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Abstract

In this paper, we propose a sparse representation learning with adaptive regularized
dictionaries and develop a low bit-rate video coding scheme. In a reversed-complexity
manner, it select a subset of key frames to encode at original resolution, while the rest
are down-sampled and super-resolution reconstructed by a sparse super-resolution es-
timations using key frames as training set. Since primitive patches are of low dimen-
sionality and can be well learned from the primitive patches across different images,
video frame is divided into three layers: a primitive layer, a non-primitive coarse layer,
and a non-primitive smooth layer. The non-primitive layer is constructed as volumes to
keep consistent along the motion trajectory, which enables sparse representations over
a learned 3-D spatio-temporal dictionary. Correspondingly, the target is formulated
as an optimization problem by constructing a sparse representation of low-resolution
frame patches or volumes over adaptive regularized dictionaries: a set of 2-D sub-
dictionary pairs trained from 2-D primitive patches and a 3-D dictionary trained from
non-primitive volumes. In reconstruction, the lost high-frequency information of the
down-sampled frames can be synthesized from the sparse spatio-temporal representa-
tion over the adaptive regularized dictionaries. Experimental results validate the com-
pression efficiency of the proposed scheme versus the H.264/AVC in terms of both
objective and subjective comparison.

1 Introduction
Noticeably, increasing low-quality visual data from mobile phones, digital cameras and
mobile TV, stimulate a huge demand for video analysis and computer vision techniques. It
arises a big perspective whether more disruptive techniques can provide substantial gains.
An impressive observation for video coding is to establish a certain correlation between a
sampled low-resolution version and high-resolution contents [1][2]. For example, scalable
video coding maintains the spatial capability through down-sampling and inter-layer pre-
diction with up-sampling. However, the coding burden is dominated by a a rigid partition
between encoder (heavy) and decoder (light). It would constrain the ubiquitous multime-
dia access for increasingly mobile communication. Ever since, distributed video coding
(DVC) as a hopeful paradigm motivated by shifting the computationally intensive predic-
tion at the encoder to the decoder, accommodates the requirements of mobile camera phone
and wireless sensor networks [3]. Limited by the estimation of correlated side-information,
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practical DVC schemes often have a considerable performance loss compared with tradi-
tional H.264/AVC. Along the insight, it stimulates us to further investigate sparse adaptive
inverse reconstruction with advanced regularity in a DVC manner.

Revisiting the traditional video coding schemes, e.g. H.264/AVC and the ongoing
High-Efficiency Video Coding (HEVC), those focus on exploring redundancy among pix-
els through intra and inter prediction [4]. As a matter of fact, more prediction methods, e.g.
inpainting-based prediction [5], and texture prediction [6], have been noticed to achieve a
better performance. It infers a promising potential to synthesize and hallucinate missing
texture with good perceptual quality. By now, the attempts to restore the missing infor-
mation have involved in various assistant side information, e.g. edge [7], and assistant
parameters [8]. To maintain a temporal consistency of video, a space-time completion has
recently been referred in a global optimization sense [9].

Naturally, more attention has been drawn to the possibility of video reconstruction with
state-of-the-art super-resolution approaches where a correlation between a sparsely sam-
pled low-resolution version and high-resolution contents could be estimated in a nonpara-
metric sense. Recently, learning-base approaches have achieved the best reconstruction
results in super-resolution task by inferring the lost high-frequency information from a
learned co-occurrence prior knowledge [10]. As [11], an example-based learning strat-
egy was proposed where the low-resolution to high-resolution prediction is learned via a
Markov Random Field (MRF) solved by belief propagation. Sun et al. [12] extended it
by using the Primal Sketch priors to enhance blurred edges, ridges and corners. To over-
come the deficiency of synthesizing each high-resolution patch from only one neighbor in
the training set, [10] considered to recover the sparse representation coefficients of each
low-resolution patch base on a dictionary composed of low-resolution patches, then the
high-resolution patch is reconstructed using the recovered coefficients in terms of the cor-
responding high-resolution dictionary. This method adaptively selects the most relevant
patches in the dictionary which leads to a superior performance. However, its dictionary is
learned from randomly chosen patches of arbitrary training images, which was only effi-
cient for input images of similar statistical features.

