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ABSTRACT

A multi-view video system would capture the same scene
from different viewpoints, and suffer from significant illu-
mination variations due to inaccurate camera calibration and
varying light conditions. It deteriorates the inter-view corre-
lations and the quality of synthesized views at decoder side.
By converting the problem of illumination compensation to
noise removing, this paper proposes a low-rank matrix com-
pletion algorithm to reduce the effect of illumination varia-
tion. Diverged from the existing work which chooses a central
view as reference and keeps views consistent, it is dedicated
to compensating all the views to match the low-rank struc-
ture of views. The discrepancies among views are regard-
ed as mixed noise, and constructed as an incomplete matrix
with low-rank. It is solved by a stable matrix completion and
obtains a mapping function for color correction. It is robust
to outliers since only plausible corresponding points are in-
volved with completion. Experimental results show that the
proposed algorithm can increase coding efficiency by up to
0.7dB for luminance component and up to 2.1dB for chromi-
nance components.

Index Terms— Illumination compensation, multi-view
video coding, matrix completion, low-rank structure

1. INTRODUCTION

With the breakthrough of 3-D vision field, multi-view video
coding has been drawn more attention to decorrelate spatio-
temporal samples within views [1]. However, significant
luminance and chrominance discrepancies might occur due
to inaccurate camera calibration and varying light condition
among views. It would deteriorate the correlations among
views and impose negative impacts on the synthesis and
rendering of virtual views at decoder [2]. In this sense, to
compensate the discrepancies becomes vital importance for
desirable coding performance.

In 2008, Fecker et al. [3] developed a well known illu-
mination compensation approach by histogram matching (H-
M) which aims to match the histogram of the target view to
the reference view. Because all the other views should be
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corrected in alignment with the center view as reference, the
phase information of pixels is ignored. An alternative way
is to correct multi-views to the average color of all views,
and each view was corrected by polynomial functions [4]. In
an analytic form, Chen [5] constructed a global linear model
to compensate for the discrepancy based on modulation and
translation parameters. However, it fails to take the local dis-
crepancy into consideration.

Impressively, this paper is to convert the problem of illu-
mination compensation to noise removing via low-rank ma-
trix completion. An incomplete matrix with each column
representing one view at one time and each row represent-
ing the same point, is constructed where the discrepancies
among views can be regarded as mixed noise. The matrix
is supposed to be low-rank if the missing entries are filled in
correctly, and it could be recovered from noise by a stable ma-
trix completion algorithm. In turn, a mapping function would
be attained for color correction. Compared to the existing ap-
proach making views consistent, it is robust to outliers with
lower modification.

The rest of this paper is organized as follows: Sec. II re-
views the preliminary knowledge of matrix completion. The
proposed correction approach is described in Sec. III with
regard to the construction of the incomplete matrix, the ma-
trix completion and the mapping process. The experimental
validation is shown in Sec. IV.

2. BACKGROUND OF MATRIX COMPLETION

Matrix completion is a well studied but still challenging
problem, which solves the problem of completing a low-rank
matrix from only a small portion of observations [6]. Let
X = UΣV T be the singular value decomposition of matrix
X ∈ Rm∗n with rank r, the singular values are arranged
in a non-increasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr, and∑

= diag({σi}1≤i≤r). The nuclear norm of X is defined
as ‖X‖∗ =

∑
i

σi. For each τ > 0, the soft threshold

operator Dτ is defined as: Dτ (X) = USτ (Σ)V T , where
Sτ (Σ) = diag(max(σi − τ, 0)). The observed partial matrix
D can be completed by solving the problem:

min ‖A‖∗
s.t. Aij = Dij , (i, j) ∈ Ω

(1)

1865978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013



X

X t

j th view

kth view(center)

(x; y )

(x 0 ; y 0)

(x 0
t ; y 0

t )

dx;y

dx 0
t ;y

0
t

Original Sequences

Matrix 

Completion
Preprocessing

999 66 63 70 62 66 68 64

99 102 99 102 97 99 103 96

105 109 106 112 109 116 999 120

… … … … … … … …

Example

61.81 64.89 63.29 65.42 62.32 62.92 64.91 66.20

95.24 99.96 97.43 100.45 96.26 99.14 100.94 95.02

104.67 109.92 107.32 111.50 107.85 111.74 114.30 107.62

… … … … … … … …

Input

value

Corrected  value (view 1~8)
1            2           3           4           5           6 7           8   

22 25 24 24 24 23 24 25 24

53 54 53 53 52 53 52 53 53

129 126 126 127 128 128 128 128 127

176 176 174 174 175 174 174 174 170

… … … … … … … … …

Mapping

Function

Corrected Sequences

Unknown  

Entries

Illumination Vary

Example

Example

Y A

Same value in

the same row 

Fig. 1: The diagram of the proposed algorithm

where Ω is the index of observed entries.
In real applications, the observed data is more or less af-

fected by noise. Hence, a stable matrix completion method is
developed which guarantees reasonable accurate results from
noisy sampled entries [7]. Considering the following mini-
mization problem:

min ‖A‖∗
s.t. ‖PΩ(A− Y )‖2F ≤ #(Ω)σ2

(2)

where Y is the noisy sampled matrix, PΩ is a linear operator
that keeps the entries in Ω unchanged and sets those outside
Ω zeros, #(Ω) is the number of samples and σ is a given
parameter which is related to the standard deviation of noise.

