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Scalable Video Compression Framework With
Adaptive Orientational Multiresolution Transform

and Nonuniform Directional Filterbank Design
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Abstract—Although wavelet-based scalable video coding be-
comes the state-of-the-art video compression engine for its adapt-
ability to heterogeneous networks and clients, a large number of
attempts have been made to integrate local directionality onto
discrete wavelet transform to explore the intrinsic geometrical
structures. Taking into consideration that the contours and
textures scattered in different scales change their directional
resolutions as their curvatures change, we investigate adaptive
directional resolutions along scales to achieve the dual (scale
and orientation) multiresolution transform. This paper proposes
nonuniform directional frequency decompositions for video rep-
resentation and approximation, and exploits the nonuniformity
of orientation multiresolution distribution and designs nonuni-
form directional filter banks to make the geometrical transform
more sparse and efficient. The nonuniform directional frequency
decomposition under arbitrary scales is fulfilled by a non-
symmetric binary tree (NSBT) topology structure with nonuni-
form directional filterbank design. In turn, the proposed scalable
video coding framework, called DMSVC, is enriched with the
dual multiresolution transform. Each temporal subband through
motion compensated temporal filtering is further decomposed
into multiscale subbands, and the highpass wavelet subspaces
are divided into an arbitrary number of directional subspaces
in alignment with the orientation distribution via phase congru-
ency to establish NSBT. The paraunitary perfect reconstruction
condition is provided through a polyphase identical form of filter
bank. Comparing with the isolated wavelet basis, our transform
provides a greater correlated set of localized and anisotropic basis
functions. The spatio-temporal subband coefficients are coded
by a 3-D ESCOT entropy coding algorithm which is adopted to
match the structure of NSBT. Experimental results show that the
reconstructed video frames DMSVC in the proposed DMSVC
scheme have better visual quality than existing scalable video
coding schemes. It could produce higher compression ratio on
video sequences full of directional edges and textures.
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I. Introduction

SCALABLE video coding (SVC) technique is now tak-
ing place of the traditional single operating point video

coding schemes for its adaptability to the transmission on
heterogeneous networks and clients. A typical SVC encoder
provides a multi-dimension layer-dependent graph structure
with continuous and discrete achievable rate regions. Each
layer, in conjunction with all layers it depends on, forms
one representation of the video signal at a certain spatio-
temporal resolution and quality level. In the past years, several
typical schemes have been proposed to MPEG for standardiza-
tion, especially the H.264 scalable extension [1] and Barbell-
lifting wavelet-based SVC [2]. In particular, wavelet-based
approaches can produce high coding efficiency because of
the inherent characteristics of multiresolution spatio-temporal
representation and efficient approximation of 1-D piecewise
smooth signals. Traditionally, a prevailing 2-D discrete wavelet
transform (DWT) is implemented by the tensor product of
separable 1-D filters in the vertical direction and horizontal
direction so that the basis of wavelet spaces only provides
limited directions such as LH, HL, and HH, which can only
capture the scan-lines or the 1-D discontinuity on edge points,
but cannot see the smoothness along the curves such as con-
tours and textures. The nonlinear approximation (NLA) error
decay of the best M wavelet coefficients for images containing
2-D discontinuities is O(M−1) [3], which is due to the fact
that the 2-D discontinuities result in many large coefficients
in high frequency subbands. It turns out that DWT is not the
most optimal solution for video coding and compression and
there is quite plenty of room for improvement. Moreover, since
the directional frequency distribution in natural 2-D signals
is nonuniform, we need to find an optimal partition scheme
which can catch such a nonuniform distribution dynamically
in an adaptive manner. In order to represent the even amount
of information with the least bits, a more efficient spatial
decomposition should be investigated to represent the video
signal, while preserving the characteristic of multiresolution
so as to be compatible with the existing SVC framework.

Attempts have been made to integrate local directionality
into lifting-based DWT. For instance, adaptive directional
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lifting [4] and direction-adaptive DWT [5] achieve directional
lifting with adaptation to image direction features in local
windows, and they outperform the traditional DWT in both
subjective and objective quality for image coding. However,
their division tree occupies a considerable portion in the bit-
stream so that they reveal an inferior performance and lose the
scalability property on very low bit rates. Multiscale geometric
analysis provides another category of image decompositions
which focuses on the directional information on frequency
domain, such as curvelet [6] and contourlet [7]. Curvelet is
implemented on the continuous space and polar coordinates,
such that it is really a challenge to convert it into the discrete
world. Contourlet utilizes the local dependency of wavelet
coefficients across scales and directions so that it employs a
scale multiresolution Laplacian transform to split L2(R2) into
self-nested complete subspaces and then employs a directional
filter bank (DFB) on each subspace to combine all point dis-
continuities on the same direction into one coefficient. It also
inherits the anisotropism of curvelets with NLA error decay
rate of O(M−2), but its main disadvantage lies on the 4/3
redundancy introduced by Laplacian pyramid, which renders
it inapplicable to video coding directly. Later, a group of
nonredundant multiscale geometric decompositions including
CRISP-contourlets [8] and wavelet-based contourlets (WBCT)
[9] were proposed to eliminate the transform redundancy by
employing nonredundant multiresolution filter banks, but the
approaches ignore the nonuniformity of orientation distribu-
tion of image spectrum and simply divide it into uniform
directional subbands. They decompose an image by uniform
directional filter banks (UDFB), which are not able to achieve
more sparse representation adaptively and optimally. By only
applying DFBs onto high-frequency regions of the wavelet
subbands, a new family of transforms using hybrid wavelets
and directional filter banks (HWD) [10] were developed to
reduce the ringing artifacts which is introduced by applying
DFBs to the low-frequency smooth regions of images.

