
accessibility of the ground truth part annotations. Second,
we learn one-vs-all mid-level features part by part based
on the extracted low level features. Compared with the
high-dimensional low level features directly extracted from
the images, the proposed mid-level features are dimension
friendly, entry meaningful and robust for classification. The
dimension of the mid-level features is related to the number
of classes, which is far less than that of the low level ones
and each entry of the mid-level features has specific mean-
ing. Furthermore, our proposed learning algorithm can be
easily combined with other techniques to boost the perfor-
mance. Integrating all these techniques produces a more
powerful framework for fine-grained visual categorization,
and outperforms the state-of-the-art classification accuracy
by a noticeable margin.

The rest of this paper is organized as follows. In Section
2, we review related works on fine-grained visual categoriza-
tion. In Section 3, foreground segmentation and part local-
ization are performed before feature extraction. Depending
on the accessibility of the ground truth part annotation-
s, alternative methods are selected to obtain fine or coarse
segmentation and localization results. Section 4 presents the
detailed algorithm of learning one-vs-all mid-level features
with elaborated analysis of their principles. Furthermore,
the fused one-vs-all mid-level features are proposed to en-
hance the performance. Experimental results are shown in
Section 5. Finally, we draw our conclusion in Section 6.
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2. RELATED WORK
Fine-grained categorization has been studied only recently

and quickly becomes a popular topic in recognition. Previ-
ous works have aimed at various aspects of fine-grained cat-
egorization, such as the localization of parts, the description
of the part objects and the human in the loop techniques to
boost recognition accuracy.

2.1 Fine-Grained Part Localization
Part-based methods have recently experienced renewed in-

terest and success [12]. Fine-grained visual categorization al-
so conveniently enables the part-based approaches because
objects belong to the same basic level often share the same
parts. The detection of fine-grained categories includes seg-
menting the objects of interest from the background and lo-
calizing the individual parts of the objects. In [6] Chai et al.
introduce techniques that can improve both segmentation
and part localization accuracy by co-segmentation. Con-
sidering the varied poses and appearances of bird species,
Zhang et al. [27] propose pose pooling kernel to define se-
mantic pooling regions and aggregate features from each
part regions. In [19] Parkhi et al. propose to use deformable
part models to detect the head of the cats and the dogs. Berg
et al. [2] propose to automatically detect part locations us-
ing the face localization methods. The work in [26] accom-
plishes unsupervised learning of a deformable part model
to find discriminative parts for fine-grained categorization.
These methods attempt to find parts of the images that are
discriminative in different ways without the explicit part la-
bels, but can’t achieve the accuracy performance of a su-
pervised part-based approach. In [24], Xie et al. use the
Ultrametric Contour Map as an unsupervised algorithms to
calculate the closed boundaries with the guidance of the part
annotations. Although its accuracy performance is promis-
ing, it suffers the debate of using too many human annota-
tions, which is unrealistic in real-word applications.

2.2 Fine-Grained Descriptors
For the description of fine-grained objects, different pro-

posals have been made in the literature. The most widely
used descriptors are color SIFT, gray SIFT descriptors plus
color histogram [6], [13]. Zhang et al. [28] use gradient, lo-
cal binary pattern, RGB color and normalized RGB color
based kernel descriptors. A common characteristic of these
descriptors is that they are largely handcrafted. They are all
comprising dense sampling of local image patches, describing
them by means of low level visual descriptors, encoding them
into a high-dimensional representation, and pooling over the
images. There are also works trying to learn features from
the dataset. Berg et al. [2] build part-based one-vs-one
features library which are discriminative mid-level features,
and use these features for classification.
Recently, these handcrafted descriptors have been sub-

stantially outperformed by the introduction of convolutional
neural networks [15], which have a more complicated struc-
ture than traditional representations. They contain several
layers of non-linear feature extractors, and are said to be
deep representation of images (in contrast, traditional de-
scriptors such as SIFT would be referred as shallow rep-
resentation). These networks have achieved competition-
winning numbers on large benchmark dataset. It has been
demonstrated that training a convolutional network to si-
multaneously classify, locate and detect objects in images

can boost both the classification accuracy and localization
accuracy [20]. The advantage of convolutional neural net-
works is that the system is end-to-end, and alleviates the
requirement to manually design a suitable feature extractor.
Though not specifically designed to model subcategory level
differences, it has been demonstrated that [10] the convolu-
tional neural network features capture such information well
and obtain the state-of-the-art results for fine-grained visual
categorization so far.