3. MATRIX COMPLETION-BASED ILLUMINATION
COMPENSATION SCHEME

It is difficult to exactly model and analyze all error sources
and their effects on the pixel values under illumination varia-
tion. For a given point in frame k, its value fk(x, y) consists
of two components: the actual value gk(x, y) and the devia-
tion nk(x, y), which can be regarded as addictive noise:

fk(x, y) = gk(x, y) + nk(x, y) (3)

where (x, y) denotes the location of the point. For every
frame k, we stack it column-wisely as a vector Fk, and con-
struct a matrix with each column representing one view at one
time [8]. We permutate the points in each column to put the
corresponding points into the same row. When there are n
frames used for correspondence, we obtain the matrix:

Y = [F1, F2, ..., Fn] = A+ Z (4)

where A denotes the matrix of actual values and Z denotes
the noise matrix. Due to occlusion, the matrix Y is incom-
plete. We construct the matrix with the visible points regard-
ed as known entries, and the invisible points as unknown en-
tries(large number, say 999), let Ω be the index set of the vis-
ible points, the incomplete matrix can be represented as:

Yij =

{
Aij + Zij , for (i, j) ∈ Ω

999, otherwise
(5)

As shown in Fig. 1, the goal is to recover the low-rank matrix
A from the observed incomplete noisy matrix Y . A matrix
completion solver could be regarded as a mathematical filter,
then a mapping function is generated for illumination com-
pensation.

3.1. Incomplete matrix construction among views

By a projection process from the corresponding depth map-
s and camera parameters, a 3-D warping method is used to
obtain the corresponding points [9]. The matching point is
detected by projecting the pixel of one view to its 3-D coor-
dinate and reprojecting it onto the target view. Let Ik repre-
sent the kth view at one time and dk its corresponding depth
map; Ak, Rk and tk denote, respectively, the intrinsic matrix,
the rotation matrix and the translation vector of camera Ik.
Hence, the 3-D coordinateX of point Ik(x, y) is obtained by:

X = RkA
−1
k [Ik(x, y) 1]T dk(x, y) + tk (6)

The point X is reprojected into the target view (refer to Fig.
1) to get the matching point by:

Ij(x
′, y′) = AjR

−1
j (X − tj) (7)
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where (x′, y′) is the location of matching point in jth view.
Due to the inaccuracy of the depth maps and camera param-
eters, the point Ij(x′, y′) may not be the accurate correspon-
dence. Thus, we choose the nearest integer pixel to Ij(x′, y′)
as center, and its 8-neighborhood pixels as candidate match-
ing points (marked as red circle in Fig. 1). All the 9 points are
back-projected to the 3-D space to get the point set Xset, and
the nearest 3-D point Xt is chosen by the following principal:

Xt = arg min
X′∈Xset

‖ X ′ −X ‖2 (8)

Once obtaining its projected points Ik(xt, yt) in the kth
view, in view of occlusion, if the Euclidean distance between
Ik(x, y) and Ik(xt, yt) is less than an empirical threshold σ
(e.g. 2), the two points would be regarded as corresponding
points, and otherwise an unknown entry.

In the 3-D warping, the center view is chosen as refer-
ence and all the points in the center view are warped column-
wisely to all the other views to find corresponding points. It
can be repeated for a couple of successive time instances to
get more corresponding points. For the views from differen-
t time instead of viewpoints, the points with the same value
would be put into the same row in accordance with the center
view as reference.

3.2. Low rank extraction via matrix completion

To recover the low-rank matrix from the incomplete noisy ma-
trix, we adopt a preprocessing step to choose only reliable el-
ements for completion where the elements are chosen based
on their deviation to the mean of all known entries in the same
row. When the deviation of a pixel is larger than a tentative
threshold, it is set to be unknown. Referring to the matrix Y
for completion in Fig. 1, each column represents one view at
one time. The color indicates the similarity of the correspond-
ing points, and the white entry represents the unknown.