From source coding perspective, it is known that sparse
representation is sought to maximally capture interested fea-
tures of a signal with maximally decimated coefficients. This
representation is performed by a signal projection onto an-
other space expanded by a complete orthogonal basis, whose
efficiency is embodied by energy convergence to a few of
large coefficients which are inner products of signal and
basis. These nonredundant geometrical transforms provide a
more reasonable choice than wavelet in scalable video coding
and compression. Taking into account that the contours and
textures scattered in different scales usually change their di-
rectional resolutions as their curvatures change, we investigate
adaptive directional resolutions along scales to achieve the dual
(scale and orientation) multiresolution transform. This paper
proposes nonuniform directional frequency decompositions
for image representation and approximation, and exploits the
nonuniformity of orientation multiresolution distribution in
scalable video coding and designs nonuniform directional filter
banks (NUDFB) to make the geometrical transform more
sparse and efficient. It is worth mentioning that NUDFB is
imperative to achieve an orientation multiresolution under
a certain scale. Despite extensive methods to design 1-D

nonuniform filter banks [11], the advance on 2-D nonuniform
filter banks has been hindered by complicated issues in design
process. For example, universal anti-aliasing filter bank for
arbitrary downsampling matrices, some of which may be
irrational, may not be accessible. A non-symmetric binary tree
(NSBT) structured filter bank is proposed to fulfill NUDFB,
because of the following advantages: 1) minimum branches
or channels at each node to reduce the design complexity,
especially for 2-D nonseparable filter banks; 2) more flexible
to choose an appropriate frequency division; and 3) convenient
to elaborate the binary tree structure, which is important to
acquire the decomposition structure if a nonuniform decom-
position is used. Although biorthogonal filter bank is less
constrained in perfect reconstruction, orthogonal filter bank
is chosen in this context owing to its attractive properties in
subband coding applications [12]. For 2-D filters design in
a filter bank, there are mainly two methods: to design a 2-
D filter directly, and to get the target 2-D filter from a 1-D
prototype filter [13]. The latter is employed to simplify both
the design procedure and the implementation process to reduce
the implementation complexity to O(N ) other than O(N 2).
The 2-D nonuniform filter bank with NUDFB structure is of
maximal decimation and paraunitary perfect reconstruction.

Two main contributions of this paper are the proposal
of nonuniform directional frequency decompositions under
arbitrary scales which are fulfilled by a NSBT topology
structure with nonuniform directional filterbank design, and
the development of a novel generic scalable video coding
framework with the dual (nonredundant scale and orienta-
tional) multiresolution transform, called DMSVC. The pro-
posed NUDFB provides a multiresolution on directions as
well as wavelet filters provide a multiresolution on scales,
and it is more flexible to statistically utilize the directional
information of contours and textures in video frames to achieve
a more efficient filter bank partition scheme. In the underlying
dual multiresolution transform context, orientation resolution
is regarded as an isolated variable from scale resolution. The
wavelet basis function in each scale is converted to an adaptive
set of nonuniform directional basis. Through the nonuniform
frequency division, we can get arbitrary orientation resolu-
tion l at a direction of c2−l under a target scale. NUDFB
is fulfilled by arraying the topology structure of a NSBT,
as a symmetric extension from a two channel filter bank.
The paraunitary perfect reconstruction condition is provided
through a polyphase identical form of filter bank, in terms of 2-
D nonseparable filters from a 1-D prototype. Comparing with
the isolated wavelet basis, our transform provides a greater
correlated set of localized and anisotropic basis functions with
video frames, which can capture contours and textures with
sparse coefficients.

As a prospective application, the proposed DMSVC consists
of three main stages: the temporal dependencies of source
frames are eliminated along the motion trajectories by lifting-
based motion compensated temporal filtering (MCTF); in the
spatial stage, each temporal subband is further decomposed
into multiscale subbands, and the orientation distribution is
estimated via phase congruency in the overcomplete wavelet
domain to establish a NSBT for each scale, which is used
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Fig. 1. DMSVC general framework.

as skeleton structure of NUDFB; through the orientation mul-
tiresolution decomposition via NUDFB, the highpass wavelet
subspaces are divided into an arbitrary number of directional
subspaces in alignment with the orientation distribution. Fi-
nally, the spatio-temporal subband coefficients are coded by a
3-D ESCOT entropy coding algorithm [14] which is adopted
to match the structure of NSBT. It is conceptually similar to
EBCOT [15] but employs a new 3-D context table that is more
suitable for the SVC trace. Experimental results show that the
reconstructed video frames DMSVC in the proposed DMSVC
scheme have better visual quality than other SVC schemes.
It could also produce higher compression ratio especially on
those sequences full of directional edges and textures, and
reveal a better performance on smooth curve representation
and energy compaction.

The rest of this paper is organized as follows. Initially,
we summarize all the math symbols throughout this paper
in Table I. The proposed DMSVC framework is presented in
Section II. Section III formulates the design process of the
orthonormal basis of NUDFB used in the dual multiresolution
transform and proves that the whole filter bank achieves
perfect reconstruction. Extensive experiments are validated for
nonlinear approximation and scalable video coding in Section
IV. Finally, we conclude this paper in Section V.

xHi

T = x2i+1 − 1

2
[x2i(· + mv2i+1,2i) + x2i+2(· + mv2i+1,2i+2)] (1)

xLi

T = x2i +
1

4
[xHi−1

T (· + mv2i,2i−1) + xHi

T (· + mv2i,2i+1)]. (2)

II. DMSVC Framework

The DMSVC framework is derived from the current
wavelet-based scalable video coding (WSVC) video coding
schemes, which can be categorized into two traces: to perform
the MCTF on the full resolution video frame before the spatial
decomposition, which is also called “T+2-D;” to perform the
spatial decomposition on the full resolution video frame and
then execute MCTF on each subband, which is often referred
as “2-D+T.”

Fig. 1 gives the entire process of DMSVC encoder frame-
work which might apply to both schemes. If the pre-2-D-
decomposition part is null, motion estimation and temporal fil-
tering are applied to the full resolution frames to separate them
into temporal lowpass subbands xL

T and highpass subbands xH
T ;

otherwise, MCTF is performed on the subbands of transformed
frames. In turn, a post 2-D dual multiresolution transform
is applied to each temporal subband to decompose it into

nonuniform directional subspaces. Suppose the input signal x
goes through an N-level dual multiresolution transform and is
indicated as xD, which consists of a set of scale multiresolution
subbands xD = {xc

D, xds(N)
D , · · · , xds(1)

D |s = 1, 2, 3 for LH,
HL, HH subbands, respectively}. Each scale subband xds(k)

D
is composed of a set of nonuniform directional subbands
xds(k)
D = {xd0

s (k)
D , xd1

s (k)
D , · · · , xdL−1

s (k)
D }. The overall spatial and

temporal decomposition structure can be seen in Fig. 2, where
MCTF is realized by dyadic DWT transform. MCTF can be
implemented by a lifting structure involving the predict and
update steps, and it also enables perfect reconstruction with
sub-pixel motion alignment [16]. With the lifting structure, any
traditional motion model that establishes a pixel-mapping re-
lationship between two adjacent frames can be easily adopted
by the motion aligned temporal filtering. Moreover, the lifting
structure ensures perfect reconstruction under the condition of
complex motion fields and fractional pixel motion vectors. We
preserve the MCTF operation in the DMSVC framework to
make the energy concentrated on the temporal lowpass bands
and it will make the spatial transform more effective.