2.3 Human Interaction
Since fine-grained visual categorization is difficult for both

humans and computers, an interactive method that assists
a human in discovering the true class is useful and prefer-
able. Human interaction methods have recently experienced
a strong resurgence in popularity. Deng et al. [9] propose
a “human-in-the-loop” approach to find accurate distinctive
regions for recognition. It resorts to an online game Bubble
to help find which part/parts are more helpful for categoriza-
tion, then SIFT descriptors are extracted from these labeled
regions for training classifiers. Duan et al. [11] propose
to use a latent conditional random field to generate local-
ized attributes that are both machine and human friendly,
and employ a recommender system that selects attributes
likely to be semantically meaningful, then human interac-
tion is used to provide semantic names for the discovered
attributes.

3. SEGMENTATION AND PART LOCALIZA-
TION

For the fine-grained visual categorization, almost all the
categories share similar background clutters. Ignoring the
background information is a reasonable preprocessing step
since background seldom offers useful clues for recognition of
sub-categories. On the other hand, the regular spatial pyra-
mid model often fails to align the corresponding parts in the
fine-grained tasks, we need a more accurate part alignment
method to capture the semantic parts of the objects. We
chose two different kinds of foreground segmentation and
part localization methods, namely fine part localization and
coarse part localization, according to the accessibility of the
ground truth part annotations.

3.1 Segmentation and Part Localization with
Ground Truth Part Annotations

The ground truth part annotations provided in the CUB
200-2011 [22] dataset include the locations of fifteen part-
s, e.g back, beak, belly and so on. With the help of the
provided bounding boxes and part annotations, we could
obtain accurate foreground masks and fine part localization
results. We use the Grab-Cut algorithms [5] for foreground
segmentation as in [24]. The initial mask is constructed
using ground truth part annotations, the pixels outside the
bounding boxes are regarded as definite background, the an-
notations are regarded as definite foreground and the others
are regarded as possible foreground. In the vast majority
of cases the algorithms are able to return a rather precise
contour of the object.

With the guidance of part annotations, we calculate the
Ultrametric Contour Map [1] of the foreground object, which
generates closed contours with decreasing boundary intensi-
ties to cut the image into smaller and smaller regions. De-
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Figure 3: The foreground segmentation and part lo-
calization in different situations. (a) With ground
truth part annotations, fine part localization can
be obtained via Grab-Cut and Ultrametric Contour
Map segmentation. (b) Using the Grab-Cut and De-
formable Part Model interactively to obtain coarse
part localization with only provided bounding box-
es, the color boxes frame the detected part regions.

note the image as U = (ui,j)W×H , where ui,j is the pix-
el values at position (i, j), we construct a directed graph
G = (V, ε), where V = {vij} consists of all pixels, and ε
represents edges connecting adjacent pixels:

ε = {(vij → vi′j′)| | i− i′ | + | j − j′ |= 1} (1)

The weight of an edge is related to the boundary intensity
at the tail node, which is denoted as:

ω = (vij → vi′j′) = ui′j′ + λ (2)

here, λ is called step penalty, which takes the geometric dis-
tance into consideration. After the graph is complete, we
take the part annotation points as seed nodes, and calculate
their shortest paths to the other nodes. The segmentation
process is to assign each node to its nearest part annota-
tion nodes, taking both the intensity values and coordinate
distance into consideration. The segmentation and part lo-
calization process is illustrated in Fig. 3(a), the foreground
in different colors represents different part regions.

3.2 Segmentation and Part Localization with-
out Ground Truth Part Annotations

The ground truth part annotations need trivial manual
calibration and do not give automatically classification per-
formance. To accomplish automatical classification, with-
out loss of generality, we also include segmentation and part
localization results without the ground truth part annota-
tions. The deformable part model [12] is the most widely
used part-based object detection model for automatic part
localization. Chai et al. [6] have demonstrated that the fore-
ground segmentation and part localization can boost each
other if they are performed interactively, better segmenta-
tion results can be obtained by taking part localization into
account when performing segmentation and likewise, more
accurate parts can be detected if the foreground masks are
considered when performing part localization. Based on the
deformable part model W and saliency model S trained us-
ing a set of training images, the model is fitted to an image
I via jointly optimizing the Grab-Cut and deformable part

model objective functions:

E(p, f, c|W,S, I) =

αEdpm(p|W, I) + βEgc(f, c|I) + Ec(p, f |S) (3)

Here, p, f, c represent the part localization, the foreground
mask and the color distributions of the foreground and back-
ground, respectively. α and β are weights controlling the
balance between the energy terms. Edpm and Egc are the
deformable part model and grab cut energy function, Ec is
a penalty function which penalizes the case where the fore-
ground segmentation f and part localization p do not agree.
By imposing the consistency between foreground segmenta-
tion and part localization, better segmentation and part lo-
calization results can be obtained comparing to simply con-
catenation of the two operations. Sample segmentation and
part localization results are shown in Fig. 3(b).

