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Abstract— This paper proposes a novel Slepian-Wolf decoding
algorithm for distributed video coding by exploiting not only the
statistical correlation between the side-information and source
but also the spatio-temporal consistency constraint of video se-
quences. The proposed algorithm models the log-likelihood-ratio
(LLR) information for Slepian-Wolf decoding as an anisotropic
MRF model and solving the inference by iteratively performing
conventional probabilistic Slepian-Wolf decoding, which imposes
the global bit-wise constraint from the Slepian-Wolf encoding
process, and MRF optimization with belief propagation (BP) to
enforce the local geometric regularity constraint of video frames.
Experimental results demonstrate a considerable performance
gain beyond existing Slepian-Wolf decoding algorithms in litera-
ture.

I. INTRODUCTION

Distributed Video Coding (DVC) acts as a new video coding

paradigm motivated by the requirements of recent emerging

applications, e.g. mobile camera phone and wireless visual

sensor networks, which desire low encoding complexity due

to the battery life constraint [1]. To improve the rate-distortion

(RD) performance, a variety of approaches have been devel-

oped, such as constructing more accurate side information and

adopting decorrelation transform [1]. In this paper, a novel

Slepian-Wolf (SW) decoding algorithm for DVC applications

is introduced by exploiting the spatial regularity constraint

with anisotropic Markov random field (MRF) modeling.

Practical DVC schemes are generally composed of a

quanitzer and an SW codec. Although SW codec schemes

realized by probabilistic channel decoding achieve a very

close performance to the theoretical lower bound of encoding

rate for random binary sources [2], there is still a big gap

between DVC and the state-of-the-art predictive video coding

schemes, e.g., H.264/AVC [1]. In existing SW coding schemes,

the correlation between source and side-information is mod-

eled by a statistical i.i.d. model, e.g., Laplacian distribution,

which measures only the conditional probability distribution

of source given corresponding side-information. However,

more sophisticated spatial regularity correlation exists between

neighboring pixels in video frames.

Although de-correlation transform has been introduced into

DVC schemes to eliminate the spatial redundancy of video

frames [1], it only exploits spatial correlation inside the

transform window and introduces excessive computation to the
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encoder. To exploit the spatial correlation while maintaining

the low encoding complexity, Zhang et.al. have introduced

an algorithm to exploit spatial smoothness constraint with

isotropic Markov modeling [3].

In this paper, a novel SW decoding algorithm is proposed

to exploit not only the statistical correlation between side-

information and source but also the local geometric regularity

constraint of video frames with anisotropic MRF modeling,

instead of the isotropic MRF model in [3]. The anisotropic

MRF model consists of two terms: a data term measuring

the deviation of the MRF solution to the initial estimate

from conventional SW probabilistic decoding, and a geometric
regularity (GR) term enforcing the anisotropic local structure

regularity constraint of natural video frames. By iteratively

performing conventional SW decoding and MRF optimization,

the global bit-wise constraint from the SW encoding and

the local geometric regularity constraint of video frames can

be both exploited in the decoding process. The advantages

of this novel decoding algorithm involve two aspects: First,

the low encoding complexity virtue of pixel-domain DVC

scheme is preserved since the encoding process is unaltered.

Second, DVC schemes with the proposed algorithm are more

flexible because better RD performance can be achieved by

introducing more sophisticated geometric regularity models

without changing the encoder.

The rest of this paper is organized as follows. Section II

presents the DVC architecture with the proposed SW decoding

algorithm. Formulation and implementation details are provid-

ed in Section III and Section IV, respectively. Experimental

results are shown in Section V, and section VI concludes this

paper.

II. DVC ARCHITECTURE WITH THE PROPOSED

SLEPIAN-WOLF DECODING ALGORITHM

The architecture of the DVC scheme with the proposed SW

decoding algorithm is shown in Fig. 1, where the encoding

process is identical to conventional pixel-domain DVC (PD-

DVC) schemes. A subset of frames, termed as “Key frames”,

are encoded and decoded using conventional predictive encod-

ing schemes, e.g. H.264/AVC, and serve as reference frames

for DVC decoding. The rest frames, called “WZ frames”, are

fed into the Wyner-Ziv(WZ) encoder. Pixels in a WZ frame

are uniformly quantized into M bits, and all these bits are

grouped to form M bit-planes according to their significance.