A typical biorthogonal 5/3 wavelet lifting structure adopted
in MCTF firstly splits the input frames into even components
x2i and odd components x2i+1, and then two immediate neigh-
boring frames are needed to establish a bi-directional predict
or update signal. The motion vectors mv are obtained by
block-based bidirectional motion estimation at each x2i frame
using two neighboring x2i+1 frames as references. We can
obtain the high-pass temporal subbands xHi

T in the predict step
by (1) and the low-pass temporal subbands xLi

T in the update
step by (2). It can be seen that no matter what the distribution
of the motion field is, MCTF based on the lifting structure can
ensure the condition of perfect reconstruction.

After all the frames are decomposed into high-pass and low-
pass temporal subbands, they are pushed into the dual mul-
tiresolution decomposition module. The first multiresolution,
scale multiresolution, is achieved by wavelet decomposition
using a simple syntax in the configuration file. Based on the
scale multiresolution, orientation multiresolution is carried out
adaptively according to the estimation result of the orientation
distribution in the overcomplete wavelet space, and then
NUDFB with the NSBT structure is formed to decompose and
reposition the frames into spatial subbands. To determine the
decomposition structure in an adaptive topology, we estimate
the orientation distribution by using phase congruency metric
within the overcomplete wavelet subspace. Initially, we build a
full binary tree structure with deterministic depth where each
leaf represents the distribution density of the directions in a
uniform interval. Through the tree-pruning, it comes to be an
NSBT where each leaf is not in the same depth anymore and
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TABLE I

Nomenclature Table

Multi-Dimensional Symbols
V2

j Approximation space with scale j

W2
j Wavelet detail space with scale j

W2,k
j Wavelet detail subspace with scale j and index k = 1, 2, 3

ϕ
(2)
j,k(t) 2-D basis of V2

j

ψ
(2),i
j,k (t) 2-D basis of W2

j

D(l)
j,p Directional subspace with scale j and orientation resolution 2−l and index 0 ≤ p < 2l

λ
(l)
j,k,p 2-D basis of D(l)

j,p

h[n] Filter’s impulse response in discrete-time domain
H[ω] Filter’s impulse response in frequency domain
Matrix M Sampling matrix: a d × d nonsingular matrix of integers

N (M) Set of all integers Mx with x ∈ [0, 1)d

Fig. 2. Spatial and temporal subbands.

represents basically equivalent directional distribution density.
NUDFB, as the core component of the dual multiresolution
transform, is fulfilled by applying 2-D nonseparable quadrature
mirror filter banks (QMFB) on every two leaves extended from
one common parent in NSBT. The two-channel QMFB in the
2-D case can be implemented by quincunx and parallelogram
filters and allow for the perfect reconstruction. To show how
NUDFB decomposes the wavelet subband into nonuniform
directional subbands with different directional resolutions, Fig.
3 illustrates an example of the analysis part of NUDFB which
fits for the finest LH subband in a frame of the Foreman
sequence. Fig. 9 shows the impulse response of the NUDFB
in both frequency and time domains. It can be seen that the
basis functions in dual multiresolution transform are adaptive
to the source and obey the anisotropy scaling law, so that
the magnitude of coefficients is significantly reduced in these
subbands. After the spatio-temporal modules, the coefficients
are organized into 3-D blocks and coded with 3-D ESCOT.
All the details will be discussed in the following sections.

III. Dual Multiresolution Transform With NUDFB

Strictly speaking, all the geometric transforms achieve the
multiresolution on scale but ignore the nonuniformity of
orientation distribution of curve smoothness such as contours

Fig. 3. Analysis part of NUDFB matching with the finest LH subband in
one frame of Foreman.

and textures, so that they only divide the highpass subspaces
into uniform directional subspaces. For example, the contourlet
transform and WBCT, only decompose the image into 2l

directional subbands at each scale with fixed directional reso-
lutions l via UDFB; therefore, they cannot get an adaptive and
optimal representation of the source image. The directionality
of the spectrum are obvious in the high frequency and the
low frequency portions would also leak into several adjacent
directional subbands. Furthermore, the contours and textures
scattered in different scales usually change their directional
resolutions as their curvatures change. Thus, adaptive direc-
tional resolutions are required for different scales. To take the
advantage of the nonuniformity in directions, we introduce
another multiresolution approach called orientation multires-
olution to achieve the dual multiresolution transform. After
we estimate the orientation distribution in the overcomplete
wavelet subspaces, the orientation multiresolution is achieved
by implementing NUDFB, which is represented by a NSBT
structure. We prove that in this transform, any orientation res-
olution under a given scale can be achieved, and we can select
proper analysis and synthesis filters in every pair of siblings
of NSBT to fulfill the requirement of perfect reconstruction.
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Fig. 4. Illustration of edge profile blurring by decimation. (a) Sampling of
the edge profile. (b) Blurring by decimation.

Fig. 5. Edge detection on wavelet and overcomplete wavelet HL subspaces.
(a) Canny detection of the overcomplete wavelet HL subspace. (b) Orientation
distribution estimated in the overcomplete wavelet HL subspace. (c) Canny
detection of the wavelet HL subspace. (d) Orientation distribution estimated
in the wavelet HL subspace.

A. Orientation Distribution Estimation in the Overcomplete
Wavelet Domain

In order to achieve a more sparse representation, NUDFB is
used to combine significant wavelet coefficients around curve
discontinuities. The design of NUDFB obeys the principle
that all direction pixels (dirpixels) contained in the source
frame are scattered uniformly among the nonuniform filter
banks, and the NSBT structure of NUDFB is obtained from
the estimation result of orientation distribution at multiscale
wavelet subspaces via common feature extraction methods
such as edge detection. Hereafter, the extracted edge feature
regarding orientation are called direction pixel (dirpixel).

In natural images and video frames, intensity within a local
neighborhood of an edge tends to change slowly along the
edge direction, and rapidly but smoothly along the direction
vertical to the edge. The regular 2-D separable wavelet de-
composition system consists of pre-filtering and decimation
operations. Although the smoothness and phase continuity of
edges along different directions can be retained after the linear
pre-filtering system, they are damaged after the nonlinear
decimation system. Furthermore, since the pre-filtering system
is not ideal, aliasing always happens at the frequencies higher

than one half of the Nyquist frequency. Since most high
frequency components in 2-D signals are composed of edges
and contours, they are more sensitive to frequency aliasing
such that the estimation may not be accurate.