The low-rank matrix A, would be recovered from Y by
solving Problem (2) with its Lagrangian form:

min
1

2
‖PΩ(A− Y )‖2F + µ‖A‖∗. (9)

It is a standard duality which is equivalent to (2) for µ. One
can solve Eq. (9) by searching for an optimal value of µwhich
makes the solutionA satisfy ‖PΩ(A−Y )‖2F ≈ #(Ω)σ2. and
followed by a heuristic arguments in [7]. Here, µ is chosen
as:

µ = (
√
n1 +

√
n2)
√
pσ (10)

where p is the ratio of known entries against the total number
elements in Y , and n1, n2 are the dimensions of Y . The fixed
point iterative algorithm [12] is adopted to solve Eq. (9) for its
accuracy [10], and the details are summarized in Algorithm 1.
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Fig. 2: The coding performance comparison of the original
coding scheme without correction, the histogram-matching
(HM) compensation scheme, and the proposed algorithm

3.3. Illumination compensation via mapping function

With the incomplete noisy matrix Y and low-rank matrix A,
a mapping function would be generated for correction. Let Yi
and Y j denote, respectively, the ith row and the jth column
of Y . For a given view k, find its K corresponding columns
{Y jk}Kk=1 in Y , record the M rows {ik}Mk=1 which have the
pixel value n(0 ≤ n ≤ 255) in sub-matrix {Y jk}Kk=1 , and
average row vectors {Aik}Mk=1 in A to get corrected value
n′(0 ≤ n′ ≤ 255). It can be represented as:

map(n, k) = round(

∑M
k=1Aik
Mn2

) (11)

The same mapping function would compensate all frames in
a view, and see an example in Fig. 1.

Algorithm 1 Fix point iteration for solving Problem (9)

Initialization: A(0) = 0, k = 0, given µ, σ, τ
while ‖Ak −A(k−1)‖F ≥ ε, do{

R(k) = A(k) − τPΩ(A(k) − Y )
A(k+1) = Dτµ(R(k))

end while
Output: A = A(k)
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Seq. Original HM Proposed
Temporal Spatial Temporal Spatial Increased Temporal Spatial Increased

Break 88.32% 11.68% 84.73% 15.27% 3.59% 85.95% 14.05% 2.37%
Rena 85.75% 14.25% 82.24% 17.76% 3.51% 81.78% 18.22% 3.97%
Ballet 96.35% 3.65% 94.69% 5.31% 1.66% 94.02% 5.98% 2.33%

Table 1: The optimal prediction ratio of three schemes (QP = 22)
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Fig. 3: The subjective performance of Rena:(a), (b) original
views (d), (e) compensated views (c), (f) corresponding his-
tograms

4. EXPERIMENTAL RESULTS

In experiments, we implement the proposed algorithm with
the JMVC(version 8.3.1) reference encoder. Three multi-
view sequences, Ballet (8 views), Breakdancers (8 views) [14]
and Rena (8 views), are extensively tested where the GOP size
is 12 and the quantization parameter (QP) is evaluated as the
typical conditions: 22, 27, 32, and 37 [13]. Also, every 10th
frame per view are able to construct the incomplete matrix,
and the threshold selecting reliable pixels is set to make the
ratio p around 50% ∼ 60%. In Algorithm 1, the parameter τ
is 1.95 and the stopping criterion ε is 10−4.

The proposed algorithm is compared with 1) the origi-
nal coding scheme without correction and 2) the histogram-
matching (HM) compensation scheme [3]. When differen-
t compensation schemes are compared, we use their corre-
sponding inputs as references for measuring the PSNR since
there are no ground truth video that has the perfect color. Fig.

Seq.
HM Proposed

Y U V Y U V
Break 0.872 0.874 0.874 0.996 0.995 0.995
Rena 0.871 0.869 0.860 0.995 0.994 0.985
Ballet 0.869 0.873 0.875 0.996 0.994 0.996

Table 2: The SSIM evaluation between the original sequences
and the compensated sequences

2 shows their coding performance comparison of luminance
and chroma components, where the chroma PSNR is the av-
erage PSNR of U and V components. It can be seen that
the proposed scheme gets a PSNR gain of luminance com-
ponent ranging from 0.4 to 0.7 dB over the original coding
without correction and 0.3 to 0.8 dB over the HM compen-
sation scheme. For chroma components, it would range from
1.1 to 2.1 dB and 0.9 to 1.9 dB, respectively. Fig. 3 illustrates
the subjective view effects of the proposed scheme, where the
histogram of the compensated views are closer than the orig-
inal views. Obviously, the colors of the views are different
before compensation but look consistent after compensation.
For clarity, we evaluate the correlations (percentage in Table
1) among views by counting the number of temporal and spa-
tial reference blocks from block matching [16]. Furthermore,
the similarity between the compensated sequences and the o-
riginal ones are evaluated in terms of the SSIM criterion [15].
From the average SSIM over all frames in Table 2, the pro-
posed algorithm is witnessed to get lower modification than
the HM scheme.

5. CONCLUSIONS

In this paper, we propose a matrix completion-based illu-
mination compensation method as a pre-filtering step to
compensate the illumination variations of multi-view video
sequences. The incomplete matrix is constructed by finding
corresponding points among views, followed by a matrix
completion process aiming at recovering the low-rank matrix
among views. According to the matrix before and after com-
pletion, the mapping function is obtained for illumination
compensation. It favors lower modification to achieve visual
consistent among views and is robust to outliers. Experiments
show that it outperforms the uncompensated coding and the
HM compensation.
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