
COMPRESSIVE VIDEO SAMPLING FROM A UNION OF DATA-DRIVEN SUBSPACES

Yong Li, Hongkai Xiong∗, Xinwei Ye

Department of Electronic Engineering
Shanghai Jiao Tong University
Shanghai 200240, P.R. China

ABSTRACT
Recently, compressive sampling (CS) is an active research
field of signal processing. To further decrease the neces-
sary measurements and get more efficient recovery of a signal
x, recent approaches assume that x lives in a union of sub-
spaces (UoS). Unlike previous approaches, this paper propos-
es a novel method to sample and recover an unknown signal
from a union of data-driven subspaces (UoDS). Instead of a
fix set of supports, this UoDS is learned from classified sig-
nal series which are uniquely formed by block matching. The
basis of these data-driven subspaces is regularized after di-
mensionality reduction by principal component extraction. A
corresponding recovery solution with provable performance
guarantees is also given, which takes full advantage of block-
sparsity structure and improves the recovery efficiency. In
practice, the proposed scheme is fulfilled to sample and re-
cover frames in video sequences. The experimental results
demonstrate that the proposed video sampling behaves better
performance in sampling and recovery than the classical CS.

Index Terms— Compressive sampling, block matching,
PCA, union of subspaces, data-driven, video compression.

1. INTRODUCTION

Compressive sampling (CS) is a prevailing theory in a vari-
ety of fields [1]-[3]. It attempts to acquire an unknown sparse
signal by randomly projecting the original signal into its mea-
surements whose dimension is much smaller. Let us consider
that x is the unknown k-sparse signal, y is the measurements,
and Φ is the sensing matrix. It is demonstrated that x can
be reconstructed exactly from m = O(k log n

k ) random mea-
surements when Φ satisfies certain conditions by solving ℓ1-
norm minimization problem [3]:

min
x

∥x∥1, subject to Φx = y. (1)

where y ∈ Rm×1 , Φ ∈ Rm×n , x ∈ Rn×1 , m ≪ n , m >
k .

Recently, CS is applied to digital video sampling, com-
pression and recovery [4]-[8]. In [4] and [5], each frame is
decomposed into non-overlapped blocks and each block is
approximated by a linear combination of blocks in previous
frames at the CS decoder side. In [6], a block-based adaptive
framework for CS is applied to maximum frame rate video
acquisition at the encoder side. In [7], the pseudo-random
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down-sampling is performed in the 2-D Fourier transforma-
tion domain of digital video frames at the encoder side. In [8],
a block-based CS framework is proposed where Karhunen-
Loève basis is used to recover blocks at the decoder side.

It is worth mentioning that these methods converge on the
situation where the signal x lies in a given single subspace.
Besides these methods are complicated. To further decrease
the necessary measurements and get more efficient recovery
of a signal x, some researchers assume that x lives in a u-
nion of subspaces [9]-[11]. However, the current work main-
ly focuses on the theoretical investigation that what kind of
sampling operators could be utilized to recover the signals.

In this paper, an explicit sampling strategy on a union of
subspaces is provided for digital video sampling and recovery
in practice. The underlying union of subspaces is constructed
which makes full use of neighboring structures and enhances
the sparsity. To be concrete, similar spatial fragments (e.g.,
blocks) are grouped and vectorized into a data array which
is called “group”. The 3-D group is changed into 2-D signal
spaces which can be considered as a union of data-driven sub-
spaces (UoDS). Noticeably, the UoDS is learned from classi-
fied signal series which are uniquely formed by block match-
ing. Further, it is optimized by principal component analy-
sis (PCA), which derives a basis matrix and enhances the s-
parsity. Besides the proof of stable reconstruction, we apply
the proposed strategy to sampling and recovering video se-
quences where the UoDS is learned from decoded key frames.
As a result, the non-overlapped blocks of non-key frames can
be sampled and recovered stably and efficiently.

The remainder of the paper is organized as follows. The
preliminary knowledge is discussed in Section 2. Section 3
describes the proposed algorithm of constructing a union of
data-driven subspaces and demonstrates its stability. More-
over, it is witnessed to sample and recover video signal. The
experimental results in Section 4 are evaluated.