Generally speaking, the edge detection methods can be
categorized into two classes: gradient-based methods which
calculate gradient of every pixel within a small region [18]
and phase-based methods that estimate the edges throughphase
congruency [19]. Accuracy of typical gradient-based edge de-
tection methods, such as Canny operator, relies on the adjacent
pixels along the gradient directions. Fig. 4(a) shows a typical
example of edge profile with rapid changing on intensity, but
after decimation we can see from Fig. 4(b) that most pixels
reflecting intensive changing along the edges are lost, such
that the gradient based on the sampled version cannot show
the real information of this edge. Since decimation also causes
frequency aliasing, phase-based edge detection methods are
not effective. Inspired by the motion compensation technique
performed in the overcomplete wavelet space [20], orientation
distribution is estimated in the overcomplete wavelet space to
avoid problems brought by decimation.

To measure the accuracy of edge detection between the
wavelet and the overcomplete wavelet subbands by the
gradient-based method, Fig. 5(a) and (b) shows the Canny
edge detection result on the wavelet and the overcomplete HH
subband of one frame in Foreman, respectively, and Fig. 5(b)
and (d) shows the histograms of orientation distribution in
the wavelet and the overcomplete HH subband, respectively.
From these figures, we can see that the decimation system in
the regular wavelet decompositions blurs all the continuities
along the edges and thus the histogram of distribution is hardly
accurate whereas all the details and continuities are completely
retained with few blurs in the overcomplete wavelet domain.

Phase-based edge detection methods such as phase congru-
ency metric determines dirpixels through the points where the
Fourier components are highly consistent in phase, and its 2-
D directional version is shown in (3) [19]. In our scenario,
the local overcomplete Gabor wavelet component at location
x and direction d can be described by complex vectors which
add head to tail with amplitudes Adn(x), phase angles φdn(x)
and weighted mean phase angle φ̄d(x). The term Wd(x) is a
weighted factor of frequency spread, and ε is a small constant
incorporated to avoid division by zero. Tdn is used as a
threshold to cancel the noise influence since the operator �·�
only preserves the positive operand, and otherwise returns zero

PC(x) =

∑
d

∑
n

Wd(x)�Adn(x)�	dn(x) − Tdn�∑
d

∑
n

Adn(x) + ε
(3)

where the sensitive phase deviation function �	dn is defined
as

�	dn(x) = cos (φdn(x) − φ̄d(x)) − | sin (φdn(x) − φ̄d(x))|. (4)

Once obtaining the dirpixels, we set up a full binary
tree with 2p leaves to represent the cumulative histogram
of dirpixels in each uniform directional interval from (−π

2 +
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Fig. 6. Directional distribution and NSBT shaping. (a) Phase congruency
measurement in the overcomplete HH subband. (b) Directional distribution
estimated at 32 uniform directional intervals in the overcomplete HH subband.
(c) NSBT derived from directional distribution estimation. (d) Directional
distribution on NSBT.

i π
2p , −π

2 + (i + 1) π
2p ] (i = 0, 1, · · · , 2p − 1) and then do tree-

pruning to equalize the dirpixels on each leaf. In our tree-
pruning process, two adjacent leaves with the least dirpixels
which are extended from a common parent node are always
selected to merge till the number of leaves reaches the target
value.

Fig. 6(b) shows the directional distribution of one overcom-
plete HH subband [see Fig. 6(a)] in the Foreman sequence.
The full binary tree is initially set to 25 = 32 leaves, and
the dirpixels in each interval are observed in a nonuniform
distribution. After tree-pruning, the full binary tree becomes
an NSBT with eight leaves shown in Fig. 6(c), where leaves
are corresponding to nonuniform intervals but with basically
equivalent dirpixels [see Fig. 6(d)].

In summary, all the edge detection methods including both
pixel-based and phase-based are efficient in the overcomplete
wavelet domain. Therefore, as the first step of dual multireso-
lution transform, orientation distribution estimation result can
be obtained by edge detection in the overcomplete wavelet
LH, HL and HH subbands of the video frame.

B. Multiresolution Analysis

Scale multiresolution serves as the first multiresolution
in the dual multiresolution transform by using the wavelet
decomposition. The scale multiresolution framework for 2-
D wavelets is extended from 1-D scaling and wavelet func-
tions (ϕ and ψ) [17]: ϕ

(2)
j (t) = ϕj(t1)ϕj(t2), ψ(2),1

j (t) =
ϕj(t1)ψj(t2), ψ(2),2

j (t) = ψj(t1)ϕj(t2), ψ(2),3
j (t) = ψj(t1)ψj(t2)

where the family of {ϕ(2)
j,k(t) = 2−jϕ(2)(2−jt − k)} and

{ψ(2),i
j,k (t) = 2−jψ(2),i(2−jt − k)}i=1,2,3 form an orthonormal

basis of V2
j and W2,i

j at the scale 2j , respectively. Three
orthogonal subspaces W2,1

j = Vj ⊗ Wj , W2,2
j = Wj ⊗ Vj

and W2,3
j = Wj ⊗ Wj construct the detail space W2

j by

Fig. 7. Decomposition in the frequency and pixel domain. (a) Directional
subspaces. (b) Frame of decomposition.

W2
j = ⊕3

i=1W
2,i
j , which is connected to the approximation

space V2
j = Vj ⊗ Vj as the complementary for the next scale:

V2
j+1 = V2

j ⊕ W2
j . From the dyadic property of wavelet basis

functions, basis of the jth scale approximation space can
be split into (j − 1)th scale approximation space and detail
subspaces by filtering with quadrature mirror filters.

As the second multiresolution vehicle, orientation multires-
olution is designed to make each subband after the dual
multiresolution transform contains nearly equivalent amount
of dirpixels within the subband bound. Equivalently, a narrow
directional region with dense directional spectrum information
deserves the same-sized subband of a wide directional regions
with sparse directional spectrum information. Moreover, since
the scale factor of different wavelet highpass subbands is two,
it is reasonable to halve the number of orientation resolutions
from fine to coarser scales. Next, we apply NUDFB to the
detail multiresolution subspaces W s

k by employing partition
operators (the superscript “2” is omitted since all the following
discussion are based on the 2-D case, and properties of the
partition operator can be seen in Appendix A).