This paper proposes a low bit-rate video coding scheme where sparse super-resolution
estimations over dictionaries provide effective nonparametric approaches to inverse prob-
lems. A subset of key frames in a video sequence are encoded at high-resolution and serve
as a set of training data at the decoder side, while the remaining frames are coded at low-
resolution from down-sampling. It is recognized that the primitive patches of an image are
of low dimensionality and can be well learned from the primitive patches across different
images [12]. Specifically, a video frame is divided into three layers: a primitive layer, a
non-primitive coarse layer, and a non-primitive smooth layer. Considering that image prim-
itives may vary significantly across different frames or different patches in a single frame,
we propose to learn various sets of low-resolution / high-resolution subdictionary pairs
from the primitive patches of the key frames. It is worth mentioning that non-primitive
volumes are consistent along the motion trajectory, have little structure information, and
have more sparse representations over a learned 3-D spatio-temporal dictionary. It is ful-
filled by hierarchical bi-directional motion estimation and adaptive overlapped block mo-
tion compensation. Correspondingly, the target is formulated as an optimization problem
by constructing a sparse representation of low-resolution frame patches or volumes over
adaptive regularized dictionaries: a set of 2-D subdictionary pairs trained from 2-D prim-
itive patches and a 3-D dictionary trained from non-primitive volumes. In reconstruction,
the lost high-frequency information of the non-key frames can be synthesized from the
sparse spatio-temporal representation over the adaptive regularized dictionaries. The final
high-resolution frames can be acquired by combining all the high-frequency frames and
low-frequency frames. Compared to H.264/AVC and other super-resolution based schemes,
experimental results validate that the proposed algorithm not only ensure the visual quality,
but also be competitive in rate-distortion performance.
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2 Super-resolution based Video Coding Scheme
2.1 Incorporating the Sparse-land Prior
The observed low-resolution (LR) frame Zl is a blurred and down-sampled version of the
high-resolution (HR) frame Xh: Zl = S HXh. Here, H represents a blurring filter, and S the
down-sampling operator.

Inspired by the basic assumption that each image patch can be represented as a linear
combination of a small subset of patches (atoms) from a fixed dictionary [10], the super-
resolution task can be described as follows:

fImage({αi j}i, j, Xh) = arg min
Xh,{αi j}

{λ∥S HXh − Zl∥22 +
∑

i, j

µi j∥αi j∥0 +
∑

i, j

∥Dhαi j − Ri jXh∥22}. (1)

where Ri, j is a projection matrix that selects the (i, j)th patch from Xh, and αi, j is the sparse
coefficient of the patch.

In order to avoid the complexities caused by the different resolutions between Zl and
Xh, we assume hereafter that Zl is scaled-up by an interpolation operator Q (e.g. bicubic),
returning to the size of Xh. The scaled-up image is denoted by ZLF:

ZLF = QZl = QS HXh = LallXh (2)

ZLF is the low-frequency (LF) part of Xh. The goal is to recover X̂h from ZLF .
The algorithm we proposed operates on patches extracted from ZLF , aiming to estimate

the corresponding patch from Xh. Let Dh ∈ Rn×K be an overcomplete dictionary of K bases
(K > n), and suppose xi, j = Ri, jXh be an image patch which can be sparsely represented as
xi, j = Dhαi, j, where ∥αi, j∥0 ≪ n.

Consider the corresponding LR patch zi, j = Ri, jZLF = Ri, jLallXh extracted from ZLF .
Since the operator Lall = QS H transforms the complete HR image Xh to the LR one ZLF ,
it can be assumed that zi, j = Lxi, j + v̂i, j, where L is a local operator being a portion of Lall,
and v̂i, j is the additive noise. Thus we have:

∥zi, j − LDhαi, j∥22 ≤ ϵ. (3)

The key observation from the above derivations is that the LR patch zi, j can be rep-
resented by the same sparse vector αi, j over the effective dictionary Dl = LDh, within a
controlled error ϵ. This implies that if we recover the sparse representation coefficients
of each LR patch base on a LR dictionary, then the HR patch is reconstructed using the
recovered coefficients in terms of the corresponding HR dictionary.