2. PRELIMINARIES

Traditional CS considers the problem in form as

y = Φx (2)

where Φ is the sensing matrix. Instead of a single subspace,
x is considered to lie in a union of subspaces U [9]:

x ∈ U .
=

∪
λ∈Λ

Sλ (3)

where Sλ are subspaces of Hilbert space H and Λ is a list of
indices. Sλ are based on a fix basis (e.g., a Fourier or wavelet
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Fig. 1. k-block-sparse vector over I = {d1, d2, . . . , d7} with
k = 3
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Fig. 2. The reference block, search window in block-
matching for a union of data-driven subspaces

basis). Theoretically, x ∈ Rn×1 is supposed to have a sparse
representation with a given basis Ψ:

x = Ψc (4)

where c is a K-sparse vector, Ψ = [ψ1, ψ2, . . . , ψn] is an in-
vertible matrix, and ψi is a transformation corresponding to
a basis for subspace Si. In this sense, Eq. (2) can be written
explicitly with vector c.

ym×1 = Φm×nxn×1 = Φm×nΨn×ncn×1 = Ac (5)

whereAm×n = ΦΨ. When taking a block-sparse structure in
a union of subspaces into consideration [10], if t is the number
of subspaces, cT = [c[1]T · · · c[t]T ] is called k-block-sparse
if at most k blocks c[i]di×1 are non-zero, with n =

∑t
i=1 di.

Fig. 1 shows an example of a k-block-sparse vector with k =
3 and t = 7.

To guarantee an invertible and stable recovery, some con-
ditions on the sampling operator Φ should be imposed. In this
case, the block Restricted Isometric Property (Block-RIP) im-
posed on A would be defined as:

Definition 1 (Block-RIP) Let A : Rn → Rm be a given
matrix, then A has the block RIP over I = {d1, d2, . . . , dt}
with parameter δA,k if for every c ∈ Rn that is k-block-sparse
over I such that

(1− δA,k)∥c∥22 ≤ ∥Ac∥22 ≤ (1 + δA,k)∥c∥22 (6)
It was proved that if the sensing matrix A satisfies the block
RIP, a convex algorithm which is based on minimizing a
mixed ℓ2/ℓ1 norm will recover the block sparse vector c [10].
The mixed ℓ2/ℓ1 norm is defined as

∥c∥2,I =
t∑

i=1

∥c[i]∥2 (7)

Fig. 3. A union of 10 data-driven subspaces and correspond-
ing basis with 5 extracted features for each subspaces.
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Fig. 4. k-block-sparse vector over I = {d1, d2, . . . , d7} with
k = 1

The recovered k-block-sparse vector c can be derived by solv-
ing the block-sparse basis pursuit problem

min
c

∥c∥2,I subject to y = Ac (8)

where ∥c[i]∥2 ≥ 0, 1 ≤ i ≤ t.

3. THE PROPOSED SCHEME

3.1. Union of Data-driven Subspaces (UoDS) by Block
Matching

As shown in Fig. 2, each block x of size a × a in an image
is clustered by block-matching [12]. The size of a reference
block is a × a, and B is denoted as the center of a search
window whose size is p × p. The set of similar blocks C in
the search window is defined as

P(B) = {C : d(B,C) ≤ τ} (9)

where τ is a distance threshold for d, d(B,C) =
∥γ(B)−γ(C)∥2

2

k2 is the normalized quadratic distance between
blocks, γ is a hard thresholding operator with threshold λσ,
and σ2 is the variance of zero-mean Gaussian noise. First of
all, two dimensional discrete Fourier transform (2-D DFT) is
performed on x. Specially, the search window is set as the
whole image. By computing the distance between the ref-
erence block xB and the block xC which is not clustered in
the frequency domain, an image is decomposed into t groups
(clusters) of blocks according to Eq. (9). All the 2-D block-
s are vectorized into vectors whose dimensions are a2 × 1,
and each vectorized group Xi, i = 1, . . . , t, corresponds to a
data-driven subspace S∗

i containing a vectorized block series.
Therefore, the set of these matrices [X1, . . . , Xt] corresponds
to a UoDS denoted as U∗. Apparently, it is dependent on the



Fig. 5. The proposed compressive video sampling and reconstruction framework from a union of data-driven subspaces

signal source to form the UoDS which makes CS on UoDS
more adaptive than CS on UoS. Similar to Eq. (3), each vec-
torized block x belongs to S∗

i . It also lives in the union of
subspaces as

x ∈ U∗ .
=

∪
S∗
i (10)

[X1, . . . , Xt] can be called a dictionary or training set.
The union of data-driven subspaces would be learned

from [X1, . . . , Xt] by a linear dimensional reduction where
principal component analysis (PCA) is utilized to derive ba-
sis matrix Ψ∗ in Eq. (4). To be concrete, a typical example
is illustrated from Fig. 3. Each cluster Xi ∈ Ra2×li contains
li vectorized blocks. After the singular value decomposition
(SVD) performed on Xi separately, the basis ψ∗

i ∈ Ra2×di

of each subspace S∗
i is obtained where di is the dimension of

S∗
i . Hence, Ψ∗ = [ψ∗

1 , ψ
∗
2 , . . . , ψ

∗
t ] is the bases of U∗ where

ψ∗
i is an orthonormal matrix. q = Σt

i=1di should be larger
than m, which makes Eq. (11) underdetermined.