4. LEARNING MID-LEVEL FEATURES
Based on the foreground segmentation and part localiza-

tions, different features can be extracted from each part.
The image I can be represented as a set of local features:

D = {(f1, R1), (f2, R2), ..., (fM , RM )} (4)

where fi, Ri, i ∈ {1, 2, ...,M} denote the ith feature vec-
tor and the occupied region respectively, and M is the total
number of regions. The features can be obtained via tradi-
tional methods such as Fisher vector aggregating SIFT-like
low level descriptors or convolutional neural networks.

We could get the representation of the image by simply
concatenating different part features into a long feature vec-
tor, then traditional SVM classifier is learned and evaluated
based on the long feature vectors. It’s the pipeline that most
of the classification tasks follow. However, this kind of image
representation is not only high dimensional (to achieve high
classification accuracy, the dimension of the low level fea-
tures could be as large as tens of thousand, and even larger
when concatenating different parts into a long one) but also
entry meaningless, from which we could not interpret what
does each entry of the features mean. Furthermore, with
these high-dimensional feature vectors, a discriminative hy-
perplane can be easily obtained even using linear classifier,
but it may also introduce overfitting and perform badly on
the test features. Based on these observations, we try to
learn mid-level features which are dimensional friendly and
semantic meaningful, and robust to some extent when per-
forming classification.

4.1 One-vs-All Mid-Level Features
Our method requires as input part-based features extract-

ed from the same part of different objects, and annotated
with class labels. Attempting to learn mid-level features
is intuitive since they share more semantic meanings than
low level ones. Given the reference dataset, let the training
set consists of images belong to N classes {1, ..., N} and in-
cludes P parts {1, ...P}. The one-vs-all mid-level features
are learned as follows:

1. Select any part p ∈ {1, ..., P} from the objects.
2. Learning one-vs-all mid-level features based on the part

p features. Choosing the part features from all the classes
{1, ..., N} which describe the part p, except those zero vec-
tors, we denote these features as fp . Based on the part fea-
tures fp, we learn a one-vs-all SVM classifier, and project
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the part features fp to get one-vs-all scores based on the
learned SVM weights. The dimension of the projected scores
is equal to the number of classes, which is N dimension in
our definitions.
3. According to the projection transformation, all the low

level training features are mapped into the new mid-level
feature space. After an L2 normalization, we simply con-
catenate the mid-level features part by part, by this way
we can obtain our mid-level feature representation for any
training image.
4. For any image in the test set, we extract low level fea-

tures based on part p, and project corresponding part fea-
tures to N dimensional vector according to the learned SVM
weights. Concatenating the mid-level features the same as
the training ones, from which we can get our one-vs-all mid-
level features for test images.
After a simple one-vs-all transformation, all the low level

features are projected to the mid-level feature space. The
advantages of the learned mid-level features over the low lev-
el ones are obvious. Firstly, the dimension of the mid-level
features is far less than that of the low level ones, since the
transformation projects the low level features to N dimen-
sional feature vectors regardless of the dimension of the low
level features, where N is the number of classes, so the total
dimension of the mid-level features is NP , which are only
several thousand in most situations. We would demonstrate
the super-performance of the learned mid-level features in
the following sections. Secondly, comparing with the low
level features which are entry meaningless, every entry of
the mid-level features has specific semantic meaning. For
example, given a reference image x, denote the mid-level
features for part p as Xp = {Xp

1 , X
p
2 , ...X

p
N}, The score

Xp
i (i ∈ {1, ...N}) represents the signed distance between

current image to category i for part p. The larger the value
Xp

i is, the more similar of image x with category i for part p.
This kind of formulation is very helpful and understandable
for classification, if Xp

i is larger than any other scores in Xp,
we can say that part p of image x is most similar with that
of class i.