Different from [10] which use sparse representation prior on arbitrary image patches,
we take 2-D sparse representation on patches located only in image primitive layer. How-
ever, a prelearned universal dictionary is neither optimal nor efficient in sparsely coding
all of the possible image structures. Hence, we consider to learn various sets of LR / HR
subdictionary pairs.

2.2 Overview of the super-resolution reconstruction method
The proposed video coding scheme can be described as: Given a HR video sequence Fh,
we decompose it into: a selected HR key frames (KFs) Xh and the down-sampled LR non-
key frames (NKFs) Zl; the KFs and NKFs are both encoded and decoded by a standardized
H.264/AVC codec as X̂h and Ẑl; a HR version of Ẑl (denoted by Ẑh) is recovered from X̂h
after the learning phase and synthesis phase.
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Figure 1: The learning scheme of the proposed video coding framework

2.2.1 Learning phase

Different from existing learning-based super-resolution methods, we generate two kinds of
dictionaries: a set of 2-D subdictionary pairs and a 3-D dictionary pair, as shown in Fig. 1.
Considering these, we first get the down-sampled version X̂L

l of the decoded KFs X̂L
h . X̂L

LF
are interpolated from X̂L

l , which contain the LF component of X̂L
h . The high-frequency (HF)

part are generated from the difference of X̂L
h and X̂L

LF . X̂L
LF are classified into a primitive

layer, a non-primitive coarse layer and a non-primitive smooth layer. The training sets of
the 2-D subdictionaries are acquired from frame patches located in the primitive layer of
the HF and their corresponding LF frames; the patches located in the non-primitive coarse
layer are combined with the most matched patches in the neighbor training frames to form
3-D volumes, these volumes would be used to learn the 3-D dictionary pair.

2.2.2 Synthesis phase

In the synthesis phase, the input LR NKFs Ẑl would be synthesized to generate the final
HR frames Ẑh. Initially, Ẑl are interpolated into ẐLF with the same size as X̂h. Once se-
lecting the up-sampled frames denoted as ẐLFi , their luminance component ẐL

LFi
are also

classified into three layers. For a LF patch in the primitive layer of ẐL
LFi

, we synthesize its
corresponding HF patch with the aid of the optimal 2-D subdictionary pair {T i

l ,T
i
h}. The

LF volumes located in the non-primitive coarse layer are extracted from ẐL
LFi

along the mo-
tion trajectory, and the corresponding HF volumes can be inferred from the 3-D dictionary
pair {TL,TH}. When obtained all the HF patches and volumes, we construct the primitive
and non-primitive HF frames independently. Hence, the super-resolution HR frames ẐL

hi

can be obtained by adding HF frames to the corresponding LF ones. Finally, Ẑhi will be
generated by combining the obtained HR luminance frames with the interpolated chroma
information.
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3 Super-resolution via Adaptive Sparse Representation
3.1 Image Primitives based Segmentation Method
Image primitive mainly consists of edge segments, bars, and terminations, and can reflect
the brightness changes of the image [13]. As [12], we adopt a set of Gaussian derivative
filters to extract by orientation energy:

OEσ,θ = (I ∗ f odd
σ,θ )2 + (I ∗ f even

σ,θ )2 (4)

where f odd
σ,θ and f even

σ,θ are the first and second Gaussian derivative filters at scale σ and
orientation θ.

Once the primitives frame is obtained, the primitive layer is labeled by overlapping
frame patches along the primitives sketch. The remaining non-primitive layer is filtered
by a high-pass filter. If a block contains sufficient HF energy, it is labeled as a part of
non-primitive coarse layer, then the non-primitive coarse layer is distinguished from the
non-primitive smooth layer.