Proposition 1: Suppose we divide W s
k into L

subspaces with Q different orientation multiresolutions
({r1, r2, · · · , rQ}), and partition operator is applied to W s

k for
rmin = min{r1, r2, · · · , rQ} times iteratively according to (20),
that is

W s
k =

(
δd1D(rmin)

k,p1

) ⊕
· · ·

⊕ (
δdQD(rmin)

k,pQ

)

=

⎛
⎝2d1 p1+2d1 −1⊕

pd1 =2d1 p1

D(rmin+d1)
k,pd1

⎞
⎠ ⊕ ⎛

⎝2d2 p2+2d2 −1⊕
pd2 =2d2 p2

D(rmin+d2)
k,pd2

⎞
⎠

⊕
· · ·

⊕ ⎛
⎜⎝2dQ pQ+2dQ −1⊕

pdQ
=2dQ pQ

D(rmin+dQ)
k,pdQ

⎞
⎟⎠ (5)

where 0 ≤ pi ≤ 2rmin − 1, di = ri − rmin, i = 1, 2, · · · , Q,
Q∑
i=1

2di = L, and {λ(rmin)
k,n,pi

}, the basis of D(rmin)
k,pi

, can be divided into

the family of {λ(rmin+di)
k,n,pdi

} which forms the basis of the subspace

D(rmin+di)
k,pdi

. Proposition III-B can be illustrated in Fig. 7(a).
Thus, for any particular wavelet highpass subspace W s

k ,
there exists an NSBT structure containing some of its basis
{λ(l)

k,n,p}n∈Z2,0≤p≤2l−1 to project itself into several nonuniform
directional subspaces, meaning that the orientation multireso-
lution is achieved. Such a dual multiresolution decomposition
example is provided in Fig. 7(b).
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Fig. 8. Multi-channel view of NUDFB that has L channels with equivalent
filters and sampling lattices.

The above results inspire us to consider a multi-channel
view that resorts to NUDFB with L subbands as L parallel
channels with equivalent filters and diagonal sampling lattices.
Because of the partition operator, the leaf nodes of NSBT do
not share the same sampling density, as in the p-th channel,
which is det(S

(lp)
p ) = 2lp , p = 0, 1, · · · , L− 1. A typical multi-

channel view of NUDFB is demonstrated in Fig. 8.
Let R

(lp)
p denote the support region associated to the analysis

and synthesis filters H
(lp)
p (ω) and G

(lp)
p (ω). Owing to the

property of DFB [21], R
(lp)
p tiles the 2-D frequency plane.

Consequently, such a multi-channel view is complete.
Proposition 2: Suppose that the filter bank in Fig. 8 is

perfect reconstructable. Then any 2-D signal in L2(Z2) can be
uniquely represented as

x[n] =
L−1∑
p=0

∑
m∈Z2

yp[m]g(lp)
p [n − S(lp)

p m] (6)

where

yp[m] = 〈x[n], h(lp)
p [S(lp)

p m − n]〉. (7)

Therefore, the family of {g(lp)
p [n − S

(lp)
p m]}0≤p<L,m∈Z2 and

{h(lp)
p [S

(lp)
p m − n]}0≤p<L,m∈Z2 are called the dual basis for all

the discrete signals in L2(Z2) where p denotes the direction
and m denotes the position index, respectively.

Proposition 3: If we substitute x[n] = g
(lp)
p [n−S

(lp)
p m] in (6),

and call to a remembrance of the uniqueness of representation,
we will get such a biorthogonal relationship between these two
basis as

〈g(lp)
p [n − S(lp)

p m], h
(lp′ )
p′ [S

(lp′ )
p′ m′ − n]〉 = δ[p − p′]δ[m − m′].

(8)

Fig. 9(a) and (b) shows an example of the frequency and
time response of NUDFB shown in Fig. 3. A “23 − 45”
biorthogonal filter bank designed by [22] is used in the DFB
stage. From these figures, we can see that the basis still keeps
the characteristic of anisotropy.

C. NUDFB Design

There are two ways to design a 2-D directional filter bank:
[23] introduces the original DFB construction by using the
diamond-shaped filters to process the pre-modulated source
signals and employs complex tree expanding rules to rearrange
the split subbands, while [24] only uses the fan filter (shift-
modulated version of diamond-shaped filter) and tactfully

Fig. 9. Impulse response of NUDFB. (a) Frequency domain. (b) Time
domain.

Fig. 10. General 2-D nonseparable filter bank.

decomposes the two-determinant sampling matrix into the
Smith form to establish quincunx filter banks (QFB) with a
symmetric binary tree (SBT) structure, which simplifies the
construction process of DFB. Such a basic structure of 2-D
nonseparable filter bank can be seen in Fig. 10.

Here we consider DFB with a single depth level as the
basic element of NUDFB. For those regions which require
better orientation resolutions, deeper levels of decompositions
are spanned under the parent node, which provides sparser
sampling lattices and support regions, and finally an NSBT
structure will be expanded. The DFBs with SBT and NSBT
structures are conceptually similar, with the main difference
that the nodes in the NSBT case may not have the same
number of offsprings as what happens in the SBT case during
the construction of the filter banks.

In the general 2-D nonseparable filter bank design process,
we need the quincunx sub-lattices with determinant of two
[25] to satisfy the requirement of critical sampling, such as

Q0 =

(
1 −1
1 1

)
, Q1 =

(
1 1

−1 1

)
. Decompose Q0 and Q1

into the Smith form, we may get Q0 = R1D0R2 = R2D1R1

and Q1 = R0D0R3 = R3D1R0, where the unimodular ma-

trices R0 =

(
1 1
0 1

)
, R1 =

(
1 −1
0 1

)
, R2 =

(
1 0
1 1

)
,

R3 =

(
1 0

−1 1

)
and the diagonal matrices D0 =

(
2 0
0 1

)
,

D1 =

(
1 0
0 2

)
.

For the first and second levels of decomposition, Q0

and Q1 are used as the sampling lattice respectively. Since
Q0Q1 = 2I, the overall 2-D sampling density after these
two levels of decompositions are critical. From the third
level of decomposition, a pair of unimodular sampling lattices
Ri (i = 0, 1, 2, 3) are cascaded before and after the QFB
to provide finer direction resolution. Since the operation of
sampling and filtering can be swapped by multirate noble
identities [25], we can obtain the overall sampling lattice as
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Fig. 11. Frequency supporting regions of equivalent maximally decimated
filters of NUDFB with the fan filters. (a) Fan filter with sampling lattice
Q0 and Q1 in the first and second levels. (b)–(d) Parallelogram filters with
sampling lattice P1 to P4 in the third level.

Fig. 12. Equivalent directional sampling lattice of (a) P1, (b) P2, (c) P3, and
(d) P4.