3.2. Stable Reconstruction

Similar to Eq. (5), it can be derived as

ym×1 = Φm×a2xa2×1

= Φm×a2Ψ∗
a2×qc

∗
q×1 = A∗c∗ (11)

where Φ is an i.i.d. random matrix. Because it is based on a
union of data-driven subspaces, c∗ is a 1-block-sparse vector
which is more sparser than c in Eq. (5). Take Fig. 4 for
example, it is obvious that the sparsity of the proposed scheme
exists in only one block of c∗. It is different from the sparsity
of previous work which would exist in several blocks of c,

as shown in Fig.1. As follows, the uniqueness and stability
conditions are given for a self-contained description.

Proposition 1 The k-block sparse vector c∗ is unique with
the measurements y = A∗c∗ if and only if A∗c∗ ̸= 0 for all
c∗ ̸= 0 that is 2k-block sparse.

Similar to Eq. (18) in [10], if Φ is replaced by A∗ and x is
replaced by k-block sparse vector c∗, and set u = c∗1 − c∗2,
then Proposition 2 can be shown as:

Proposition 2 The measurement matrix A∗ is stable for ev-
ery 2k-block sparse vector u if and only if there exists C1 > 0
and C2 <∞ such that

C1∥u∥22 ≤ ∥A∗u∥22 ≤ C2∥u∥22 (12)

Proof: First, A∗ = ΦΨ∗ in terms of Eq. (11). The basis ψ∗
i

is an orthonormal basis of each subspace from PCA and Φ
is an i.i.d. random matrix. According to Proposition 4 and
Proposition 5 in [9], we can easily prove Proposition 1 and
Proposition 2.

IfA∗ satisfies the block-RIP condition with δ2k ≤
√
2−1,

the vector c∗ of Eq. (8) can be determined according to the
convex second-order cone program (SOCP) [10].

3.3. Compressive Video Sampling from UoDS

The proposed compressive video sampling and reconstruction
framework from a union of data-driven subspaces is depicted
in Fig. 5. Given a video sequence with group of pictures
(GOP), it is decomposed into a set of sampled key frames
(KFs) and the remaining non-key frames (NKFs). The KFs
can be fully sampled first. Through block matching, the de-
coded KFs would form blocks of different groups (clusters)
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Fig. 6. Recovered samples with block size of 8 × 8, m = 40
(i.e. SR=62.5%), UoDS is trained by overlapped blocks from
the KF with d = 10. The first and third columns are the result
of standard CS, while the second and fourth columns are the
result of CS based on UoDS.

(a) KF

(c) PSNR: 25.64dB

(b) The 4th NKF

(d) PSNR: 34.26dB

Fig. 7. The experimental results on Football with 16 × 16
blocks, m = 160 (i.e. SR=62.5%) and d = 10. (a): the
key frame where UoDS is derived from; (b): the 4th non-key
frame whose blocks are sampled compressively; (c): standard
CS; (d): the proposed scheme.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. The R-D performance comparison between the pro-
posed scheme with different dimension d and standard CS.
(a),(b): Akiyo; (c),(d): Football; (e),(f): Foreman. The first
column is the results of 16 × 16 patches, while the second
column is the results of 8 × 8 patches. UoDS is trained by
overlapped patches from the KF.

and the blocks of each group are vectorized to form a data-
driven subspace. All the subspaces are integrated into a union
of data-driven subspaces (UoDS) U∗, in turn the basis matrix
Ψ∗ from U∗.

Consider the spatio-temporal consistency in video se-
quence, each vectorized non-overlapped block x in NKFs is
supposed to live in U∗ and can be represented as a linear com-
bination of a small subset of atoms from Ψ∗. The measure-
ments y of x are derived according to Eq. (2) at the encoder
side. Thus, the vector c∗ of x can be recovered by

min
c∗

∥c∗∥2,I subject to y = A∗c∗ (13)

where A∗ = ΦΨ∗. Finally, the recovered vectorized block x
in NKFs can be represented by

x = Ψ∗c∗ (14)

and resembled back to form NKFs in the decoder.

4. EXPERIMENT

In experiments, a variety of test sequences (i.e., foreman,
akiyo, bike, tempete, football, and mobile) are with CIF



Table 1. PSNR (dB) comparison between standard CS and UoDS trained by non-overlapped patches from KF, when block size
is 8× 8, m = {10, 20, . . . , 60}.