4.2 Deep Insights for One-vs-All Mid-Level Fea-
tures

Now we have a deep insight into the one-vs-all mid-level
features. The learned method is easy to understand, how-
ever, the intuition behind the simple algorithm is not that
straightforward. Here, we clarify the advantages of our pro-
posed one-vs-all mid-level features to give a better under-
standing of it. For a given part p ∈ {1, ..., P}, given a set of
part-level features together with their corresponding labels
(xp

i , y
p
i ), i = 1, ..., l, xp

i ∈ Rn and yp
i ∈ {1, ..., N}, where

l, n,N denote the number of training instances, the dimen-
sion of low level features and the number of classes, respec-
tively. The one-vs-all SVM classifier based on this part tries
to solve the following optimization problem:

min
wm,ξ

p
i

1

2

N∑
m=1

wT
mwm + C

l∑
i=1

ξpi

s.t. wT
y
p
i
xp
i − wT

mxp
i ≥ epmi − ξpi , i = 1, ..., l

(5)

where

epmi =

{
0, if yp

i = m

1, if yp
i �= m
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Figure 4: The upper row shows the magnitude dis-
tribution of (a) the low level features and (b) the
learned mid-level features for a given part, both
from the same class. The lower row shows the corre-
sponding SVM weights learned from the two kinds
of features. Different colors represent different mag-
nitudes, which are sorted in descending order and
correspond to colors of red, yellow and blue. Note
that in (a), the magnitude distribution is irregular
while in (b) it exhibits regular stripes, especially the
red line around dimension 25. The weights lie on the
diagonal from upper left to lower right are dominant
in (d), while the weights are irregular in (c).

The decision function is

arg max
m=1,...,N

wT
mxp

i (6)

The mid-level features are the projection of the low level
ones based on the learned weights, which are the signed
distance to the decision hyperplane. Denote the mid-level
features of xp

i as Xp
i = {Xp

i1, X
p
i2, ..., X

p
iN}, each entry of Xp

i

are obtained according to the following equation:

Xp
im =

wT
mxp

i

‖w‖2
, m = 1, 2, ..., N (7)

From the constrained conditions in Eq. (5), we can see that
SVM classifier tends to fit the positive samples and makes
the positive sample scores larger than that of the negative
ones during every one-vs-all comparison in Eq. (6). Hence,
for the mid-level feature Xp

i (instance i and part p) learned
from the SVM classifier, Xp

iy
p
i
is usually larger than all the

other entries in Xp
i = {Xp

i1, X
p
i2, ..., X

p
iN}. As shown in Fig.

4, the upper row of this figure shows an example of the
magnitude distribution of the low level features and learned
mid-level features for a given part, all belongs to the same
sub-category. The magnitude of the low level features are
orderless, while the learned mid-level features exhibit regu-
lar stripes, especially the one around feature dimension 25,
the dark red line indicates that the magnitudes are large,
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m
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Figure 5: Illustration of robustness of the one-vs-
all mid-level features. The dominant weight coef-
ficients lie in the diagonal locations for each part.
The response is robust to the disturbance in the
non-dominant locations.

which means that this part is more likely belonging to the
corresponding category. We simply concatenate the mid-
level features part by part to obtain the representation of
an image.
Next, another one-vs-all SVM classifier is trained based

on these mid-level features. As Fig. 4(b) shows, for a giv-
en part p the magnitudes at the specific positions are large
and stable , which makes these mid-level features robust, so
the model coefficients trained on the mid-level features are
large at these positions. More specifically, for a given part p,
the largest coefficients in the learned model W p

(N×N) are fo-

cused on {w(1,1), w(2,2), ..., w(N,N)} if the training mid-level
features are ordered. As shown in Fig. 4(d), The weight
coefficients lie on the diagonal from upper left to lower right
are large and we call these dominate weight coefficients. As
a comparison, we also show the weight coefficients learned
directly based on the low level features, which are shown in
Fig. 4 (c), the coefficients are irregular and we can’t find
any dominant weight coefficients.
Finally, based on the learned mid-level features and the

weight coefficients, the ultimate classifier assigns result which
has the max response in decision function just like (6). Now
we elaborate the robust advantage of this kind of representa-
tion and analyze in what situations misclassification would
happen. We denote the weight coefficients learned from the
mid-level features as WN×NP . Suppose a test instance be-
long to class m with mid-level features X ∈ RNP . Consid-
ering the following objective function:

min (WT
m −WT

n )X n ∈ {1, 2, ..., N}, n �= m (8)

If the objective value of Eq. (8) is positive, then we success
this classification. Note that for weight vector Wm, m ∈
{1, 2, ..., N}, the most largest weight coefficients are focused
on {Wm,m,Wm,m+N , ...,Wm,m+(P−1)N}, we call these dom-
inant weight coefficients which contribute most to the final
decision scores, as shown in Fig. 5. So the disturbance
in the non-dominant entries would not influence the score
WT

mX too much, hence manifest the robustness of this rep-
resentation. On the other hand, the dominant weight coef-
ficients for class n lie in {Wn,n,Wn,n+N , ...,Wn,n+(P−1)N},
the equation would become negative when and only when
disturbance happened in both of these two locations. At
this situation, classes m and n are very similar, and most of
their corresponding parts are similar and couldn’t tell them
apart.