P1 = R0Q0 = D0R2 =

(
2 0
1 1

)
, P2 = R1Q1 = D0R3 =(

2 0
−1 1

)
, P3 = R2Q1 = D1R0 =

(
1 1
0 2

)
, and P4 = R3Q0 =

D1R1 =

(
1 −1
0 2

)
. All the matrices Pi (i = 1, 2, 3, 4) and

Q0 have the determinant of 2, which constitute the sampling
lattices of the maximally decimated filter banks with the fan
filters, and their supporting regions are shown in Fig. 11. The
filter banks with lattice Pi (i = 1, 2, 3, 4) which is shown in
Fig. 12 are called parallelogram filters.

A multilevel NUDFB can be considered as a cascading
structure of the quincunx or parallelogram filters, while each
basic element and its associated orientation range can be
abstracted to a leaf node of NSBT. From a parent node to its
two child nodes, either “0” or “1” is indexed so that every
branch in the NSBT can be uniquely labeled by a binary
sequence. A deeper leaf node of the NSBT corresponds to a
directional filter with finer orientation resolution, and the entire
path from the root to the node is labeled as a longer binary
sequence. Initially, the NSBT is constructed as a full binary
tree with each leaf node covering a well-distributed orientation
range, and then a balance algorithm described in Algorithm 1
is designed to prune the binary tree to maintain nearly equal
number of dirpixels within the orientation range of each leaf
node. After obtaining the NSBT structure of the NUDFB, we

can refer to the binary index of each branch to decompose
the video frame by cascading the quincunx or parallelogram
filters and get the final subbands.

Fig. 3 gives a typical example of the analysis part of
NUDFB. Assuming that the result of the orientation distri-
bution estimation in the overcomplete wavelet domain shows
the need of dividing the whole wavelet subspace into eight
directional frequency subbands, according to the criterion that
each subband contains nearly equivalent amount of directional
pixels, the first two levels of the filter banks can divide the
frequency domain into four coarse directional subbands, and
another four finer directional subbands are elaborated by the
parallelogram filter banks of Hi and Li, i = 1, 2.

Every NUDFB is fulfilled through the topology structure
of NSBT where each node possesses two 2-D nonseparable
filters as its children. If we can perfectly reconstruct every
branch in the NSBT, the whole filter bank can be perfectly
reconstructed. Because only five different directional filters are
used, all the binary filter banks must be designed to guarantee
that the whole filter bank is perfectly reconstructed [24].

From the supporting regions of the five filters, we have

{
H0(ω) = L0(ω − 2πQ−T

0 k)

Hi(ω) = Li(ω − 2πP−T
i k)

where i = 1, 2, 3, 4. The polyphase representation of multidi-
mensional filter banks gives the simple conclusion on perfect
reconstruction, for example, type I polyphase form of L0(ω)
and H0(ω) are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0,0(ω) =
∑

k∈N (QT
0 )

L0(Q−T
0 (ω − 2πk))

L0,1(ω) =
∑

k∈N (QT
0 )

ej(QT
0 (ω−2πk))T kL0(Q−T

0 (ω − 2πk))

H0,0(ω) =
∑

k∈N (QT
0 )

H0(Q−T
0 (ω − 2πk))

H0,1(ω) =
∑

k∈N (QT
0 )

ej(QT
0 (ω−2πk))T kH0(Q−T

0 (ω − 2πk)).

(9)

We can infer that H0,0(ω) = L0,0(ω) and H0,1(ω) = −L0,1(ω)
since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0,0(ω) =
∑

k∈N (QT
0 )

L0(Q−T
0 (ω − 2πk) − 2πQ−T

0 ω)

= L0,0(ω)

H0,1(ω) =
∑

k∈N (QT
0 )

ej(QT
0 (ω−2πk))T ke−j2πQ−T

0 k

L0(Q−T
0 (ω − 2πk) − 2πQ−T

0 k)

= −
∑

k∈N (QT
0 )

ej(QT
0 (ω−2πk))T kL0(Q−T

0 (ω − 2πk))

= −L0,1(ω).
(10)

In conclusion, all the type I polyphase forms of the analysis
filters Li and Hi (i = 0, 1, 2, 3, 4) follow the constraint that
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⎧⎪⎨
⎪⎩

Li(ω) = Li,0(ω) + e−jωT kLi,1(ω)

Hi(ω) = Hi,0(ω) + e−jωT kHi,1(ω)

= Li,0(ω) − e−jωT kLi,1(ω).

(11)

From the multi-dimensional filter bank theory [25], the
synthesis filter for a perfect reconstruction system must have
the same spectrum range with the corresponding analysis filter.
Likewise, the type II polyphase decomposition of the synthesis
filters Fi and Gi (i = 0, 1, 2, 3, 4) follows the constraint that

{
Fi(ω) = e−jωT kFi,0(ω) + Fi,1(ω)

Gi(ω) = e−jωT kFi,0(ω) − Fi,1(ω).
(12)

The perfect reconstruction in the polyphase domain can be
achieved if and only if the following conditions are satisfied:

Li(ω)Fi(ω)T = ejωT lI (13)

where l is an arbitrary vector, and

⎧⎪⎪⎨
⎪⎪⎩

Li(ω) =

(
Li,0(ω) Li,1(ω)
Li,0(ω) −Li,1(ω)

)

Fi(ω) =

(
Fi,0(ω) Fi,1(ω)
Fi,0(ω) −Fi,1(ω)

) (14)

for i = 0, 1, 2, 3, 4; substitute all these definitions into (13),
we have

{
Li,0(ω)Fi,0(ω) + Li,1(ω)Fi,1(ω) = ejωT l = c

Li,0(ω)Fi,0(ω) − Li,1(ω)Fi,1(ω) = 0.
(15)

Without loss of generality, assuming the constant c = 2, we
finally obtain the condition of perfect reconstruction of one
pair of siblings of the filter bank with a binary tree structure
as

⎧⎪⎪⎨
⎪⎪⎩

Fi,0(ω) =
1

Li,0(ω)

Fi,1(ω) =
1

Li,1(ω)
.

(16)

IV. Experimental Results

A. Nonlinear Approximation (NLA)

Video coding always introduces lossy and quantization noise
to the coefficients of spatial transformed 2-D signals, while
most coding schemes erase the relatively small coefficients,
and preserve most significant coefficients with quantization
noise. Hence, we select M-most significant coefficients in
the transform domain, and do the inverse spatial transform
to obtain the reconstructed image, and observe what kind of
edge and texture information that NUDFB efficiently captures.