Sequences Model m
10 20 30 40 50 60

Foreman Standard 7.646 13.041 16.568 19.992 24.060 30.811
UoDS 7.504 12.406 17.609 22.801 28.786 35.802

Akiyo Standard 10.615 15.993 19.202 22.656 26.668 33.715
UoDS 11.087 16.955 22.878 28.440 33.075 38.018

Bike Standard 11.232 15.266 18.243 21.196 25.120 32.240
UoDS 11.343 15.813 20.460 25.105 30.309 36.885

Templete Standard 12.789 16.810 19.554 22.447 26.274 33.307
UoDS 13.608 18.058 22.010 25.277 28.902 34.207

Football Standard 10.234 14.982 18.141 21.443 25.627 32.669
UoDS 9.935 15.360 21.276 26.262 31.563 37.834

Mobile Standard 7.291 11.788 14.821 17.827 21.626 28.676
UoDS 7.183 11.378 15.574 19.806 24.197 29.923

(352 × 288) resolution, YUV 4:2:0 format, and a GOP size
of 10 frames. The size of each block is 8× 8, 16× 16 there-
by n = 64 and 256 respectively. The sampling matrix is
an i.i.d. Gausisian random matrix with zero-mean and unit-
variance. Both situation of UoDS trained by overlapped and
non-overlapped patches from key frame is considered. With-
out loss of generality, the first frame of each GOP is set as
the key frame and the remaining nine frames as the non-
key frames. Take foreman sequence for example. For non-
overlapped situation, the key frame is divided into 12 clusters
with τ = 0.7; the number of 8 × 8 blocks in each cluster
is no less than 10; hence, if the dimension of each subspace
is 10, the size of the basis matrix is 64 × 120. The size of
sampling matrix is m × 64 with m ∈ {5, 10, 15, . . . , 60}. If
m = 20, the sampling rate (SR) m/n = 31.25%. While for
overlapped situation, the key frame is divided into 18 clusters
with τ = 2; to guarantee sufficient training, the number of
8 × 8 blocks in each cluster is no less than 500. For trained
by overlapped 16 × 16 blocks situation, the key frame is di-
vided into 19 clusters each of which also has no less than
500 blocks; the size of the sampling matrix is m × 256 with
m ∈ {20, 40, 60, . . . , 160}. Because the union of subspaces
is data-driven, the number of clusters in different video se-
quence is different. The dimension of each subspace di is
simply the same from {2, 4, 6, 8, 10}. The DCT basis is used
as the sparse basis in the standard CS; the bases of UoDS are
learned from each cluster by PCA. All these work above are
at the video encoder side. At the video decoder side, the basis
pursuit (BP) [2] recovery algorithm is enabled for standard C-
S; the block-sparse basis pursuit algorithm is enabled for the
proposed scheme, where the SPGL1 Matlab solver 1 [13] is
used. The experimental environment: MATLAB in a work-
station with 3.2-GHz CPU and 12-GB RAM.

Fig. 6 shows the subjective visual quality of the sampled
frames with 8×8 overlapped situation, while Fig. 7 shows the
subjective visual quality of the sampled frames in football se-
quence with 16×16 overlapped situation. Fig. 8 and Table. 1
provide the overall and averaged R-D performance. It can be
seen that the proposed scheme behaves better than standard
CS in general. At the same time, comparing Table.1 with
Fig. 8, we can see that the performance of overlapped situa-
tion is much better than that of non-overlapped situation. Be-

1Available at http://www.cs.ubc.ca/∼mpf/spgl1/

cause the overlapped situation can guarantee sufficient train-
ing while non-overlapped situation can not. Performance of
16 × 16 situation is much better than that of 8 × 8. Because
when n is bigger, the recovery algorithm can reconstruct more
accurately c or c∗ with the higher probability. In addition, the
dimension of each subspace d also affects the performance of
the proposed method as show in Fig.8. When d is small at a
low SR (e.g. d = 2, SR = 7.81%(m = 20, n = 256 or m =
5, n = 64)), the PSNR value is bigger than that of larger d.

5. CONCLUSIONS

This paper proposes an explicit sampling scheme to recov-
er an unknown signal from a union of data-driven subspaces
(UoDS). It investigates neighboring data structures by block
matching to learn the union of subspaces from classified sig-
nal series. Moreover, it is optimized by principal component
analysis (PCA) to derive a basis matrix and enhance the spar-
sity representation. With the proof of stable reconstruction,
the proposed algorithm is fulfilled in digital video acquisition
and recovery where the UoDS is learned from sampled key
frames. The blocks of non-key frames have been evaluated
to get better performance in comparison to the standard com-
pressive sampling.
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