4.3 Fused One-vs-All Mid-Level Features
The analysis above has demonstrated the fact that in

some situations the discriminative features are subtle and
extremely localized. These subtle features may be easily

Grasshopper Sparrow Henslow Sparrow  Song Sparrow Lincoln Sparrow

Western Wood Pewee Sayornis Clay-colored Sparrow  Blue-headed Vireo

Figure 6: The similar parts found by linear discrim-
inant analysis. The upper row shares similar back
while the lower shares similar breast. Note that the
classes in the same row are all different. During the
one-vs-all mid-level features learning, it is better to
treat the classes with similar parts as one.

swamped by plenty of irrelevant features. The misclassifi-
cation would happen when the misclassified results are very
similar with the correct ones. In the one-vs-all comparisons,
we divide each part into N different classes, where N is the
total number of classes. This kind of partition is not opti-
mal since different classes may also share similar parts. It
might bring into overfitting if we try to separate these very
similar parts (actually they can’t be distinguished only by
the similar parts) and swamp discriminative features when
recognizing classes sharing these similar parts. These obser-
vations suggest us to down weight the features which are not
informative to discriminate similar classes. In this section,
we propose a method which fuses the similar parts into a
super-one to avoid dividing them into different classes, and
learn one-vs-all mid-level features based on these fused class-
es. In order to fuse the similar classes into a bigger one, we
first need to find the most similar classes for a given part. A
standard L1 or L2 distance-based measurement is appealing
for its simplicity, but considers all features to be equally im-
portant, which is unlikely to be a good idea. The low level
features are high dimensional, some of them are not helpful
to discriminate the classes. We wish to down weight the fea-
tures that are not discriminative, and emphasize those that
are. We apply a linear discriminate analysis to project the
features into a low dimensional subspace and then measure
the similarity between them. For consistency, we use the
same notations as the last section. For a specified part p, giv-
en a set of part-level pairs (xp

i , y
p
i ), i = 1, ..., l, xp

i ∈ Rn and
yp
i ∈ {1, ..., N}, denote the number of samples belonging to

each class as {n1, n2, ..., nN}. Linear discriminant analysis
projects the n dimensional features xp

i to K(K < n) dimen-
sional subspace via finding the optimal projection matrix
W = [w1|w2|...|wK ], wi ∈ Rn, i = 1, 2, ...,K that minimize
the ratio of within-class variance to between-class variance.

After projecting the features intoK dimensional subspace,
for any given two classes, we measure the similarity of part
features as

sf =
(μ1 − μ2)

2

σ2
1 + σ2

2

(9)

where μ1 and μ2 are the mean feature values for the two
classes, and σ1 and σ2 are the corresponding standard de-
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(a) Red Winged 
Blackbird

(b) Groove Billed 
Ani

(c) Blue Winged 
Warbler

(d) Yellow Headed 
Blackbird

Figure 7: Classification result comparisons between
the one-vs-all and the fused one-vs-all mid-level fea-
tures. The one-vs-all mid-level features correctly
recognize (c) Blue Winged Warbler but misclassify
(a) Red Winged Blackbird as (b) Groove Billed Ani.
While the fused ones correctly recognize (a) Red
Winged Blackbird but misclassify (c) Blue Winged
Warbler as (d) Yellow Headed Blackbird.

viations. We could get the similarity measure for any class
pairs, and rank the similar classes for a given part. Fig. 6
shows an example of applying LDA similarity measurement
to find the most similar classes for a given part. The up-
per are for part back and the lower are for part breast. All
the classes in the same row are different, from which we can
see that these parts are not discriminative to recognize the
similar classes. As an alternative, we first fuse these similar
classes into a bigger one, and learn the one-vs-all mid-level
features based the fused classes.