Fig. 13 gives the PSNR results of NLA versus M retained
coefficients tested on a sampled frame of several video test
sequences by the dual multiresolution transform and compared

Algorithm 1 The NSBT Balancing Algorithm

Input: Video frame x, Decomposition level n

Output: NSBT structure with balanced number of
dirpixels

A. Design the NSBT structured decomposition path:
Decompose the input image in overcomplete wavelet
domain;
for processing all three overcomplete wavelet subbands
do

Obtain the orientation of each pixel (dirpixel) PC(x)
via phase congruency method;

end
Set current processing scale i ←− 3;
Set current decomposition level m ←− 2;
for i = 3; i ≤ n; i + + do

for processing three wavelet subbands in i-th scale
do

Set number of subbands num ←− 2m+2;
Establish a full binary tree with num leaf nodes
in i-th scale, index the leaf node from
k = 0, · · · , num − 1 by binary;
Divide the orientation range of [−π/2, π/2] into
num pieces, k-th leaf node on the full binary tree
cumulates the number of dirpixels in the
orientation range of
[−π/2 + k(π/num), −π/2 + (k + 1)(π/num)];
while num > 2m do

Look through all of the leaf nodes, find two
adjacent leaf nodes with least number of
dirpixels, prune the tree by deleting these two
nodes and leaving their parent node as a new
leaf node with truncated binary index;
num ←− num − 1;

end
m ←− m + 1;

end
end
for i = 1; i ≤ 2; i + + do

Establish a full binary tree with 2i leaf nodes in i-th
scale without pruning.

end

with other transforms, e.g., HWD and DWT. For the test
sequences Coastguard of CIF resolution (352 × 288) and
Barbara of size 512 × 512, we decompose them into 4
scale levels in all of the transforms and {1, 2, 4, 8} direc-
tional subbands from the coarsest to the finest scale for the
directional transforms, e.g., dual multiresolution transform and
HWD. For 4CIF sequence City and Harbor, we decompose
them into 5 scales and {1, 2, 4, 8, 16} directional subbands
from the coarsest to the finest scale. Besides, for other test
sequences such as Flower, Tempete, Walk, and Crew, the dual
multiresolution transform provides comparable result to that
of HWD transform and wavelets.

To show the visual results of NLA, we select M = 4096
most significant coefficients from the dual multiresolution



1094 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 8, AUGUST 2011

Fig. 13. Examples of the NLA PSNR results. (a) NLA results for Coastguard image. (b) NLA results for Barbara image. (c) NLA results for City image.
(d) NLA results for Harbor image.

Fig. 14. NLA reconstruction results for one frame of Coastguard and City with M = 4096 most significant coefficients in the transform domain. (a) Original
Coastguard frame. (b) Dual multiresolution transform: PSNR = 27.40 dB. (c) HWD transform: PSNR = 27.05 dB. (d) DWT: PSNR = 27.28 dB. (e) Original
City frame. (f) Dual multiresolution transform: PSNR = 25.49 dB. (g) HWD transform: PSNR = 25.48 dB. (h) DWT: PSNR = 25.34 dB.

transform, HWD and wavelet domain of the Coastguard and
City sequences and get their reconstructed approximation in
Fig. 14. It can be seen that the proposed dual multiresolution
transform produces less artifacts than HWD. Like the HWD
transform [10], we can observe that dual multiresolution
transform has better capability of capturing the curving edges,
directional textures and other details with the same amount of
significant coefficients comparing with DWT.

B. Comparison With WSVC for Scalability

We compare our proposed DMSVC scheme with the latest
WSVC scheme under the platform of MSRA 3-D wavelet
video coder VidWav [26], and test the combined scale and

time scalability in the experiments. The reference software
is configured to multiplex five layers with different spatial
and time scalabilities into one bitstream. The video frames
in one GOP are temporally decomposed into five temporal
subbands, each temporal subband is further spatially decom-
posed by dual multiresolution transform with NUDFB into a
group of subbands according to the orientation distribution
estimation. In order to show the performance differences
between NUDFB and UDFB in spatial decomposition, we also
incorporate the HWD into the SVC framework to develop
the HWDSVC scheme as a reference. All schemes provide
3 scales of decomposition for CIF sequences and 4 scales
for 4CIF sequences. From the coarsest to the finest scale, we
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Fig. 15. Scalability performance comparison by PSNR on CIF sequences. (a) Coastguard CIF sequence at frame rate of 30 Hz. (b) Coastguard QCIF
sequence at frame rate of 15 Hz. (c) Foreman CIF sequence at frame rate of 30 Hz. (d) Foreman QCIF sequence at frame rate of 15 Hz.

Fig. 16. Scalability performance comparison by PSNR on 4CIF sequences. (a) Harbor 4CIF sequence at frame rate of 60 Hz. (b) Harbor CIF sequence at
frame rate of 30 Hz. (c) City 4CIF sequence at frame rate of 60 Hz. (d) City CIF sequence at frame rate of 30 Hz.



1096 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 8, AUGUST 2011

Fig. 17. Visual results under 1024 kb/s. From left to right and from top to bottom are the original and reconstructed 4CIF frame of Crew, Soccer, Ice,
Harbor, and City by DMSVC and WSVC, respectively. (a) Original 4CIF frame of Crew. (b) PSNR = 30.09 dB. (c) PSNR = 29.52 dB. (d) Original 4CIF
frame of Soccer. (e) PSNR = 29.15 dB. (f) PSNR = 28.36 dB. (g) Original 4CIF frame of Ice. (h) PSNR = 37.02 dB. (i) PSNR = 36.59 dB. (j) Original 4CIF
frame of Harbor. (k) PSNR = 30.07 dB. (l) PSNR = 29.63 dB. (m) Original 4CIF frame of City. (n) PSNR = 34.76 dB. (o) PSNR = 34.47 dB.
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split {1, 4, 8} directional subbands in CIF case, and {1, 2, 4, 8}
directional subbands in 4CIF case for DMSVC and HWDSVC.

Figs. 15 and 16 give the rate-distortion performance for the
combined spatial and temporal scalability between DMSVC,
HWDSVC and WSVC on CIF and 4CIF sequences, re-
spectively. The proposed SVC frameworks with the direc-
tional decomposition, e.g., DMSVC and HWDSVC, bring out
promising results for the sequences with significant directional
textures, and the performance of DMSVC is higher than that
of HWDSVC since NUDFB brings less artifact than UDFB.
Specifically, when the Harbor sequence is coded at the bit
rate of 512 kb/s, DMSVC provides up to 1.2 dB PSNR
improvement over the WSVC scheme. For other sequences
such as Coastguard, Foreman, and City, DMSVC also shows
comparable performance to WSVC.

The visual effects of 4CIF counterparts coded at 1024
kb/s are shown in Fig. 17. Since the dual multiresolution
transform has a stronger ability on capturing curve smooth
discontinuities and smaller error decay order on NLA, more
details on textures have been preserved after reconstruction.