3.2 Dictionary learning
1) Learning 2-D Subdictionaries on Primitive Frame Patches

Suppose that M primitive patch pairs Fl = [ f 1
l , f 2

l , ..., f M
l ] and Fh = [ f 1

h , f 2
h , ..., f M

h ]
are collected from the primitive layer of X̂L

LF and X̂L
HF . We aim to learn K subdictionary

pairs {T k
l ,T

k
h}k from {Fl, Fh}. To this end, we cluster the dataset {Fl, Fh} into K clusters,

and learn a subdictionary pair from each of the K clusters. Apparently, the K clusters are
expected to represent the distinctive patterns in {Fl, Fh}. Considering that image primitive
mainly consists of edges, corners, and terminations of different orientations and scales,
this inspires us to cluster {Fl, Fh} into K clusters {Fk

l , F
k
h}k, k = 1, 2, ...,K according to the

orientations (16 orientations) and scales (3 scales) of primitive patches. That means the
primitive patches with the same orientation and scale would be classified into the same
cluster.

Now the remaining problem is how to learn a subdictionary pair {T k
l ,T

k
h} from {Fk

l , F
k
h}.

The design of {T k
l ,T

k
h} can be intuitively formulated by the following function:

(Tk,Φk) = arg min
Tk,Φk
{∥Fk − TkΦk∥22 + λ∥|Φk∥1} (5)

where Fk = [Fk
l , F

k
h]T , Tk = [T k

l ,T
k
h]T . Eq. (5) could be iteratively optimized by alternat-

ingly optimizing Φk and Tk when the other is fixed.
However, the K l2 − l1 joint minimization in Eq. (5) requires much computational cost,

so we simply use Fk as the final subdictionary Tk directly based on the following consid-
erations. Firstly, Fk is a subset of {Fl, Fh} after clustering, so the computational cost of the
sparse coding of a given primitive patch over Fk is small enough. Furthermore, the intrin-
sic dimensionality of image primitives is very low, thus it is possible to represent all the
image primitives well by a small number of primitive examples from the highly correlated
training images [13].

2) Learning 3-D Dictionary on Non-primitive Volumes along Motion Trajectory
The non-primitive volumes along the motion trajectory are consistent in the temporal

dimension, they are supposed to have more sparse representation structures over a learned
3-D dictionary. Hence, the spatio-temporal consistency can be better obtained by taking a
3-D spatio-temporal dictionary into consideration [14].

According to Eq. (1), we extend it to handle video sequences by considering the tem-
poral dimension. Let Xh and Zl represent the original HR and down-sampled LR videos,
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respectively, and an index t in the range [1, T] is added to account for the time dimension,
thus we have:

f All
Video({αi jt}i jt, Xh,Dh) = arg min

Xh,{αi jt}
{λ∥S HXh − Zl∥22 +

∑
i, j

T∑
t=1

µi jt∥αi jt∥0

+
∑

i, j

T∑
t=1

∥Dhαi jt − Ri jtXh∥22}. (6)

The term Ri jtX extracts a patch from Xh in time t and location [i, j] and this patch may be a
3-D volume.

In Eq. (6), all the patches in the sequence are used to train a single dictionary which is
then applied to the entire sequence. However, training a single dictionary is problematic:
the scene in a video is expected to change rapidly over time; the dimension of the dictionary
grows rapidly with the increase of time space.

An alternative approach is to define a locally temporal penalty term. Since the KFs and
NKFs are extremely correlated, we learn a 3-D dictionary for a reference frame in the KFs
and decompose all the neighbor NKFs in the same GOP with such a dictionary. Hence,
Eq. (6) can be rewritten for a reference KF individually as:

f r
Video({αi j}i j, Xr

h,D
r
h) = arg min

Xr
h,{αi j}
{λ∥S HXr

h − Zr
l ∥22 +

∑
i, j

µi j∥αi j∥0

+
∑

i, j

∥Dr
hαi j − Ri jrXh∥22}. (7)

where Xr
h is a reference frame in the KFs of a GOP. The learnt dictionary of the previ-

ous GOP is propagated to the next GOP as the initial dictionary, reducing the number of
required training iterations.

In order to get a more sparse representation of the sequence and considering the motion
influence, the volume is acquired along the motion trajectory from block-matching based
motion estimation, thus we have X̃h instead of Xh in Eq. (7), where X̃h is the motion com-
pensated version of Xh according to a reference frame. Ri jrX̃h means to extract a volume
from Xh along the motion trajectory.