5. EXPERIMENTAL RESULTS

5.1 Dataset
We test our method on CUB-200-2011 dataset, which is

one of the most extensive datasets in fine-grained literature.
It contains 11788 images spanning 200 sub-species, several
of which share so tremendous similarities that even humans
can’t recognize them easily. Each image is labeled with its
sub-species, a bounding box which encloses the object and
at most 15 ground truth part annotations which indicate the
locations of different parts of the images, e.g. beak, wings,
throat and so on. Without loss of generality, we test our
method in both situations: with and without part annota-
tions. We make use of the provided bounding boxes as do
most of the approaches we compared to. During Preprocess-
ing, each image is resized to the same size, i.e. width and
height do not exceed 500 pixels. We use the fixed train/test
split provided in the dataset for all experiments. There are
roughly 30 images per category to train and the rest for test.
We mirror the train images to double the size of the train-
ing set, since it has been demonstrated an effective way to
improve the classification accuracy to some extent. We also
include results for Stanford Dogs [8], using similar experi-
mental settings as for CUB-200-2011 Birds. For accuracy
evaluation, we use the standard evaluation metric which is
the average classification accuracy by category.

5.2 Implementation Details
We extract convolutional neural network features for it-

s powerful classification capacity. The implementation [20]
is used to extract CNN features. For a given part region
(ground truth part or detected part), we crop the image to
the minimal rectangle which enclose the given part. The
output features of layer 21 are used for final representation

of the given input part for its efficiency, which is a 4096 di-
mensional vector. In order to compute features for a part
region, we must convert the image data in that region in-
to a form that is compatible with the CNN (the structure
requires inputs of a fixed 221 × 221 pixel size). Among the
many possible transformations of arbitrary-shaped regions,
we choose to resize the image to make the short side 221 and
feed it to the CNN input. The output at this situation is no
longer a 4096 dimensional vector, but 4096 × n dimension.
We chose max pooling on the multidimensional vector to get
the feature vector with length 4096. Experiments show that
this kind of resizing method gives higher performance than
directly resizing it to 221 × 221 because it does not bring
into aspect ratio deformation.

When it comes to encoding the images using Fisher vec-
tors, we extract grayscale SIFT descriptors (the implemen-
tation [21] is adopted) at each part with a spatial stride of 5
and at four scales, defined by setting the width of the SIFT
spatial bins to 12, 16, 20, 24 pixels respectively. After ex-
tracting SIFT descriptors, we apply a PCA transformation
to reduce the dimension to 80 and use a Gaussian mixture
model with 128 components. In order to code the color in-
formation, we choose LLC [23] coded discriminative color
descriptors [14] with a vocabulary of size 500. Both Fisher
vectors and color features are l2 normalized after encoding
and then concatenated. For ease of expression, we denote
Fisher vectors plus LLC coded color descriptors as Fisher
vectors in the following experiments.

In situations with ground truth part annotations, since
there are very few images in the dataset with 15 parts visible,
according to the symmetry, we combine the left eye and right
eye into one part, and apply the same operations on wings
and legs. Thus we have 12 parts in total used for part-based
recognition. In situations with detected parts, considering
detecting more parts are inaccurate, we choose the same
number of parts as in [6] to fix it at 4. For classification, we
use a linear SVM classifier and the regularization strength
is set by cross-validation.

5.3 One-vs-All vs Fused One-vs-All
We first compare the performance of our proposed two

kinds of features, the one-vs-all and the fused one-vs-all mid-
level features. The comparison is based on the ground truth
part annotations and features extracted from convolution-
al neural network. By simply learning the one-vs-all mid-
level features and performing another SVM classification, we
could get an accuracy of 78.1%, which outperforms the state-
of-the-art result [2]. One step further, we fuse the classes
which share similar parts, and the number of classes decreas-
es after fusing. We iteratively fuse the classes to a specified
number according to their similarity rankings in Eq. (9) and
learn the one-vs-all features based on the fused classes. For
simplicity, each part has the same number of classes after
fusing. The results are shown in Table 1. It is surprising
that classification accuracy improves by 0.8% after the di-
mension for each part is reduced to 175 (which means the to-
tal dimension is 2275 after concatenation). It demonstrates
that even the one-vs-all mid-level features (2600 dimension
vector) are redundant to some extent, and the improvement
lies in that some classes share similar parts and the fused
method combines them into one to reduce the disturbance.
The accuracy decreases when the fused number becomes s-
maller since the dimension is too small to classify correctly.
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Number 200 175 150 [200;175] All
Accuracy 78.1% 78.9% 77.0% 79.6% 78.3%

Table 1: Classification accuracies using the one-vs-
all and the fused one-vs-all mid-level features.