Each bit-plane is fed into the SW encoder to generate WZ
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Fig. 1. Pixel domain DVC scheme with the proposed SW decoding algorithm.

bit-stream. The LDPCA approach [2] is used as conventional

SW codec in this paper.

At the decoder side, side-information Yn is firstly generated

by bi-directional motion compensation with previously decod-

ed Key frames [4]. Statistical correlation between the generat-

ed side-information and current WZ frame is then modeled to

compute the log-likelihood ratio (LLR) of each bit in module

“Compute LLR”. The derived LLR will be fed into the SW

decoder together with received WZ bit-stream to recover the

original bit-plane. The decoder would request additional bits

from the encoder’s buffer through feedback channel (FBC)

until successful decoding. Correctly decoded bit-planes are

combined to determine the quantization bin [BL, BU ] of each

pixel in the WZ frame. Finally, the “Recon.” module would

produce a best estimate of the original pixel value, based on the

derived quantization bin and side-information, as the output of

the DVC decoder.

In the proposed SW decoding algorithm, in addition to the

LLR information, spatial geometric regularity constraint of the

WZ frames is also exploited by an anisotropic MRF model

in the “MRF modeling” module. The geometric regularity

constraint is represented by the gradients in different directions

for each pixel obtained in module “GR modeling”. With MRF

optimization, the LLR information from LDPCA decoding

is refined and fed back to the LDPCA decoder for next

iteration of decoding. In fact, it could be noticed that the

proposed algorithm is applicable to all SW codec schemes

with probabilistic decoding.

III. PROBLEM FORMULATION

A. Motivation

In conventional SW coding, the source and side-information

are typically modeled as correlated i.i.d. random sources. Un-

der this model, the only constraint that can be exploited for SW

decoding is the statistical correlation between corresponding

source and side-information. Although the efficiency of this

model has been validated on correlated i.i.d. random sources

with capacity approaching performance [2], it is not suitable

for DVC applications where remarkable spatial regularity

presents between neighboring pixels in WZ frames. Therefore,

more sophisticated models are desired to exploit the spatial

geometric regularity constraint together with the statistical

correlation to reduce the required SW bit-rate.

B. The anisotropic MRF model

In this paper, the LLR information of each bit-plane is

modeled by a first-order 8-connected anisotropic MRF model.

Second and higher order cliques in the MRF are ignored

for simplicity. The underlying nodes consist of two types of

cliques: clique {li, l̃i} and cliques {li, lj}. Clique {li, l̃i} is

called data term, which uses energy function Ei(li) to measure

the deviation between MRF solution li and LLR l̃i from LDP-

CA decoding. Cliques {li, lj} are called geometric regularity
(GR) term, which enforces the spatial geometric regularity

consistency constraint with energy function Ei,j(li, lj), where

j ∈ N (i) indicates the index of direct neighbors of node i.
Accordingly, the energy function E(l) for the anisotropic MRF

model can be written as

E(l) =
∑
i

Ei(li) + λ
∑

{i,j}∈N
Ei,j(li, lj)

=
∑
i

|(li − l̃i)|+ λ
∑

{i,j}∈N
|li − g(h(lj) +∇i,j)| (1)

where parameter λ regularizes the relative ratio between the

data term and the GR term. ∇i,j is the target gradient between

neighboring pixel pair xi and xj , which measures the local

geometric regularity constraint of the WZ frame, l̃i is the

estimated LLR by LDPCA. Since the actual value of ∇i,j

is unavailable, it is approximated by ∇′
u(i),u(j), the gradient

between pixel xu(i) and xu(j) in the reference frame by

compensating relative motion u(·). Function h(lj) gets the

corresponding side-information ŷj of pixel xj that produces

LLR lj , while function g(ŷj) returns the LLR lj given ŷj . In

this means, given LLR lj of neighbor pixel xj and the gradient

∇i,j between pixel xi and xj , the LLR for pixel xi can be

approximated by g(h(lj) +∇i,j).