For a reference frame {X̂L
LF}RF in X̂L

LF , we use a motion-compensated frame interpo-
lation (MCFI) approach to predict the estimated reference frame {X̂L

LF}R̃F according to its
preceding frame {X̂L

LF}PF and following frame {X̂L
LF}FF . The LF volumes are extracted by

concatenating the patches located in the non-primitive coarse layer of {X̂L
LF}RF and the cor-

responding patches from {X̂L
LF}R̃F , the HF cubic volumes are generated similarly. Next

section will address our MCFI operation.
Once collecting all the LF and HF cubic volumes, we get the training sets {FL, FH} of

the 3-D dictionary pair {TL,TH}. Since {FL, FH} are constructed by volumes in the non-
primitive layer which have little structure information, we would learn a universal dictio-
nary pair from them. Let FL = [ f 1

l f 2
l · · · f p

l ] be an n × P matrix of P training sets of
length n pixels each, the objective of the K-SVD algorithm [15] is to train an overcomplete
dictionary TL of size n × K ( P ≫ K and K > n ) for a given sparsity level S ,

minTL,Θ∥FL − TLΘ∥2F s.t. ∀i, ∥θi∥0 ≤ S (8)

where Θ = [θ1 θ2 · · · θp], and θi is the sparse vector of coefficients representing the ith
volume in terms of the columns of the dictionary TL = [t1

l t2
l · · · tK

l ]. Using the dictionary
learned from the previous GOP as initial dictionary, the K-SVD algorithm progressively
improves it in order to optimize the expression.
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After the K-SVD dictionary training procedure, we get the LF 3-D dictionary TL and
the corresponding sparse representation coefficients matrix Θ, the next step is to construct
the HF 3-D dictionary TH. Recall from Section 2.1, the target is to recover the HF training
sets FH = [ f 1

h f 2
h · · · f P

h ] by approximating them as FH ≈ THΘ. Thus, the dictionary is
defined as the one to minimize the mean approximation error, i.e.,

TH = minTH∥FH − THΘ∥2F . (9)

The solution is given by the following Pseudo-Inverse expression (given that Θ has full row
rank): TH = FHΘ

+ = FHΘ
T (ΘΘT )−1.

The two pairs of corresponding dictionaries {T i
l ,T

i
h}i and {TL, TH} conclude the training

phase of the super-resolution algorithm, which starts with the decoded HR key frames X̂h.

3.3 Motion-Compensated Frame Interpolation Method
Let fn−1, fn and fn+1 denote the preceding frame, the intermediate reference frame, and the
following frame, respectively. Similar to [16], we utilizes hierarchical bi-directional mo-
tion estimation (ME) to find motion vectors (MVs) and adaptive overlapped block motion
compensation (AOBMC) to reduce blocking artifacts.

3.3.1 Hierarchical Motion Estimation

In block matching based ME, we compute the forward MV for a M × M block Bi, j by
minimizing the SAD values: S AD(Bi, j, v) =

∑
s∈Bi, j
| fn(s) − fn−1(s + v)|.

When the forward MVs for all the M × M blocks are selected, we allocate each MV to
its subordinate L × L sub-blocks. A local ME is performed with a smaller search window
for each L × L sub-block around the selected MV. In this way, we can get the forward and
backward MVs {ν} for all the L × L sub-blocks.

3.3.2 Bi-Directional OBMC Using Adaptive Window

OBMC [18] aims to reduce the blocking artifacts from conventional MC method, where
the pixel fn(s) in a L × L block S i, j is predicted as:

fn(s) =
1∑

p=−1

1∑
q=−1

wp,q(s) fn−1(s + νi+p, j+q). (10)

where νi+p, j+q denotes the MV of block S i+p, j+q and wp,q(s) is the corresponding weighting
coefficient which satisfies

∑1
p=−1
∑1

q=−1 wp,q(s) = 1.
However, if adjacent blocks have substantially different motions, OBMC can yield blur-

ring or over-smoothing artifacts since the weighting coefficients are determined only by the
relative distances of the pixels within the block. To overcome this problem, the AOBMC
method [17] is adopted to adaptively control the weighting coefficients in terms of the relia-
bility of the neighboring MVs. The reliability of the neighboring MV νi+p, j+q for predicting
the current block S i, j is defined as:

ΦS i, j(νi+p, j+q) =
S AD(S i, j, νi, j)

S AD(S i, j, νi+p, j+q)
. (11)

As ΦS i, j(νi+p, j+q) gets more closer to 1, νi+p, j+q are more reliably to compensate the
current block S i, j. The weighting coefficients wp,q(s) in Eq. (10) are modified as:

ŵp,q(s) =
ΦS i, j(νi+p, j+q)wp,q(s)∑1

s=−1
∑1

t=−1ΦS i, j(νi+s, j+t)ws,t(s)
(12)
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When substituting ŵp,q(s) in Eq. (10), we get the motion-compensated pixels of fn using
the forward MVs from fn−1. Likewise, the backward motion-compensated values of fn is
obtained from the backward MVs of fn+1. Among the two directional MVs of each block
S i, j, the one for a smaller S AD is chosen as the optimum for the block.
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Figure 2: The rate-distortion performance comparison of the test sequences f oreman ci f ,
highway ci f , and akiyo ci f .

3.4 Synthesis Phase
The overview of the synthesis phase is described in Section 2.2.2. If a LF patch fl lo-
cated in the primitive layer of ẐL

LFi
, we get its feature value according to its orientation and

scale. The subdictionary pair {T i
l ,T

i
h} which is composed of primitive patches of the same

orientation and scale as fl is selected as the optimal one.
To find the sparsest representation of fl, it can be formulated as:

min ∥α∥0 s.t. ∥T i
lα − fl∥

2
2 ≤ ϵ. (13)

where T i
l ∈ Rm×k with m ≪ k, and fl ∈ Rm. This NP-hard problem can be solved by solving

a l1-norm minimization problem instead, as long as the α are sufficient sparse [19]:

min λ∥α∥1 + ∥T i
lα − fl∥

2
2. (14)

where λ is a trade-off parameter between sparsity and fidelity. This is a non-linear
convex optimization problem and can be solved efficiently by various methods [20].

When α is obtained, the corresponding HR primitive patch fh can be attained by the
linear combination of columns in T i

h using α as the coefficients: fh = T i
hα.

If a LF patch located in the non-primitive coarse layer of a reference frame in ẐL
LFi

,
we get the corresponding patch from the estimated reference frame acquired by using the
aforementioned MCFI algorithm. These two relevant LF patches are concatenated as a
LF volume. The procedure of synthesizing the corresponding HF volume is similar to
synthesizing a HF primitive patch, except the 3-D dictionary pair {TL,TH} and volumes
instead of 2-D subdictionary pair {T i

l ,T
i
h} and primitive patches.

4 Experimental Results
4.1 Implementation
In the experiments, all the test sequences are of the YUV 4:2:0 format, 30HZ frame rate,
and a GOP size of 16 frames. Given an original video sequence, we select three successive
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Table 1: The coding performance of the proposed method compared to standardized
H.264/AVC in PSNR, SSIM and DMOS