Method Accuracy
CNN (low level features) 75.9%
CNN (mid-level features) 79.6%
FV (low level features) 72.3%
FV (mid-level features) 75.8%
FV+CNN (low level features) 77.1%
FV+CNN (mid-level features) 81.2%

Table 2: Classification accuracies on Birds with
ground truth annotations using different methods.

At the last two columns in Table 1, we concatenate the mid-
level features with the fused ones and get an accuracy of
79.6%, better than any single mid-level features. It implies
us to use both features to complement each other. As shown
in Fig. 7, the one-vs-all mid-level features could correctly
recognize (c) Blue Winged Warbler but misclassify (a) Red
Winged Blackbird as (b) Groove Billed Ani, mainly because
the subtle discriminative features (red wings) are swamped
by other irrelevant features. While the fused one-vs-all mid-
level features (fused number 175) could correctly recognize
(a) Red Winged Blackbird but misclassify (c) Blue Winged
Warbler as (d) Yellow Headed Blackbird . By combining
these two features, both classes can be recognized correctly.
In the following experiments, we combine the one-vs-all and
the fused one-vs-all mid-level features for classification. We
only set the fused number as 175 , and concatenate them
with the one-vs-all mid-level features.

5.4 Ground Truth Part Annotations Results
In this section, we first show the experimental results with

ground truth part annotations. The concatenated mid-level
features have dimension of 375 per part, so the total number
of dimension is 4875. The classification results are shown in
Table 2 for both CNN features and Fisher vectors. As a com-
parison, we also list the results directly based on the low level
features, because the Fisher vector for one part is already
high dimensional (tens of thousand), computing similarity
based on Fisher vectors is time consuming, so we directly
use the similarity measurement results based on the CNN
features to compute the fused classes. From results in Table
2 we can see that the learned mid-level features can boost
the classification accuracy by a large margin, achieving 3.7%
and 3.5% improvements comparing with the results on the
low level features respectively. The last line shows the result
of combing Fisher vectors and CNN features, which gives
another improvement and achieves an accuracy of 81.2%,
which demonstrates that these two mid-level features are
complementary with each other, as far as we know, it is the
highest accuracy achieved so far.

5.5 Detected Part Locations Results
To enable automatic classification without the ground truth

part annotations, we also perform experiments with detect-
ed parts. We segment the object into 4 parts, together with
the whole image as an extra part, extracting features with-
in each part, and learn the one-vs-all and fused one-vs-all

Method Birds Dogs
CNN (low level features) 61.8% 50.1%
CNN (mid-level features) 65.3% 52.6%
FV (low level features) 58.7% 44.8%
FV (mid-level features) 61.2% 47.1%
FV+CNN (low level features) 62.9% 50.9%
FV+CNN (mid-level features) 67.6% 53.5%

Table 3: Classification accuracies with detected
parts using different methods.

mid-level features for classification. The results are listed in
Table 3. We obtain an accuracy of 67.6% using both Fish-
er vectors and CNN features, which further demonstrates
that the two features complement with each other. We also
include the results on Sanford Dogs dataset in the last col-
umn of Table 3, and our mid-level features achieve 2.5% and
2.3% improvements comparing with the low level ones using
CNN and Fisher vectors respectively, and get an accuracy
of 53.5% when combining the two kinds of features.

5.6 Time Complexity
Now we analyze time complexity of our proposed method.

The training and testing based on the mid-level features is
faster comparing with that on the low level ones. Taking the
classification on the detected parts as an example, on our
computer (Inter Core i7, CPU 3.2GHz), classification based
on the mid-level features (dimension 4875) takes about 90s,
mainly due to its low dimensionality, while direct classifi-
cation based on the low level features costs about 190min
for Fisher vectors (dimension around 100K) and 450s for C-
NN features (dimension around 20K). We need extra time
to learn the mid-level features. For Fisher vectors, it spends
about 8min in average for each part (dimension around 20K)
and 40min in total, while the time on CNN features is 80s
in average (dimension 4096) and 400s in total respectively.
Note that the learning process is part by part, so the time
consuming is far less than that based on the whole features.