C. Comparison With H.264/SVC for Scalability

We also provide the performance comparison between
DMSVC and the H.264/SVC scheme in the aforementioned
figures, and adopt JSVM6.5 from [27] as the reference soft-
ware and the Palma CE conditions [28] as the configuration
parameters. Specifically, the GOP size for temporal scalability
is set to support five temporal layers, while keeping three
spatial layers for 4CIF sequences and two spatial layers for
CIF sequences. For each specific spatial layer, the following
parameters for temporal decomposition have been enabled:
closed-loop prediction structure of SVC, adaptive QP selec-
tion, the mode of intra-macroblock and inter-layer prediction.
Besides, the pixel range of motion search is set 64 as the
proposed DMSVC. It can be obviously seen that, with the
increase of video resolution and the abundance of complex
texture structure, DMSVC shows an increasingly approximate
objective performance to H.264/SVC. For the sequences full
of directional information, e.g., edges and textures, sketch
lines, and contours, perceptual quality index such as SSIM
has illustrated a better effect than H.264/SVC, especially in
the low bitrate range. It sufficiently justifies the reconstructed
video frames of the proposed DMSVC have better structure
similarity and visual quality than other SVC schemes.

To a great extent, the H.264/SVC scheme is dependent on
the temporal decomposition stage: close-loop hierarchical B-
picture rather than open-loop MCTF in WSVC and the pro-
posed DMSVC. The open-loop coder control of MCTF would
accumulate the quantization errors [29] and thus reduce the
coding efficiency. Moreover, the divergence between DMSVC
and H.264/SVC on spatial scalability is either frame-based
or macroblock-based. Although DMSVC uses a block-based
motion model like H.264/SVC, it can not support the intra-
mode because the spatio-temporal decomposition is enabled
to put a group of frames together within the coding passes in
a global manner. Hence, the single layer DMSVC or WSVC
only supports open-loop encoding/decoding without in-loop
deblocking filter. It has been out of scope to pursue a sparser

spatial decomposition and representation in generic video
coding and design an adaptive orientational multiresolution
transform and nonuniform directional filterbank beyond the
traditional trajectory. However, the appropriate incorporation
of local compensation would be investigated in the proposed
dual multiresolution transform and the co-located NUDFB
design in the future.

V. Conclusion

In order to capture the intrinsic geometric structure of
the 2-D video signal and represent it more sparsely, we
introduced a dual multiresolution transform with nonuniform
directional filter banks into the current SVC framework with
fully compatibility. The proposed spatial decomposition can
select the anisotropic basis of multiscale and multidirection
subspaces adaptively according to the orientation distribution
histogram of the video frame and project the frame into these
spaces. This paper has made two main contributions.

1) The proposal of nonuniform directional frequency de-
compositions under arbitrary scales which are fulfilled
by a NSBT topology structure with NUDFB design.
The proposed NUDFB provides a multiresolution on
directions as well as wavelet filters provide a multires-
olution on scales, and it is more flexible to statistically
utilize the directional information in video frames to
achieve a more efficient filter bank partition. In the dual
multiresolution transform, the wavelet basis function in
each scale is converted to an adaptive set of nonuniform
directional basis. The NUDFB is fulfilled by arraying the
topology structure of a NSBT, as a symmetric extension
from a two channel filter bank. The paraunitary perfect
reconstruction is provided through a polyphase identical
form of filter bank, in terms of 2-D nonseparable filters
from a 1-D prototype.

2) The development of a novel generic scalable video
coding framework with the dual (scale and orientational)
multiresolution transform, called DMSVC. Each tempo-
ral subband through MCTF is further decomposed into
multiscale subbands, and the highpass wavelet subspaces
are divided into an arbitrary number of directional
subspaces in alignment with the orientation distribution
via phase congruency to establish NSBT. Comparing
with the isolated wavelet basis, our transform provides
a greater correlated set of localized and anisotropic
basis functions with video frames. The spatio-temporal
subband coefficients are coded by a 3-D ESCOT entropy
coding algorithm to match the structure of NSBT.

Appendix A

PROPERTIES OF ORIENTATION MULTIRESOLUTION ANALYSIS

Proposition 4: Given a kth order highpass wavelet subspace
W s

k (s = 1, 2, 3), it can be divided into 2l orthogonal directional
subspaces D(l)

k,p by using the equivalent synthesis filter banks
Gl

k,p where 0 ≤ p < 2l [7], [9]

W s
k =

2l−1⊕
p=0

D(l)
k,p. (17)
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Proof: Let {λ(l)
k,n,p}n∈Z2 be the basis for D(l)

k,p, and it
satisfies

λ
(l)
k,n,p =

∑
m∈Z2

d(l)
p [m − S(l)

p n]ψk,m(t) (18)

where S(l)
p is the overall sampling lattice

S(l)
p =

{
diag(2l−1, 2), if 0 ≤ p ≤ 2l−1 − 1
diag(2, 2l−1), if 2l−1 ≤ p ≤ 2l − 1.

Since {d(l)
p [m − S(l)

p n]0≤p≤2l−1,n∈Z2} are the coefficients of
directional filter Gl

k,p, such that {λ(l)
k,n,p}n∈Z2 is also the or-

thonormal basis of W s
k .

Proposition 5: Any directional subspaces D(l)
k,p can be

divided into two subspaces by using a first-order partition
operator δ as follows:

δD(l)
k,p = D(l+1)

k,2p ⊕ D(l+1)
k,2p+1. (19)

Proof: From (18), we know that {λ(l)
k,n,p}n∈Z2 can be

divided into {λ(l+1)
k,n,2p}n∈Z2 and {λ(l+1)

k,n,2p+1}n∈Z2 with an extra
level of filtering by a pair of equivalent quadrature mirror
filters Gl+1

k,2p and Gl+1
k,2p+1, while {λ(l+1)

k,n,2p}n∈Z2 and {λ(l+1)
k,n,2p+1}n∈Z2

can be spanned into mutually orthogonal subspaces D(l+1)
k,2p

and D(l+1)
k,2p+1 with finer orientation resolution, which shows the

validity of the partition operator. In other words, from the
orthonormal basis of a coarser orientation resolution l, we can
obtain a set of two orthonormal basis in the finer orientation
resolution l+1 by using the partition operator once, and it can
be iteratively used. Moreover, if we consider the filter bank to
be organized in a binary tree structure, the partition operator
can be considered as the split operation.

Corollary 1: Obviously, an nth order partition operator δn

can be inferred as

δnD(l)
k,p =

2np+2n−1⊕
pn=2np

D(l+n)
k,pn

. (20)
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