(a)
PSNR and SSIM values of Foreman CIF

Metrics bit-rate (kbps) 167.5 201.5 318.5 358.7

PSNR (dB)
H.264 29.290 30.464 32.629 33.748
Yang’s 30.276 30.632 31.874 32.428

proposed 31.585 32.245 33.242 33.816

SSIM
H.264 0.824 0.846 0.882 0.897
Yang’s 0.843 0.831 0.876 0.881

proposed 0.868 0.879 0.894 0.903
PSNR and SSIM values of Hall CIF

Metrics bit-rate (kbps) 168.3 241.7 302.0 366.0

PSNR (dB)
H.264 30.233 33.401 34.600 35.690
Yang’s 31.221 33.038 33.621 33.736

proposed 32.500 34.180 34.719 34.937

SSIM
H.264 0.890 0.926 0.935 0.942
Yang’s 0.908 0.923 0.928 0.931

proposed 0.917 0.930 0.935 0.938
PSNR and SSIM values of Highway CIF

Metrics bit-rate (kbps) 126.6 154.6 199.5 297.8

PSNR (dB)
H.264 32.419 34.272 35.189 36.491
Yang’s 33.501 34.076 34.421 34.679

proposed 35.329 35.672 36.066 36.677

SSIM
H.264 0.877 0.896 0.906 0.917
Yang’s 0.883 0.897 0.902 0.911

proposed 0.912 0.914 0.919 0.925

(b)
PSNR and SSIM values of Akiyo CIF

Metrics bit-rate (kbps) 130.1 204.5 244.7 342.4

PSNR (dB)
H.264 32.748 37.096 38.308 40.658
Yang’s 35.621 37.392 38.467 39.613

proposed 36.997 39.145 39.820 41.114

SSIM
H.264 0.910 0.953 0.960 0.971
Yang’s 0.931 0.961 0.963 0.968

proposed 0.954 0.967 0.970 0.976
PSNR and SSIM values of News CIF

Metrics bit-rate (kbps) 197.0 248.8 295.5 356.2

PSNR (dB)
H.264 31.385 33.364 34.768 36.036
Yang’s 32.515 33.413 34.217 34.732

proposed 33.537 35.019 35.466 36.526

SSIM
H.264 0.902 0.928 0.942 0.951
Yang’s 0.921 0.932 0.938 0.944

proposed 0.933 0.946 0.949 0.957
PSNR and SSIM values of Waterfall CIF

Metrics bit-rate (kbps) 210.0 302.5 405.2 521.2

PSNR (dB)
H.264 28.136 30.139 31.867 32.700
Yang’s 28.282 29.321 30.232 31.071

proposed 30.089 31.462 32.409 33.383

SSIM
H.264 0.651 0.761 0.835 0.861
Yang’s 0.713 0.724 0.796 0.831

proposed 0.765 0.827 0.861 0.891

Table 2: The BD-PSNR and BD-Bitrate comparison of the proposed method versus
H.264/AVC

Sequences Foreman Hall Highway Akiyo News Waterfall
BD-PSNR (dB) 1.302 0.722 1.112 2.083 1.302 1.135
BD-Bitrate (%) -24.003 -0.505 -30.708 -29.097 -21.186 -20.124

frames as the KFs in a GOP and down-sample other frames in a ratio 2 as the NKFs. An
the decoder, the KFs are used to learn the 2-D dictionary and 3-D dictionary pairs. We keep
the overall bit-rate of the proposed approach consist with H.264/AVC. The visual quality,
e.g. Structural Similarity Index Metrics (SSIM), and the objective metrics, e.g. PSNR,
rate-distortion, and BD-Bitrate are evaluated.

4.2 The Validated Results
Fig. 2 shows the rate-distortion performance of the proposed scheme versus H.264/AVC.
In order to validate the proposed scheme superior to the state-of-the-art learning-based
super-resolution method [10], we provide the corresponding coding performance. More
comprehensive comparisons are shown in Table 1 for six test sequences at different bit-
rates. It can be seen that the proposed video compression framework can achieve significant
gain in PSNR and better SSIM values at the same bit-rate versus H.264/AVC, and the
coding gain is more obvious in low bit-rate region.

To evaluate the coding efficiency of the proposed video coding scheme more pre-
cisely, the BD-PSNR and BD-Bitrate [21] metrics are evaluated based on the rate-distortion
curve fitting. Table 2 provides the comparison results between the proposed scheme and
H.264/AVC.

5 Conclusion
In this paper, we proposed a sparse spatio-temporal representation with adaptive regular-
ized dictionaries for super-resolution based video coding scheme. The proposed SR method
is used to up-sample the NKFs using the KFs as the training images to build dictionar-
ies. Since image primitives have low dimensionality which means they have more sparse
representation over dictionary learned from primitive image patches, we take 2-D sparse
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representation prior on primitive patches of NKFs. The non-primitive volumes along the
motion trajectory are consistent in the temporal dimension, they are supposed to have more
sparse representations over a learned 3-D dictionary. With the above considerations, we
take 2-D sparse representation prior on primitive patches and 3-D sparse representation
prior on non-primitive volumes. Experimental results validate the compression efficiency
and restoration performance of the proposed scheme versus the H.264/AVC in terms of
both objective and subjective comparison, especially in low bit-rate regions.
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