IV. IMPLEMENTATION DETAILS

In the anisotropic MRF modeling, there are several items

worth addressing: optimization algorithm for the anisotropic

MRF problem, and function h(·) and g(·) to convert values

between the pixel and the LLR domain.

A. Belief Propagation

In LDPCA decoding process, belief propagation (BP) algo-

rithm is used to recover each bit-plane with the received SW

bit-rate by continuously propagating messages between neigh-

boring nodes, as shown in Fig. 2. The message propagation

progress is realized with the following update equation

mlf (i → t) = l̂i +
∑

k∈N(i)\t
mfl(k → i) (2)

mfl(t → i) = ln
1 +

∏
k∈N(t)\i tanh(mlf (k → t)/2)

1−∏
k∈N(t)\i tanh(mlf (k → t)/2)

(3)

where mlf (i → t) and mfl(t → i) are message from variable

node li to check node ft and message from check node
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Fig. 2. LDPC factor graph and local message passing.
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Fig. 3. Factor graph of the anisotropic MRF model, and local message pass
in the network. Circles are variable nodes, gray squares are factor nodes.

ft to variable node li, N(i) \ t is the set of check nodes

incident to message node i excluding ft, N(t) \ i is the set

of message nodes incident to check node ft excluding li, and

function tanh(x) = ex+e−x

ex−e−x . At beginning of message passing,

mlf (i → t) is initialized as l̂j .

Since the anisotropic MRF optimization is also implemented

in the LLR domain, we modified the message passing equation

of LDPC decoding to adapt the MRF optimization problem

in LLR domain. The update formula for message passing

from factor nodes to variable nodes are same as that in eq.

(3). However, factor nodes in the anisotropic MRF model

considered in this paper have no more than two neighboring

variable nodes, as shown in Fig. 3. Therefore, the message

update function from check nodes to variable nodes can be

accordingly simplified as

mMRF
fl (t → i) = ln

1 + tanh(mlf (k → t)/2)

1− tanh(mlf (k → t)/2)
= mlf (k → t).

(4)

That is, a factor node just forward the received message to

its neighbors without processing. To model the anisotropic

property of the MRF model, mMRF
fl (t → i) is modified as

follow to take into account the anisotropic property of natural

images

mMRF
fl (t → i) = g(h(mlf (k → t)) +∇i,j), (5)

where function g(·) and h(·) are used to transit values between

the pixel and the LLR domain.

B. Transition function g(·) and h(·)
LLR is defined by l = ln( p(0|C)p(1|C) ) where p(b|C), b ∈ {0, 1},

is the conditional probability of bit b given constraint C.

Constraint C indicates available constraint at the decoder

side, including quantization bin [BL, BU − 1] determined

by previously decoded bit-planes and conditional probability

f(x|y) which represents the statistical correlation between

side-information y and source x. Generally, f(x|y) is modeled

by a discrete Laplacian distribution f(x|y) = α
2 e

−α|x−y|

[1] because both x and x̂ are integers. Therefore, p(0|C)
and p(1|C) can be obtained by summing f(x|y) over region

[BL, BM − 1] and [BM , BU − 1] respectively.

In what follows, we will derive the transition function

between LLR and side-information y for LLR l ≤ 0. For

l > 0, an intermediate estimate ỹ can be estimated by −l and

use BU − 1− ỹ +BL as the estimate of y. For l ≤ 0, p(0|C)
and p(1|C) can be expressed by

p(1|C) =
BU−1∑
x=BM

f(x|y) = α

2
eαyeα

e−αBU − e−αBM

1− eα
. (6)

p(0|C) =

BM−1∑
x=BL

f(x|y)

=
α

2

eα(BL−y) − 1 + eαeα(y−BM ) − eα

1− eα
. (7)

Let A = eαBL , B = 1 + eα, C = eαe−αBM , D =
eα(e−αBU − e−αBM ), Y = eαy , we have

l = g(y) = ln
p(0|C)
p(1|C) = ln

(
A/Y −B + CY

DY

)
, (8)

Let r = el and solve eq. 8, we have

ŷ = h(l) =
1

α
ln(Y ) =

1

α
ln

(
B +

√
B2 − 4(C − rD)A

2(C − rD)

)
.