5.7 Comparisons to Previous Works
Finally, we compare our method with existing works. Many

researchers have reported classification results on Birds and
Dogs dataset. The comparison results on Birds using ground
truth part annotations are listed in Table 4, our method out-
performs the state-of-the-art result (73.3%) by a large mar-
gin. To make fare comparisons, we use our mid-level features
learning algorithm directly on the extracted features in [24],
and obtain an improvement about 3% with an accuracy of
69.1%, which demonstrates the effectiveness of our method.
Fig. 8 shows some easiest (accuracy 100%) and hardest (ac-
curacy below 40%) classes of our method. Even with the
help of ground truth part annotations, some subcategories
are still challenging due to the existence of confusing coun-
terpart, such as American Crow and Fish Crow, Californi-
a Gull and Herring Gull. Exploiting methods overcoming
these problems would be a challenging future work.

More works try to perform classification without the ground
truth part annotations. We compare our method with these
works under the same conditions, the results are listed in
Table 5. It can be seen from the results that our method
outperforms all the other results, partially benefit from con-
volutional neural network. The result in [10] could direct-
ly demonstrate our superior performance of using mid-level
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Method Accuracy
Xie (hierarchical part matching)[24] 66.35%
Xie (mid-level features) 69.1%
Berg (POOF)[2] 73.3%
Ours (FV+CNN mid-level features) 81.2%

Table 4: Classification accuracies comparisons on
Birds with ground truth part annotations.

Method Birds Dogs
Berg (POOF)[2] 56.78% -
Chai (symbiotic segmentation)[6] 59.4% 45.6%
E.Gavves (alignments)[13] 62.7% 50.1%
Zhang (deformable descriptors)[28] 50.98% -
Jia (DeCAF)[10] 64.96% -
Ours (FV+CNN mid-level features) 67.6% 53.5%

Table 5: Classification accuracies comparisons with
detected part regions.

features, which also extracts features from the convolutional
neural network. By using the mid-level features, our method
outperforms 2.7% comparing with their result. The improve-
ment on Dogs is also obvious, our method exceeds the state-
of-the-art result [13] by around 3.5%, to the best of our
knowledge, this is the best accuracy reported so far in the
literature.
At last, we compare our method with Berg’s POOF [2]

method, which also tries to learn some mid-level features
for classification. Their features are also learned based on
SVM classifier, but aim to learn one-vs-one mid-level fea-
tures between any two classes for a given part. Though
discriminative these features are, the shortcomings are that
some entries are not informative. For example, if the bina-
ry classifier is trained based on class i and j, the meaning
of the scores for other classes are not so clear, and in most
situations can’t be used as discriminative features for other
classes. On the other hand, since the one-vs-one part pairs
are so large, in order to ensure effectiveness, it randomly
samples some pairs and learns mid-level features based on
these pairs, which may also decrease the accuracy. Different
from the POOF method, we try to learn one-vs-all mid-
level features at one time, which is more effective, and the
fuse algorithm further boosts the discriminative power of
our mid-level features. As a comparison, we learn POOF
based on CNN features, the pairs are randomly sampled
and the dimension is set as 5000, which is the same as [2].
The classification accuracy is 74.2%, which is comparable
with Berg’s but much lower than that of our method even
without combing with Fisher vectors. Besides, our learning
algorithm is independent of the feature extraction steps, and
can be easily combined with other methods.

6. CONCLUSIONS
In this paper, we propose a novel method to learn one-vs-

all mid-level features, which is more suitable for fine-grained
visual categorization. It is dimension friendly since the di-
mension of the learned mid-level features is only related with
the number of the classes and far less than that of the low
level ones. The learned mid-level features are more compact
representations of images since each entry of the features
represents the signed distance to the corresponding class.

The novel mid-level features are more robust than the low
level ones. Considering different classes may share similar
parts, we fuse classes with similar parts to super one and
learn fused one-vs-all mid-level features based on the fused
classes. We combine the two kinds of mid-level features in-
to a powerful discriminative features for fine-grained visual
categorization. Furthermore, we demonstrate the comple-
mentary characteristics of Fisher vectors and convolutional
neural network features. Combining all the techniques we
outperform the state-of-the-art results by a large margin on
both Birds and Dogs dataset.

Our one-vs-all mid-level features are somewhat attribute
features, which are similar with [16]. They are both mid-
level semantic representations of the images. The fused one-
vs-all mid-level features coincide with the characteristic of
attributes that several classes share the same attributes. If
we treat each class of a given part as an attribute, each entry
of the mid-level features can be regarded as a continuous
attribute value corresponding to that class. Different from
the binary attributes extracted from [16] which need human
annotations and have the form like black, water, eat fish,
our features are relative attributes and don’t need human
interactions. Though overlapping to some extent (different
classes may share similar attributes), they are applicable to
detect unseen object classes, which needs to be verified in
the future works.
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