(9)

With the derived function h(·) and g(·), the MRF optimiza-

tion can be realized with update equations (2) and (5).

C. Target gradient ∇i,j

Since target gradient ∇i,j is unavailable at the DVC decoder

side without accessing to the original WZ frame, we resort

to the temporal consistency property of video sequences to

approximate ∇i,j by gradient in adjacent frame after compen-

sating the relative motion. Motion field estimation algorithm



TABLE I

BIT-RATE SAVING OF THE PROPOSED ALGORITHM.

Bit- Decoding Test sequences
plane algorithms Bus Crew Football Foreman

B
P

1 LDPCA 14596.1 7222.5 32218.6 12526.9
The proposed 12141.4 6501.0 24791.4 10227.2
Bit saving(%) 16.82% 9.99% 23.05% 18.36%

B
P

2 LDPCA 29468.4 22781.5 25275.5 10946.9
The proposed 26331.4 20548.1 20032.2 9159.5
Bit saving(%) 10.65% 9.80% 20.74% 16.33%

B
P

3 LDPCA 41952.0 27647.0 60843.2 22217.7
The proposed 39796.6 24839.3 53858.5 18415.4
Bit saving(%) 5.14% 10.16% 11.48% 17.11%

B
P

4 LDPCA 62715.4 48731.1 91465.0 40859.2
The proposed 62861.4 44978.6 86420.7 37838.2
Bit saving(%) -0.23% 7.70% 5.51% 7.39%

[5] is used to estimate this relative motion. It should be noted

that although the derived motion field couldn’t produce better

side-information, it could avoid the block effect in the side-

information generated by block-based motion compensation,

and help to exploit the smoothness constraint and gradient

directions.

V. EXPERIMENTS

In experiments, four CIF format (352 × 288@15Hz) se-

quences are tested: Bus, Crew, Football and Foreman. The

video frame encoding structure is “I-WZ-I-WZ-I-...”, and the

side-information is generated by bidirectional motion compen-

sation [4] with searching range 16 and searching block size

8×8. LDPCA algorithm with block length 6336 and maximum

iteration 200 is used as SW codec in both the proposed and

conventional DVC schemes. In the proposed scheme, two BP

iterations are performed as MRF optimization after each 10

iterations of LDPCA decoding to impose spatial regularity

constraint to the LLR information.

Table I presents the average bit number required to en-

code different bit-planes. Results show that the proposed

SW decoding algorithm achieves significant bit-rate saving,

especially for sequences with relative simple spatial structures

and less side-information quality, e.g. “Football” and “Fore-

man” sequences, because simple spatial structure improves

the spatial correlation between neighboring nodes and lower

side-information quality induces less reliable LLR and induces

higher variance in the LLR from LDPCA iteration. In both

cases, the spatial geometric regularity constraint is very helpful

to constraint the LLR information and thus improves the

performance of the proposed SW decoding algorithm.

Figure 4 shows the rate-distortion performance of the pro-

posed algorithm compared with LDPCA decoding algorithm.

Results show that, the bit-rate saving is equivalent to about

0.5 ∼ 1dB performance gain compared to conventional

LDPCA decoding algorithm. Since the reconstruction quality

of WZ decoder is only related to the decoded bit-plane and

side-information quality, both schemes achieve identical recon-

struction quality with the same reconstruction algorithm. To

further improve the RD performance, MRF-based constraint
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Fig. 4. The rate-distortion performance of PD-DVC schemes with the
proposed Slepian-Wolf decoding algorithm.

can also be exploited in the reconstruction process to improve

the decoded WZ frame quality [6].

VI. CONCLUSIONS

In this paper, we proposed a novel SW decoding algorithm

for PD-DVC scheme by exploiting the spatial geometric

regularity constraint of WZ frames. The proposed algorithm

models the LLR of a bit-plane as an anisotropic MRF model

and solving the problem by belief propagation. Experiment

results show about 5% ∼ 23% bit-rate saving. Since the

proposed SW decoding algorithm is independent with side-

information generation and WZ-frame reconstruction process,

these techniques can be combined to further improve the

overall performance of DVC applications.
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